×
10.08.2014
216.012.e64a

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СКОРОСТИ ПОТОКА МАГНИТНЫХ ИЛИ ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ИХ ПРИМЕНЕНИЕ

Вид РИД

Изобретение

№ охранного документа
0002524747
Дата охранного документа
10.08.2014
Аннотация: Настоящее изобретение относится к способу и устройству для определения скорости потока магнитных или ферромагнитных частиц (8) в суспензии (3), протекающей через контрольные зоны. Посредством измерительной катушки (4), окружающей первую контрольную зону (2), измеряется магнитный поток Фв зависимости от времени t, причем магнитный поток в некоторый момент времени является мерой для количества магнитных частиц (8), содержащихся в суспензии (3). На заданном расстоянии d от первой контрольной зоны (2), во второй контрольной зоне (2'), посредством окружающей вторую контрольную зону (2') второй измерительной катушки (4') измеряется магнитный поток Фв зависимости от времени t, и сравнение измерений Ф(t) и Ф(t) дает временной интервал Δt, который при применении заданного расстояния d используется для определения скорости потока. Технический результат - бесконтактное определение скорости потока магнитных или ферромагнитных частиц без применения рентгеновского излучения. 3 н. и 9 з.п. ф-лы, 5 ил.

Настоящее изобретение относится к способу и устройству для определения скорости потока магнитных и электрических частиц в суспензии, протекающей через контрольные зоны. Посредством измерительной катушки, окружающей первую контрольную зону, измеряется магнитный поток Ф1 в зависимости от времени t, причем магнитный поток в некоторый момент времени представляет собой меру для количества магнитных частиц, содержащихся в суспензии. На заданном расстоянии d от первой контрольной зоны, во второй контрольной зоне, посредством окружающей вторую контрольную зону второй измерительной катушки измеряется магнитный поток Ф2 в зависимости от времени t. Кроме того, заявленное изобретение относится к применению соответствующего изобретению способа и устройства.

Магнитные или ферромагнитные частицы имеют значение в ряде технических процессов, например, в медицинских способах диагностики подобные частицы используются для маркировки клеток. Также магнитные частицы применяются при медицинских терапевтических способах (таргетинг лекарственного препарата). Также при водоочистке могут использоваться магнитные или ферромагнитные частицы, чтобы определенные субстанции перевести в осадок в сточной воде. Другой большой областью применения является обогащение руд, которые присутствуют в виде суспензии в смеси с водой или другой жидкостью. Магнитные или ферромагнитные частицы в суспензии могут отделяться посредством магнитного поля.

При многих применениях, является желательным знать количество магнитных или ферромагнитных частиц, чтобы иметь возможность точно управлять способом или процессом. Так, например, при добыче руд, при которой посредством флотационного способа из размолотой породы (руды) получают материал, содержащий ценное вещество, на основе изменяющегося химического состава породы и концентрации ценного вещества в руде, важно измерять и точно регулировать объемные потоки (расходы) для оптимизации процесса. В частности, при этом должны постоянно измеряться и дополнительно регулироваться химические параметры пульпы из порошкообразной породы и воды.

В одном вновь разработанном способе немагнитные частицы руды с помощью химического поверхностного активирования связываются с намагничиваемыми частицами, так что эти агломераты с помощью соответственно сформированных магнитных полей могут быть извлечены из пульпы. Этот новый способ приводит к более высокой интенсивности добычи руды при меньших затратах энергии, чем предшествующие способы, основанные на газовом дутье. Эти новые способы требуют, однако, регулирования в реальном времени объемных потоков и концентраций руды, в особенности также магнитных частиц.

В настоящее время при обычной флотации используются, в частности, два способа для определения существенных параметров пульпы:

- Химический экспресс-анализ с временным формированием растра, который в типовом случае требует нескольких минут.

- Основанный на рентгеновском излучении анализ (рентгеновская флуоресценция или рентгеновское поглощение).

Так как химический анализ базируется на том, что в общем случае должны преобразовываться большие количества вещества, и тем самым возникает сильно усредняющий эффект, они не пригодны для того, чтобы достаточно точно определять по времени и относительно концентрации кратковременные отклонения, которые, например, могут играть роль в магнитном сепараторе.

Основанные на рентгеновском излучении способы анализа характеризуют собой уровень техники и могут также, в частности, точно определять кратковременные отклонения, однако они имеют существенный недостаток, заключающийся в том, что тем самым в производственной зоне должны устанавливаться области контроля излучения, что является недостатком с точки зрения безопасности и стоимости.

Другие способы, которые обычно используются при измерении расходов и скоростей потока жидкостей в реальном времени, базируются на подвижных механических конструкционных элементах, которые из-за абразивных свойств пульпы быстро изнашиваются. Также измерение доли магнитных или ферромагнитных частиц в полном количестве жидкости и различение от других частиц, например песка, данными методами невозможно.

Поэтому задачей настоящего изобретения является предложить способ и устройство для определения скорости потока магнитных или ферромагнитных частиц, которые решают вышеописанные проблемы. В особенности, задачей является измерение скорости потока магнитных или ферромагнитных частиц бесконтактным способом и при этом без износа и вместе с тем надежным образом. В особенности, задачей является измерять только магнитные или ферромагнитные частицы, но не большие или меньшие немагнитные частицы, и обеспечивать возможность определения концентрации из скорости потока без использования вредных для здоровья излучений, таких как рентгеновское излучение. Это снижает затраты и издержки и приводит к возможности улучшенного управления процессом. Другой задачей настоящего изобретения является предложить применение способа и устройства.

Указанная задача относительно способа для определения скорости потока магнитных или ферромагнитных частиц решается признаками п.1 формулы изобретения, относительно устройства для определения скорости потока магнитных или ферромагнитных частиц в суспензии для осуществления способа - признаками п.11 формулы изобретения и относительно применения способа и устройства - признаками п.13 формулы изобретения.

Предпочтительные варианты осуществления соответствующего изобретению способа для определения скорости потока магнитных или ферромагнитных частиц следуют из подчиненных зависимых пунктов. При этом признаки основных пунктов могут комбинироваться друг с другом и с признаками подчиненных пунктов, а также признаки подчиненных пунктов могут комбинироваться друг с другом.

Соответствующий изобретению способ для определения скорости потока магнитных или ферромагнитных частиц в суспензии, протекающей через контрольные зоны, включает в себя измерение магнитного потока Ф1 в зависимости от времени t посредством измерительной катушки, окружающей первую контрольную зону. При этом магнитный поток в некоторый момент времен является мерой для количества магнитных частиц, содержащихся в суспензии. Кроме того, на заданном расстоянии d от первой контрольной зоны, во второй контрольной зоне, посредством окружающей вторую контрольную зону второй измерительной катушки измеряется магнитный поток Ф2 в зависимости от времени t. Сравнение измерений Ф1(t) и Ф2(t) дает временной интервал Δt, который при применении заданного расстояния d используется для определения скорости потока.

За счет применения измерительных катушек, которые измеряют магнитный поток, возможно бесконтактное, без износа, определение скорости потока магнитных или ферромагнитных частиц, без применения рентгеновского излучения. За счет этого можно избежать частой замены изношенных деталей и, тем самым, обеспечить экономию расходов. Кроме того, снижаются высокие затраты, которые связаны с использованием рентгеновского излучения. За счет сравнения двух графиков измерений, которые определяются посредством двух измерительных катушек в зависимости от времени, возможно, надежное определение времени, которое требуется магнитным или ферромагнитным частицам в суспензии для прохождения заданного участка пути d. Определяемая при этом скорость потока, которая в каждый момент времени определяется синхронно с потоком, может применяться для регулирования или управления процессами.

Из скорости v потока, площади А поперечного сечения потока и магнитного потока Ф в зависимости от времени t может определяться концентрация с магнитных или ферромагнитных частиц в суспензии. Концентрация с задается как частное от деления числа частиц n на объем V. Магнитный поток Ф1, который измеряется измерительной катушкой, в момент времени t1 является мерой для количества магнитных частиц n, содержащихся в суспензии. Если через временной интервал Δt измерить магнитный поток, то тем самым получают число магнитных частиц n, которые за этот временной интервал Δt прошли через магнитную катушку. За тот же временной интервал жидкость, то есть суспензия проходит со скоростью v потока путь s(Δt), при допущении равномерного потока с постоянной скоростью v потока. Тем самым получается объем V суспензии, которая прошла через измерительную катушку за временной интервал Δt, из s(Δt), умноженного на площадь А поперечного сечения потока. Площадь А поперечного сечения потока представляет собой, например, внутреннее сечение трубы, вокруг которой расположена измерительная катушка и по которой протекает суспензия.

Тем самым при измеренной скорости v потока известен объем V(Δt), который за время Δt протекает через измерительную катушку. Одновременно известно измеренное через магнитный поток число n(Δt) частиц, которые в объеме V(Δt) прошли через измерительную катушку. Отсюда получается концентрация с как частное от деления числа n(Δt) частиц на объем V(Δt). Таким образом, с помощью способа, соответствующего изобретению, возможен мониторинг в режиме онлайн концентрации с.

Применение двух измерительных катушек на заданном расстоянии d друг от друга и сравнение временной характеристики магнитного потока через две измерительные катушки обеспечивает, по сравнению с применением только одной измерительной катушки, надежное определение скорости v потока также при неизвестном числе частиц или концентрации. Близкое по времени сравнение графиков измерений и определяемая отсюда скорость v потока, а также концентрация с могут осуществляться автоматически с помощью компьютера и применяться актуальным образом для управления процессами.

Из графика измерений магнитный поток Ф1 в зависимости от времени t может определяться характерный момент Р измерений в момент времени t1, в частности, максимум или минимум значения магнитного потока Ф1 в момент времени t1. Он может вновь распознаваться при сравнении с характеристикой графика измерений магнитного потока Ф2 в зависимости от времени t в момент времени t2, в частности, как максимум или минимум значения магнитного потока Ф2 в момент времени t2. Разность по времени между моментами времени t1 и t2 дает тогда временной интервал Δt, который определяет скорость потока как частное от деления заданного расстояния d на временной интервал Δt.

Магнитные частицы могут намагничиваться посредством устройства формирования магнитного поля, расположенного в направлении потока перед измерительными катушками. Намагничивание ранее намагниченных частиц или присутствующих частиц, которые уже намагничены, не должно производиться.

Устройство формирования магнитного поля в одной форме выполнения может формировать статический магнитный поток, который пронизывает измерительные катушки. При этом магнитный поток в контрольной зоне в течение установленного времени интегрирования измеряется измерителем потока. Предпосылкой для измерения магнитных потоков в обеих измерительных зонах посредством измерителя потока является то, что магнитное поле устройства формирования магнитного поля распространяется на обе контрольные зоны.

В качестве альтернативы вышеописанному способу со статическим магнитным полем, устройство формирования магнитного поля может формировать в контрольных зонах варьирующееся во времени магнитное поле. Магнитный поток в соответствующей контрольной зоне может тогда измеряться на основе индуцированного напряжения в измерительной катушке, ассоциированной с контрольной зоной.

Соответствующие две катушки могут также быть зеркально (встречно) включены как система измерительных катушек. За счет встречного включения магнитный поток устройства формирования магнитного поля может компенсироваться.

Могут применяться также более чем две измерительные катушки или системы измерительных катушек. Посредством более чем двух измерительных катушек, окружающих соответствующую контрольную зону, может измеряться соответствующий магнитный поток Ф в зависимости от времени t, и сравнение более чем двух графиков измерений может приводить к более надежному распознаванию характерных точек Р измерений. За счет этого может осуществляться определение временных интервалов Δt, в которых на соответствующих двух измерительных катушках выполняется измерение в точках Р измерений с временным интервалом между ними, определение скорости потока и концентрации с более высокой надежностью и точностью, например, путем усреднения измеренных значений.

Соответствующее изобретению устройство для определения скорости потока магнитных или ферромагнитных частиц в суспензии может применяться для выполнения вышеописанного способа. Оно состоит, как правило, из двух или более измерительных катушек, которые размещены на заданном расстоянии друг от друга вокруг контрольной зоны, ассоциированной с соответствующей измерительной катушкой, причем через контрольные зоны протекает суспензия с магнитными или ферромагнитными частицами.

Соответствующее изобретению применение вышеописанного способа и/или вышеописанного устройства осуществляется в оборудовании для добычи руды.

Преимущества, связанные с устройством для определения скорости потока магнитных или ферромагнитных частиц в суспензии, и преимущества, связанные с применением способа и устройства, аналогичны преимуществам, которые описаны выше в отношении способа для определения скорости потока магнитных или ферромагнитных частиц в суспензии.

Предпочтительные формы выполнения изобретения с предпочтительными вариантами осуществления согласно признакам зависимых пунктов далее пояснены более подробно со ссылками на чертежи, но не ограничиваются этим. На чертежах показано следующее:

фиг.1 - структура устройства измерений для измерения магнитных частиц с помощью измерительной катушки и устройства формирования магнитного поля, которое формирует магнитное поле,

фиг.2 - показанное на фиг.1 устройство измерений, однако с устройством формирования магнитного поля, которое формирует варьирующееся во времени магнитное поле,

фиг.3 - принципиальное представление структуры измерений для выполнения соответствующего изобретению способа для определения скорости потока магнитных или ферромагнитных частиц в суспензии,

фиг.4А-4С - принципиальное представление этапа соответствующего изобретению способа, который основывается на сравнении двух графиков А и В измерений.

Показанное на фиг.1 устройство 1 содержит имеющую форму трубы контрольную зону 2, через которую протекает суспензия 3, которая содержит магнитные или ферромагнитные частицы. Контрольная зона 2 окружена измерительной катушкой 4, которая измеряет магнитный поток в пределах поверхности, охватываемой измерительной катушкой 4. Контрольная зона 2, кроме того, окружена выполненным как катушка 5 (катушка возбуждения) устройством формирования магнитного поля, через которое протекает ток возбуждения, который формирует статическое магнитное поле в контрольной зоне. Число обмоток катушки 5 и протекающий через катушку 5 ток выбираются таким образом, что магнитное поле Н внутри катушки 5 достаточно велико, чтобы намагничивать ферромагнитные частицы, которые содержатся в суспензии 3, до установленного значения. Посредством сформированного катушкой 5 статического магнитного поля ферромагнитные частицы намагничиваются, за счет чего создается дополнительный магнитный поток ВМ, который детектируется измерительной катушкой 4 и связанным с ней, показанным на фиг.1 лишь схематично, измерителем 6 потока путем интегрирования во времени, причем измеренный сигнал является мерой для ферромагнитных частиц, находящихся в течение времени интегрирования в измерительной катушке 4.

Так как измерительная катушка 4, наряду с магнитным потоком ВМ, обусловленным ферромагнитными частицами, также измеряет магнитный поток ВН (так называемый магнитный поток в воздушном зазоре ВН = µ0Н), обусловленный полем Н возбуждения, то в поле возбуждения внутри катушки 5 находится компенсационная катушка 7. Компенсационная катушка 7 размещена таким образом, что она также пронизывается магнитным потоком ВН в воздушном зазоре катушки возбуждения, но не магнитным потоком ВМ магнитных частиц, проходящих через контрольную зону 2. Компенсационная катушка 7, в отношении замкнутой ею поверхности и числа витков, выполнена таким образом, что она точно зеркально соответствует измерительной катушке 4. Это достигается, например, тем, что при одинаковом числе витков и одинаковой площади катушки направление витков обеих катушек является противоположным. В показанном на фиг.1 примере выполнения компенсационная катушка 7 размещена рядом с измерительной катушкой 4. Компенсационная катушка 7 и зеркальная к ней измерительная катушка 4 соединены электрически последовательно, так что в суммарном сигнале обеих катушек поток возбуждающего поля ВН, который пронизывает обе катушки, точно компенсируется (результирующее напряжение U=0). Временной интеграл, получаемый подключенным измерителем потока, равен, таким образом, нулю. Если в контролируемой зоне или в окружающей ее измерительной катушке находятся намагничиваемые или намагниченные частицы, то компенсация конфигурации катушек, состоящей из измерительной катушки (4) и компенсационной катушки (7), нарушается, и обусловленный намагничиванием частиц магнитный поток ВМ вносит вклад в результирующее напряжение U≠0, которое интегрируется по времени подключенным измерителем потока. Интегральное напряжение U представляет, таким образом, меру для намагничивания и, тем самым, меру для количества содержащихся в суспензии магнитных или намагничиваемых частиц и может применяться в качестве регулирующего параметра при управлении процессом.

В рамках способа для магнитного разделения можно на основе измеренного сигнала определять долю содержащихся в суспензии магнитных или намагничиваемых частиц.

Фиг.2 показывает второй пример выполнения изобретения, причем для совпадающих компонентов применяются те же самые ссылочные позиции, что и на фиг.1. В соответствии с первым примером выполнения, устройство 8 содержит обтекаемую суспензией 3 контрольную зону 2 в форме трубы, которая окружена измерительной катушкой 4. Иначе, чем в первом примере выполнения, устройство формирования магнитного поля, выполненное как катушка 9, формирует магнитное переменное поле, которое намагничивает содержащиеся в суспензии ферромагнитные частицы с установленной частотой попеременно в противоположном направлении. Магнитное переменное поле обуславливает то, что ферромагнитные частицы внутри измерительной катушки 4 непрерывно перемагничиваются, так что вырабатываемый магнитными частицами дополнительный магнитный поток ВМ~ периодически изменяется с частотой магнитного переменного поля, служащего в качестве поля возбуждения. Временное изменение магнитного потока вызывает индукцию напряжения в измерительной катушке 4, которая пропорциональна изменению магнитного потока и которая, тем самым, является мерой доли магнитных или намагничиваемых частиц в измерительной катушке 4.

Как в первом примере выполнения, внутри катушки 9, формирующей поле возбуждения, находится компенсационная катушка 7, выполненная, например, зеркально по отношению к измерительной катушке, чтобы компенсировать влияние поля возбуждения на измерительную катушку 4.

На фиг.3 показано принципиальное представление измерительной структуры для выполнения соответствующего изобретению способа. Две контрольные зоны 2, 2', соответственно окруженные измерительными катушками 4, 4', расположены друг за другом вдоль потока суспензии 3 для определения скорости потока магнитных или намагничиваемых частиц. Поток протекает в проточном канале 10, который образован, например, трубой, выполненной из пластика или другого немагнитного материала. На заданном расстоянии d друг от друга расположены измерительные катушки 4, 4', как описано выше, соответственно окружающие трубу. Плоскость внутреннего поперечного сечения трубы, через которую протекает суспензия 3 и которая полностью окружена катушкой, представляет собой площадь А поперечного сечения потока. Она лежит в плоскости обмотки катушки и перпендикулярно продольной оси катушки.

Суспензия 3, например, из воды и магнитных или намагничиваемых частиц 8, протекает через проточный канал 10 и проходит первую контрольную зону 2. Контрольная зона 2 окружена вышеописанной измерительной катушкой 4, или описанное со ссылкой на фиг.1 и 2 измерительное устройство 1 расположено в месте контрольной зоны 2.

Как показано на фиг.4А, первой измерительной катушкой 4 в зависимости от времени определяется первый измеренный сигнал, например, измеренное напряжение U. Это напряжение U в момент времени t является мерой для магнитного потока Ф1 в этот момент времени t и, тем самым, мерой содержащихся в суспензии 3 магнитных частиц 8, которые в момент времени t перемещаются через измерительную катушку 4.

Аналогичным образом, как показано на фиг.4В, вторая измерительная катушка 4' определяет в зависимости от времени измеренный сигнал, например, измеренное напряжение U'. Это напряжение U' в момент времени t является мерой для магнитного потока Ф2 в этот момент времени t и, тем самым, мерой для количества содержащихся в суспензии магнитных частиц 8, которые в момент времени t перемещаются через измерительную катушку 4'.

Так как магнитная частица 8 в суспензии 3 в момент времени t1 перемещается через измерительную катушку 4 и с суспензией 3, протекая дальше, в момент времени t2 перемещается через измерительную катушку 4', она измеряется обеими измерительными катушками 4, 4' с разностью Δt времени. Аналогичным образом, количество магнитных частиц 8 в суспензии 3, которое в момент времени t1 перемещается через измерительную катушку 4, протекая дальше с суспензией 3, в момент времени t2 перемещается через измерительную катушку 4' и измеряется измерительной катушкой 4'. Разность Δt времени представляет собой время, которое требуется магнитным частицам 8 в потоке суспензии 3 для прохождения от измерительной катушки 4 до измерительной катушки 4', то есть для прохождения пути, которое представляет собой заданное расстояние d.

Так как концентрация магнитных частиц 8 в суспензии 3 изменяется, то измерение в измерительной катушке 4 дает график измерений, например, U(t), см. также фиг.4А, который с разностью времени Δt повторяется при измерении на измерительной катушке 4', см. фиг.4В.

Если, как представлено на фиг.4С, измерения двух измерительных катушек 4, 4' сравниваются друг с другом, то можно на основе сигнатуры или формы графика измерений определить разность времени Δt. Например, можно характерный максимум на графике измерения измерительной катушки 4 распознать на графике измерения измерительной катушки 4' на основе его формы и определить временную разность между появлением максимума на графике измерения измерительной катушки 4 и на графике измерения измерительной катушки 4'. Эта временная разность представляет собой Δt. С этой целью графики измерений по фиг.4А и 4В, как показано на фиг.4С, накладываются на диаграмме друг на друга, причем наложение выполняется таким образом, что на временной оси точки на графике, которые в одинаковый момент времени измерялись измерительной катушкой 4 и измерительной катушкой 4', соотносятся с тем же самым значением на временной оси.

Вышеописанный способ может выполняться электронным образом или посредством компьютера. Так можно, например, с помощью электронной схемы определять и оценивать разность измеренных напряжений. С помощью компьютерной программы можно синхронно посредством определения разности времени Δt определять скорость v потока по формуле

v(t) = d/Δt,

где v(t) - средняя скорость потока, d - заданное расстояние между контрольными зонами или измерительными катушками 4, 4' и Δt - определенная разность времени между измерением характерной точки на графике измерений измерительной катушки 4 и той же характерной точки на графике измерений измерительной катушки 4'.

Из средней скорости v(t) потока, площади А поперечного сечения потока и магнитного потока Ф в зависимости от времени t можно определить концентрацию с магнитных или феромагнитных частиц 8 в суспензии 3 в зависимости от времени. Концентрация с задается как частное от деления числа n частиц на объем V. Магнитный поток Ф1, который измеряется измерительной катушкой 4, в момент времени t1 является мерой для количества n содержащихся в суспензии 3 магнитных частиц 8. Если магнитный поток измеряется через временной интервал Δt, то посредством числа n определяется количество магнитных частиц 8, которые в этом временном интервале Δt прошли через измерительную катушку. В таком же временном интервале жидкость, то есть суспензия 3, со скоростью v потока прошла путь s(Δt), при допущении равномерного потока с постоянной скоростью v потока в коротком временном интервале. Тем самым получается объем V суспензии 3, который прошел через измерительную катушку 4 за временной интервал Δt, из s(Δt), умноженного на площадь А поперечного сечения потока. Площадь А поперечного сечения потока представляет собой, например, внутреннее сечение трубы, вокруг которой расположена измерительная катушка 4 и через которую протекает суспензия 3.

Таким образом, при измеренной скорости v (= const) потока известен объем V(Δt), который протекает за время Δt через измерительную катушку 4. Одновременно известно измеренное через магнитный поток Ф число частиц n(Δt), которое в объеме V(Δt) прошло через измерительную катушку 4. Отсюда получается концентрация с как частное от деления числа частиц n(Δt) на объем V(Δt).

с = n(Δt)/V(Δt) = n(Δt)/(s(Δt)×А) = n(Δt)/(d×А),

где n(Δt) ~ Ф, т.е. число частиц пропорционально измеренному магнитному потоку.

Мониторинг в режиме онлайн скорости v потока и концентрации с магнитных или намагничиваемых частиц 8 в суспензии 3, таким образом, возможен с помощью способа, соответствующего изобретению.

Изобретение не ограничивается вышеописанными примерами выполнения. Также возможны комбинации вышеописанных примеров выполнения. Кроме того, возможны иные, чем описанные материалы, например, суспензии из масла, крови или других жидкостей.


СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СКОРОСТИ ПОТОКА МАГНИТНЫХ ИЛИ ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ИХ ПРИМЕНЕНИЕ
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СКОРОСТИ ПОТОКА МАГНИТНЫХ ИЛИ ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ИХ ПРИМЕНЕНИЕ
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СКОРОСТИ ПОТОКА МАГНИТНЫХ ИЛИ ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ИХ ПРИМЕНЕНИЕ
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СКОРОСТИ ПОТОКА МАГНИТНЫХ ИЛИ ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ИХ ПРИМЕНЕНИЕ
Источник поступления информации: Роспатент

Показаны записи 721-730 из 1 432.
25.08.2017
№217.015.aa6b

Способ и устройство для подачи топлива в газовую турбину

Изобретения относятся к способу и устройству для подачи топлива в газовую турбину. Описан способ управления подачей топлива в камеру сгорания газовой турбины, содержащей компрессор выше по потоку относительно камеры сгорания, причем способ содержит: подачу топлива в камеру сгорания; получение...
Тип: Изобретение
Номер охранного документа: 0002611543
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aabb

Система и способ для индикации износа турбомашины

Система индикации износа турбомашины содержит компонент турбомашины и другой компонент турбомашины, находящийся в контакте с компонентом турбомашины. В компоненте турбомашины в зоне контакта с другим компонентом турбомашины образована канавка. Внутри канавки компонента турбомашины образован...
Тип: Изобретение
Номер охранного документа: 0002611708
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.ada8

Хвостовик лопатки, соответствующая лопатка, диск ротора и узел турбомашины

Хвостовик лопатки содержит множество пар противоположных выступов, множество пар противоположных скруглений, множество боковых поверхностей и нижнюю часть хвостовика лопатки. Выступы и скругления расположены в чередующемся порядке, а каждая из боковых поверхностей расположена между одним из...
Тип: Изобретение
Номер охранного документа: 0002612675
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.adb4

Способ определения пола эмбриона в яйце

Изобретение относится к способу определения пола эмбриона, при котором пол эмбриона определяется при помощи, по меньшей мере, одного неинвазивного (неразрушающего), по меньшей мере, по отношению к яйцу способа определения. Причем при помощи неинвазивного способа определения устанавливается, по...
Тип: Изобретение
Номер охранного документа: 0002612370
Дата охранного документа: 09.03.2017
25.08.2017
№217.015.aeab

Уплотнительная система паровой турбины, причем используется уплотнительная жидкость и отсос пара, сконденсировавшегося в туман

Изобретение относится к уплотнительной системе паровой турбины для проведения вращающегося вокруг оси вала через неподвижный корпус, причем для уплотнения используется уплотнительная жидкость. Такое выполнение уплотнительной системы позволит повысить коэффициент полезного действия паровой...
Тип: Изобретение
Номер охранного документа: 0002612979
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.af66

Топливная форсунка для двух видов топлива

Изобретение относится к энергетике. Топливная форсунка 2 для двух видов топлива с внутренней трубой 5 с радиально ориентированными выходными отверстиями для первого вида топлива и с окружающей внутреннюю трубу внешней трубой 6 с ориентированными по оси выходными отверстиями 10 для второго вида...
Тип: Изобретение
Номер охранного документа: 0002610979
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.af8f

Предотвращение перегрузки линий передач в сети энергоснабжения

Использование: в области электротехники. Технический результат – предотвращение перегрузки сети энергоснабжения. Согласно способу предотвращения перегрузки по меньшей мере одного участка линии, который выполнен с возможностью передачи электрической мощности в сети энергоснабжения для по...
Тип: Изобретение
Номер охранного документа: 0002611065
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.afbb

Электрическая машина

Изобретение относится к электротехнике, а именно к электрической машине с ротором из сверхпроводящего материала и способу управления. Электрическая машина (101), содержит статор (103), установленный с возможностью вращения ротор (105) с охлаждаемым, намагничиваемым роторным участком (107) из...
Тип: Изобретение
Номер охранного документа: 0002611067
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.afe1

Система изоляции с улучшенной стойкостью к частичному разряду, способ для ее изготовления

Изобретение относится к области изоляции проводников от частичного разряда, в частности к способу изготовления системы изоляции с улучшенной стойкостью к частичному разряду. Способ изготовления системы изоляции с улучшенной стойкостью к частичному разряду включает в себя этапы обеспечения...
Тип: Изобретение
Номер охранного документа: 0002611050
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.aff3

Источник рентгеновского излучения и его применение и способ генерации рентгеновского излучения

Изобретение относится к источнику рентгеновского излучения, в котором, в частности, может генерироваться монохроматическое рентгеновское излучение. Кроме того, изобретение относится к способу генерации рентгеновского излучения, а также к применению источника рентгеновского излучения для...
Тип: Изобретение
Номер охранного документа: 0002611051
Дата охранного документа: 21.02.2017
Показаны записи 721-730 из 955.
25.08.2017
№217.015.9eba

Отклоняющая пластина и отклоняющее устройство для отклонения заряженных частиц

Изобретение относится к области ускорительной техники. Отклоняющее устройство (130) для отклонения заряженных частиц выполнено для отклонения движущейся в третьем пространственном направлении (103) заряженной частицы во втором пространственном направлении (102). Отклоняющее устройство (130)...
Тип: Изобретение
Номер охранного документа: 0002606234
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9ee1

Распознавание направления неисправности в сетях энергоснабжения среднего напряжения

Использование: в области электротехники. Технический результат – повышение надежности и простоты определения направления неисправности. Согласно способу распознавания направления, в котором возникла неисправность в трехфазной электрической сети (12а) энергоснабжения среднего напряжения...
Тип: Изобретение
Номер охранного документа: 0002606204
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9eec

Многослойный материал для радиационной защиты типа сэндвич-структуры

Изобретение относится к многослойному материалу для радиационной защиты типа сэндвич-структуры. Защитный материал содержит слой сцинтилляционного материала, обеспечивающий при поглощении ионизирующего излучения преобразование ионизирующего излучения в множество фотонов сцинтилляции или фотонов...
Тип: Изобретение
Номер охранного документа: 0002606233
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9f83

Вч резонатор и ускоритель частиц с вч резонатором

ВЧ резонатор имеет цилиндрическую полость из диэлектрического материала. Полость включает в себя первый цилиндрический участок, второй цилиндрический участок и диэлектрическое кольцо, соединяющее первый участок и второй участок. Внутренняя сторона первого цилиндрического участка имеет первое...
Тип: Изобретение
Номер охранного документа: 0002606187
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9fb0

Изготовление ротора электрической асинхронной машины

Изобретение касается способа изготовления ротора электрической асинхронной машины. Технический результат – упрощение изготовления короткозамкнутых роторов. Способ изготовления ротора электрической асинхронной машины включает изготовление опорного вала (1), снабженного пазами (4) вала. На...
Тип: Изобретение
Номер охранного документа: 0002606193
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9fc4

Высокочастотный резонатор и ускоритель частиц, снабженный высокочастотным резонатором

Высокочастотный резонатор включает в себя цилиндрическую полость из диэлектрического материала. Внутренняя сторона полости имеет электрически проводящее покрытие, которое разделено кольцеобразно проходящим по периметру боковой поверхности полости электрически изолирующим зазором на первое...
Тип: Изобретение
Номер охранного документа: 0002606188
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a011

Покрытие с высокой короностойкостью, а также способ его получения

Изобретение относится к покрытию для полимерного изоляционного материала и способу его получения. Такие покрытия могут быть нанесены как на трехмерные детали, так и на листовые материалы, такие как пленки и тканые материалы. Покрытие включает от 1 до 10 слоев и является силикатным, причем...
Тип: Изобретение
Номер охранного документа: 0002606447
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a027

Узел опорной стойки газотурбинного двигателя

Группа изобретений относится к узлу опорной стойки для опоры корпуса функционального блока газовой турбины, к газовой турбине и к способу опоры корпуса функционального блока газовой турбины. Узел (100) опорной стойки содержит тело (101) стойки для опоры блока на основании, шаровой поворотный...
Тип: Изобретение
Номер охранного документа: 0002606462
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a085

Способ уменьшения фликера в электродуговых печах и устройство для его осуществления

Изобретение относится к области металлургии и может быть использовано при изготовлении стали в электродуговых печах с регулированием показателей фликера. В способе создают посредством запоминающего устройства банк данных по фликеру, в котором сохраняются временные динамики моментального...
Тип: Изобретение
Номер охранного документа: 0002606672
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a0a1

Шликер для литья под давлением и изготавливаемая из него огнеупорная керамика для газотурбинных установок

Изобретение касается шликера для литья под давлением для изготовления огнеупорной керамики для применения в качестве теплозащитного экрана в контуре высокотемпературного газа газотурбинных установок. Шликер содержит смесь зерен по меньшей мере из двух материалов с различными коэффициентами...
Тип: Изобретение
Номер охранного документа: 0002606739
Дата охранного документа: 10.01.2017
+ добавить свой РИД