×
10.08.2014
216.012.e64a

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СКОРОСТИ ПОТОКА МАГНИТНЫХ ИЛИ ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ИХ ПРИМЕНЕНИЕ

Вид РИД

Изобретение

№ охранного документа
0002524747
Дата охранного документа
10.08.2014
Аннотация: Настоящее изобретение относится к способу и устройству для определения скорости потока магнитных или ферромагнитных частиц (8) в суспензии (3), протекающей через контрольные зоны. Посредством измерительной катушки (4), окружающей первую контрольную зону (2), измеряется магнитный поток Фв зависимости от времени t, причем магнитный поток в некоторый момент времени является мерой для количества магнитных частиц (8), содержащихся в суспензии (3). На заданном расстоянии d от первой контрольной зоны (2), во второй контрольной зоне (2'), посредством окружающей вторую контрольную зону (2') второй измерительной катушки (4') измеряется магнитный поток Фв зависимости от времени t, и сравнение измерений Ф(t) и Ф(t) дает временной интервал Δt, который при применении заданного расстояния d используется для определения скорости потока. Технический результат - бесконтактное определение скорости потока магнитных или ферромагнитных частиц без применения рентгеновского излучения. 3 н. и 9 з.п. ф-лы, 5 ил.

Настоящее изобретение относится к способу и устройству для определения скорости потока магнитных и электрических частиц в суспензии, протекающей через контрольные зоны. Посредством измерительной катушки, окружающей первую контрольную зону, измеряется магнитный поток Ф1 в зависимости от времени t, причем магнитный поток в некоторый момент времени представляет собой меру для количества магнитных частиц, содержащихся в суспензии. На заданном расстоянии d от первой контрольной зоны, во второй контрольной зоне, посредством окружающей вторую контрольную зону второй измерительной катушки измеряется магнитный поток Ф2 в зависимости от времени t. Кроме того, заявленное изобретение относится к применению соответствующего изобретению способа и устройства.

Магнитные или ферромагнитные частицы имеют значение в ряде технических процессов, например, в медицинских способах диагностики подобные частицы используются для маркировки клеток. Также магнитные частицы применяются при медицинских терапевтических способах (таргетинг лекарственного препарата). Также при водоочистке могут использоваться магнитные или ферромагнитные частицы, чтобы определенные субстанции перевести в осадок в сточной воде. Другой большой областью применения является обогащение руд, которые присутствуют в виде суспензии в смеси с водой или другой жидкостью. Магнитные или ферромагнитные частицы в суспензии могут отделяться посредством магнитного поля.

При многих применениях, является желательным знать количество магнитных или ферромагнитных частиц, чтобы иметь возможность точно управлять способом или процессом. Так, например, при добыче руд, при которой посредством флотационного способа из размолотой породы (руды) получают материал, содержащий ценное вещество, на основе изменяющегося химического состава породы и концентрации ценного вещества в руде, важно измерять и точно регулировать объемные потоки (расходы) для оптимизации процесса. В частности, при этом должны постоянно измеряться и дополнительно регулироваться химические параметры пульпы из порошкообразной породы и воды.

В одном вновь разработанном способе немагнитные частицы руды с помощью химического поверхностного активирования связываются с намагничиваемыми частицами, так что эти агломераты с помощью соответственно сформированных магнитных полей могут быть извлечены из пульпы. Этот новый способ приводит к более высокой интенсивности добычи руды при меньших затратах энергии, чем предшествующие способы, основанные на газовом дутье. Эти новые способы требуют, однако, регулирования в реальном времени объемных потоков и концентраций руды, в особенности также магнитных частиц.

В настоящее время при обычной флотации используются, в частности, два способа для определения существенных параметров пульпы:

- Химический экспресс-анализ с временным формированием растра, который в типовом случае требует нескольких минут.

- Основанный на рентгеновском излучении анализ (рентгеновская флуоресценция или рентгеновское поглощение).

Так как химический анализ базируется на том, что в общем случае должны преобразовываться большие количества вещества, и тем самым возникает сильно усредняющий эффект, они не пригодны для того, чтобы достаточно точно определять по времени и относительно концентрации кратковременные отклонения, которые, например, могут играть роль в магнитном сепараторе.

Основанные на рентгеновском излучении способы анализа характеризуют собой уровень техники и могут также, в частности, точно определять кратковременные отклонения, однако они имеют существенный недостаток, заключающийся в том, что тем самым в производственной зоне должны устанавливаться области контроля излучения, что является недостатком с точки зрения безопасности и стоимости.

Другие способы, которые обычно используются при измерении расходов и скоростей потока жидкостей в реальном времени, базируются на подвижных механических конструкционных элементах, которые из-за абразивных свойств пульпы быстро изнашиваются. Также измерение доли магнитных или ферромагнитных частиц в полном количестве жидкости и различение от других частиц, например песка, данными методами невозможно.

Поэтому задачей настоящего изобретения является предложить способ и устройство для определения скорости потока магнитных или ферромагнитных частиц, которые решают вышеописанные проблемы. В особенности, задачей является измерение скорости потока магнитных или ферромагнитных частиц бесконтактным способом и при этом без износа и вместе с тем надежным образом. В особенности, задачей является измерять только магнитные или ферромагнитные частицы, но не большие или меньшие немагнитные частицы, и обеспечивать возможность определения концентрации из скорости потока без использования вредных для здоровья излучений, таких как рентгеновское излучение. Это снижает затраты и издержки и приводит к возможности улучшенного управления процессом. Другой задачей настоящего изобретения является предложить применение способа и устройства.

Указанная задача относительно способа для определения скорости потока магнитных или ферромагнитных частиц решается признаками п.1 формулы изобретения, относительно устройства для определения скорости потока магнитных или ферромагнитных частиц в суспензии для осуществления способа - признаками п.11 формулы изобретения и относительно применения способа и устройства - признаками п.13 формулы изобретения.

Предпочтительные варианты осуществления соответствующего изобретению способа для определения скорости потока магнитных или ферромагнитных частиц следуют из подчиненных зависимых пунктов. При этом признаки основных пунктов могут комбинироваться друг с другом и с признаками подчиненных пунктов, а также признаки подчиненных пунктов могут комбинироваться друг с другом.

Соответствующий изобретению способ для определения скорости потока магнитных или ферромагнитных частиц в суспензии, протекающей через контрольные зоны, включает в себя измерение магнитного потока Ф1 в зависимости от времени t посредством измерительной катушки, окружающей первую контрольную зону. При этом магнитный поток в некоторый момент времен является мерой для количества магнитных частиц, содержащихся в суспензии. Кроме того, на заданном расстоянии d от первой контрольной зоны, во второй контрольной зоне, посредством окружающей вторую контрольную зону второй измерительной катушки измеряется магнитный поток Ф2 в зависимости от времени t. Сравнение измерений Ф1(t) и Ф2(t) дает временной интервал Δt, который при применении заданного расстояния d используется для определения скорости потока.

За счет применения измерительных катушек, которые измеряют магнитный поток, возможно бесконтактное, без износа, определение скорости потока магнитных или ферромагнитных частиц, без применения рентгеновского излучения. За счет этого можно избежать частой замены изношенных деталей и, тем самым, обеспечить экономию расходов. Кроме того, снижаются высокие затраты, которые связаны с использованием рентгеновского излучения. За счет сравнения двух графиков измерений, которые определяются посредством двух измерительных катушек в зависимости от времени, возможно, надежное определение времени, которое требуется магнитным или ферромагнитным частицам в суспензии для прохождения заданного участка пути d. Определяемая при этом скорость потока, которая в каждый момент времени определяется синхронно с потоком, может применяться для регулирования или управления процессами.

Из скорости v потока, площади А поперечного сечения потока и магнитного потока Ф в зависимости от времени t может определяться концентрация с магнитных или ферромагнитных частиц в суспензии. Концентрация с задается как частное от деления числа частиц n на объем V. Магнитный поток Ф1, который измеряется измерительной катушкой, в момент времени t1 является мерой для количества магнитных частиц n, содержащихся в суспензии. Если через временной интервал Δt измерить магнитный поток, то тем самым получают число магнитных частиц n, которые за этот временной интервал Δt прошли через магнитную катушку. За тот же временной интервал жидкость, то есть суспензия проходит со скоростью v потока путь s(Δt), при допущении равномерного потока с постоянной скоростью v потока. Тем самым получается объем V суспензии, которая прошла через измерительную катушку за временной интервал Δt, из s(Δt), умноженного на площадь А поперечного сечения потока. Площадь А поперечного сечения потока представляет собой, например, внутреннее сечение трубы, вокруг которой расположена измерительная катушка и по которой протекает суспензия.

Тем самым при измеренной скорости v потока известен объем V(Δt), который за время Δt протекает через измерительную катушку. Одновременно известно измеренное через магнитный поток число n(Δt) частиц, которые в объеме V(Δt) прошли через измерительную катушку. Отсюда получается концентрация с как частное от деления числа n(Δt) частиц на объем V(Δt). Таким образом, с помощью способа, соответствующего изобретению, возможен мониторинг в режиме онлайн концентрации с.

Применение двух измерительных катушек на заданном расстоянии d друг от друга и сравнение временной характеристики магнитного потока через две измерительные катушки обеспечивает, по сравнению с применением только одной измерительной катушки, надежное определение скорости v потока также при неизвестном числе частиц или концентрации. Близкое по времени сравнение графиков измерений и определяемая отсюда скорость v потока, а также концентрация с могут осуществляться автоматически с помощью компьютера и применяться актуальным образом для управления процессами.

Из графика измерений магнитный поток Ф1 в зависимости от времени t может определяться характерный момент Р измерений в момент времени t1, в частности, максимум или минимум значения магнитного потока Ф1 в момент времени t1. Он может вновь распознаваться при сравнении с характеристикой графика измерений магнитного потока Ф2 в зависимости от времени t в момент времени t2, в частности, как максимум или минимум значения магнитного потока Ф2 в момент времени t2. Разность по времени между моментами времени t1 и t2 дает тогда временной интервал Δt, который определяет скорость потока как частное от деления заданного расстояния d на временной интервал Δt.

Магнитные частицы могут намагничиваться посредством устройства формирования магнитного поля, расположенного в направлении потока перед измерительными катушками. Намагничивание ранее намагниченных частиц или присутствующих частиц, которые уже намагничены, не должно производиться.

Устройство формирования магнитного поля в одной форме выполнения может формировать статический магнитный поток, который пронизывает измерительные катушки. При этом магнитный поток в контрольной зоне в течение установленного времени интегрирования измеряется измерителем потока. Предпосылкой для измерения магнитных потоков в обеих измерительных зонах посредством измерителя потока является то, что магнитное поле устройства формирования магнитного поля распространяется на обе контрольные зоны.

В качестве альтернативы вышеописанному способу со статическим магнитным полем, устройство формирования магнитного поля может формировать в контрольных зонах варьирующееся во времени магнитное поле. Магнитный поток в соответствующей контрольной зоне может тогда измеряться на основе индуцированного напряжения в измерительной катушке, ассоциированной с контрольной зоной.

Соответствующие две катушки могут также быть зеркально (встречно) включены как система измерительных катушек. За счет встречного включения магнитный поток устройства формирования магнитного поля может компенсироваться.

Могут применяться также более чем две измерительные катушки или системы измерительных катушек. Посредством более чем двух измерительных катушек, окружающих соответствующую контрольную зону, может измеряться соответствующий магнитный поток Ф в зависимости от времени t, и сравнение более чем двух графиков измерений может приводить к более надежному распознаванию характерных точек Р измерений. За счет этого может осуществляться определение временных интервалов Δt, в которых на соответствующих двух измерительных катушках выполняется измерение в точках Р измерений с временным интервалом между ними, определение скорости потока и концентрации с более высокой надежностью и точностью, например, путем усреднения измеренных значений.

Соответствующее изобретению устройство для определения скорости потока магнитных или ферромагнитных частиц в суспензии может применяться для выполнения вышеописанного способа. Оно состоит, как правило, из двух или более измерительных катушек, которые размещены на заданном расстоянии друг от друга вокруг контрольной зоны, ассоциированной с соответствующей измерительной катушкой, причем через контрольные зоны протекает суспензия с магнитными или ферромагнитными частицами.

Соответствующее изобретению применение вышеописанного способа и/или вышеописанного устройства осуществляется в оборудовании для добычи руды.

Преимущества, связанные с устройством для определения скорости потока магнитных или ферромагнитных частиц в суспензии, и преимущества, связанные с применением способа и устройства, аналогичны преимуществам, которые описаны выше в отношении способа для определения скорости потока магнитных или ферромагнитных частиц в суспензии.

Предпочтительные формы выполнения изобретения с предпочтительными вариантами осуществления согласно признакам зависимых пунктов далее пояснены более подробно со ссылками на чертежи, но не ограничиваются этим. На чертежах показано следующее:

фиг.1 - структура устройства измерений для измерения магнитных частиц с помощью измерительной катушки и устройства формирования магнитного поля, которое формирует магнитное поле,

фиг.2 - показанное на фиг.1 устройство измерений, однако с устройством формирования магнитного поля, которое формирует варьирующееся во времени магнитное поле,

фиг.3 - принципиальное представление структуры измерений для выполнения соответствующего изобретению способа для определения скорости потока магнитных или ферромагнитных частиц в суспензии,

фиг.4А-4С - принципиальное представление этапа соответствующего изобретению способа, который основывается на сравнении двух графиков А и В измерений.

Показанное на фиг.1 устройство 1 содержит имеющую форму трубы контрольную зону 2, через которую протекает суспензия 3, которая содержит магнитные или ферромагнитные частицы. Контрольная зона 2 окружена измерительной катушкой 4, которая измеряет магнитный поток в пределах поверхности, охватываемой измерительной катушкой 4. Контрольная зона 2, кроме того, окружена выполненным как катушка 5 (катушка возбуждения) устройством формирования магнитного поля, через которое протекает ток возбуждения, который формирует статическое магнитное поле в контрольной зоне. Число обмоток катушки 5 и протекающий через катушку 5 ток выбираются таким образом, что магнитное поле Н внутри катушки 5 достаточно велико, чтобы намагничивать ферромагнитные частицы, которые содержатся в суспензии 3, до установленного значения. Посредством сформированного катушкой 5 статического магнитного поля ферромагнитные частицы намагничиваются, за счет чего создается дополнительный магнитный поток ВМ, который детектируется измерительной катушкой 4 и связанным с ней, показанным на фиг.1 лишь схематично, измерителем 6 потока путем интегрирования во времени, причем измеренный сигнал является мерой для ферромагнитных частиц, находящихся в течение времени интегрирования в измерительной катушке 4.

Так как измерительная катушка 4, наряду с магнитным потоком ВМ, обусловленным ферромагнитными частицами, также измеряет магнитный поток ВН (так называемый магнитный поток в воздушном зазоре ВН = µ0Н), обусловленный полем Н возбуждения, то в поле возбуждения внутри катушки 5 находится компенсационная катушка 7. Компенсационная катушка 7 размещена таким образом, что она также пронизывается магнитным потоком ВН в воздушном зазоре катушки возбуждения, но не магнитным потоком ВМ магнитных частиц, проходящих через контрольную зону 2. Компенсационная катушка 7, в отношении замкнутой ею поверхности и числа витков, выполнена таким образом, что она точно зеркально соответствует измерительной катушке 4. Это достигается, например, тем, что при одинаковом числе витков и одинаковой площади катушки направление витков обеих катушек является противоположным. В показанном на фиг.1 примере выполнения компенсационная катушка 7 размещена рядом с измерительной катушкой 4. Компенсационная катушка 7 и зеркальная к ней измерительная катушка 4 соединены электрически последовательно, так что в суммарном сигнале обеих катушек поток возбуждающего поля ВН, который пронизывает обе катушки, точно компенсируется (результирующее напряжение U=0). Временной интеграл, получаемый подключенным измерителем потока, равен, таким образом, нулю. Если в контролируемой зоне или в окружающей ее измерительной катушке находятся намагничиваемые или намагниченные частицы, то компенсация конфигурации катушек, состоящей из измерительной катушки (4) и компенсационной катушки (7), нарушается, и обусловленный намагничиванием частиц магнитный поток ВМ вносит вклад в результирующее напряжение U≠0, которое интегрируется по времени подключенным измерителем потока. Интегральное напряжение U представляет, таким образом, меру для намагничивания и, тем самым, меру для количества содержащихся в суспензии магнитных или намагничиваемых частиц и может применяться в качестве регулирующего параметра при управлении процессом.

В рамках способа для магнитного разделения можно на основе измеренного сигнала определять долю содержащихся в суспензии магнитных или намагничиваемых частиц.

Фиг.2 показывает второй пример выполнения изобретения, причем для совпадающих компонентов применяются те же самые ссылочные позиции, что и на фиг.1. В соответствии с первым примером выполнения, устройство 8 содержит обтекаемую суспензией 3 контрольную зону 2 в форме трубы, которая окружена измерительной катушкой 4. Иначе, чем в первом примере выполнения, устройство формирования магнитного поля, выполненное как катушка 9, формирует магнитное переменное поле, которое намагничивает содержащиеся в суспензии ферромагнитные частицы с установленной частотой попеременно в противоположном направлении. Магнитное переменное поле обуславливает то, что ферромагнитные частицы внутри измерительной катушки 4 непрерывно перемагничиваются, так что вырабатываемый магнитными частицами дополнительный магнитный поток ВМ~ периодически изменяется с частотой магнитного переменного поля, служащего в качестве поля возбуждения. Временное изменение магнитного потока вызывает индукцию напряжения в измерительной катушке 4, которая пропорциональна изменению магнитного потока и которая, тем самым, является мерой доли магнитных или намагничиваемых частиц в измерительной катушке 4.

Как в первом примере выполнения, внутри катушки 9, формирующей поле возбуждения, находится компенсационная катушка 7, выполненная, например, зеркально по отношению к измерительной катушке, чтобы компенсировать влияние поля возбуждения на измерительную катушку 4.

На фиг.3 показано принципиальное представление измерительной структуры для выполнения соответствующего изобретению способа. Две контрольные зоны 2, 2', соответственно окруженные измерительными катушками 4, 4', расположены друг за другом вдоль потока суспензии 3 для определения скорости потока магнитных или намагничиваемых частиц. Поток протекает в проточном канале 10, который образован, например, трубой, выполненной из пластика или другого немагнитного материала. На заданном расстоянии d друг от друга расположены измерительные катушки 4, 4', как описано выше, соответственно окружающие трубу. Плоскость внутреннего поперечного сечения трубы, через которую протекает суспензия 3 и которая полностью окружена катушкой, представляет собой площадь А поперечного сечения потока. Она лежит в плоскости обмотки катушки и перпендикулярно продольной оси катушки.

Суспензия 3, например, из воды и магнитных или намагничиваемых частиц 8, протекает через проточный канал 10 и проходит первую контрольную зону 2. Контрольная зона 2 окружена вышеописанной измерительной катушкой 4, или описанное со ссылкой на фиг.1 и 2 измерительное устройство 1 расположено в месте контрольной зоны 2.

Как показано на фиг.4А, первой измерительной катушкой 4 в зависимости от времени определяется первый измеренный сигнал, например, измеренное напряжение U. Это напряжение U в момент времени t является мерой для магнитного потока Ф1 в этот момент времени t и, тем самым, мерой содержащихся в суспензии 3 магнитных частиц 8, которые в момент времени t перемещаются через измерительную катушку 4.

Аналогичным образом, как показано на фиг.4В, вторая измерительная катушка 4' определяет в зависимости от времени измеренный сигнал, например, измеренное напряжение U'. Это напряжение U' в момент времени t является мерой для магнитного потока Ф2 в этот момент времени t и, тем самым, мерой для количества содержащихся в суспензии магнитных частиц 8, которые в момент времени t перемещаются через измерительную катушку 4'.

Так как магнитная частица 8 в суспензии 3 в момент времени t1 перемещается через измерительную катушку 4 и с суспензией 3, протекая дальше, в момент времени t2 перемещается через измерительную катушку 4', она измеряется обеими измерительными катушками 4, 4' с разностью Δt времени. Аналогичным образом, количество магнитных частиц 8 в суспензии 3, которое в момент времени t1 перемещается через измерительную катушку 4, протекая дальше с суспензией 3, в момент времени t2 перемещается через измерительную катушку 4' и измеряется измерительной катушкой 4'. Разность Δt времени представляет собой время, которое требуется магнитным частицам 8 в потоке суспензии 3 для прохождения от измерительной катушки 4 до измерительной катушки 4', то есть для прохождения пути, которое представляет собой заданное расстояние d.

Так как концентрация магнитных частиц 8 в суспензии 3 изменяется, то измерение в измерительной катушке 4 дает график измерений, например, U(t), см. также фиг.4А, который с разностью времени Δt повторяется при измерении на измерительной катушке 4', см. фиг.4В.

Если, как представлено на фиг.4С, измерения двух измерительных катушек 4, 4' сравниваются друг с другом, то можно на основе сигнатуры или формы графика измерений определить разность времени Δt. Например, можно характерный максимум на графике измерения измерительной катушки 4 распознать на графике измерения измерительной катушки 4' на основе его формы и определить временную разность между появлением максимума на графике измерения измерительной катушки 4 и на графике измерения измерительной катушки 4'. Эта временная разность представляет собой Δt. С этой целью графики измерений по фиг.4А и 4В, как показано на фиг.4С, накладываются на диаграмме друг на друга, причем наложение выполняется таким образом, что на временной оси точки на графике, которые в одинаковый момент времени измерялись измерительной катушкой 4 и измерительной катушкой 4', соотносятся с тем же самым значением на временной оси.

Вышеописанный способ может выполняться электронным образом или посредством компьютера. Так можно, например, с помощью электронной схемы определять и оценивать разность измеренных напряжений. С помощью компьютерной программы можно синхронно посредством определения разности времени Δt определять скорость v потока по формуле

v(t) = d/Δt,

где v(t) - средняя скорость потока, d - заданное расстояние между контрольными зонами или измерительными катушками 4, 4' и Δt - определенная разность времени между измерением характерной точки на графике измерений измерительной катушки 4 и той же характерной точки на графике измерений измерительной катушки 4'.

Из средней скорости v(t) потока, площади А поперечного сечения потока и магнитного потока Ф в зависимости от времени t можно определить концентрацию с магнитных или феромагнитных частиц 8 в суспензии 3 в зависимости от времени. Концентрация с задается как частное от деления числа n частиц на объем V. Магнитный поток Ф1, который измеряется измерительной катушкой 4, в момент времени t1 является мерой для количества n содержащихся в суспензии 3 магнитных частиц 8. Если магнитный поток измеряется через временной интервал Δt, то посредством числа n определяется количество магнитных частиц 8, которые в этом временном интервале Δt прошли через измерительную катушку. В таком же временном интервале жидкость, то есть суспензия 3, со скоростью v потока прошла путь s(Δt), при допущении равномерного потока с постоянной скоростью v потока в коротком временном интервале. Тем самым получается объем V суспензии 3, который прошел через измерительную катушку 4 за временной интервал Δt, из s(Δt), умноженного на площадь А поперечного сечения потока. Площадь А поперечного сечения потока представляет собой, например, внутреннее сечение трубы, вокруг которой расположена измерительная катушка 4 и через которую протекает суспензия 3.

Таким образом, при измеренной скорости v (= const) потока известен объем V(Δt), который протекает за время Δt через измерительную катушку 4. Одновременно известно измеренное через магнитный поток Ф число частиц n(Δt), которое в объеме V(Δt) прошло через измерительную катушку 4. Отсюда получается концентрация с как частное от деления числа частиц n(Δt) на объем V(Δt).

с = n(Δt)/V(Δt) = n(Δt)/(s(Δt)×А) = n(Δt)/(d×А),

где n(Δt) ~ Ф, т.е. число частиц пропорционально измеренному магнитному потоку.

Мониторинг в режиме онлайн скорости v потока и концентрации с магнитных или намагничиваемых частиц 8 в суспензии 3, таким образом, возможен с помощью способа, соответствующего изобретению.

Изобретение не ограничивается вышеописанными примерами выполнения. Также возможны комбинации вышеописанных примеров выполнения. Кроме того, возможны иные, чем описанные материалы, например, суспензии из масла, крови или других жидкостей.


СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СКОРОСТИ ПОТОКА МАГНИТНЫХ ИЛИ ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ИХ ПРИМЕНЕНИЕ
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СКОРОСТИ ПОТОКА МАГНИТНЫХ ИЛИ ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ИХ ПРИМЕНЕНИЕ
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СКОРОСТИ ПОТОКА МАГНИТНЫХ ИЛИ ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ИХ ПРИМЕНЕНИЕ
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СКОРОСТИ ПОТОКА МАГНИТНЫХ ИЛИ ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ИХ ПРИМЕНЕНИЕ
Источник поступления информации: Роспатент

Показаны записи 431-440 из 1 432.
10.09.2015
№216.013.77f0

Магнитный радиальный подшипник с трехфазным управлением

Изобретение касается магнитного радиального подшипника и способа управления такого рода магнитным радиальным подшипником. Подшипник включает в себя статор (4), который имеет первую катушку (S1), вторую катушку (S2), третью катушку (S3) и четвертую катушку (S4), из которых первая катушка (S1) и...
Тип: Изобретение
Номер охранного документа: 0002562293
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7890

Электродуговая камера для распределительного устройства

Изобретение относится к электротехнике и может быть использовано в компактном распределительном устройстве с электродуговой камерой, которое, в частности, может быть применено на подводных судах. Технический результат состоит в повышении надежности. Полый модуль (1) для приема коммутационных...
Тип: Изобретение
Номер охранного документа: 0002562453
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.78a8

Способ и устройство управления для определения длины, по меньшей мере, одного участка пути

Изобретение относится к области автоматики и телемеханики на железнодорожном транспорте и может использоваться для определения длины участка пути. Техническое решение заключается в определении длины, по меньшей мере, одного участка пути, регистрации сообщений о прохождении, вызванных...
Тип: Изобретение
Номер охранного документа: 0002562477
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7900

Способ охлаждения листового металла на участке охлаждения прокатного стана, участок охлаждения прокатного стана и устройство управления охлаждением на участке охлаждения прокатного стана

Изобретение относится к области металлургии, в частности к охлаждению толстолистовой стали в линии прокатного стана. Для обеспечения ровности толстолистовой стали при одновременной высокой производительности прокатного стана осуществляют охлаждение листового металла (В) на участке (1)...
Тип: Изобретение
Номер охранного документа: 0002562565
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7940

Устройство для осаждения ферромагнитных частиц из суспензии

Изобретение касается устройства для осаждения ферромагнитных частиц из суспензии. Устройство включает в себя вертикально ориентированный трубчатый реактор, через который может протекать суспензия, у которого имеется, если смотреть в направлении протекания, первая область и вторая область и...
Тип: Изобретение
Номер охранного документа: 0002562629
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.795b

Сплав, защитное покрытие и конструкционная деталь

Изобретение относится к области металлургии, а именно к защитному покрытию для защиты конструкционной детали от коррозии и/или окисления. Безрениевый сплав на основе никеля, обладающий стойкостью к коррозии и/или окислению, содержит, в вес.%: кобальт 24-26, хром 12-15, алюминий 10,5-11,5, по...
Тип: Изобретение
Номер охранного документа: 0002562656
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7975

Турбина, включающая систему клапанов уплотнительного воздуха

Изобретение относится к энергетике. Турбина, содержащая ротор, гидродинамический подшипник для опоры с возможностью вращения ротора, систему подающих воздух каналов для подачи воздуха к гидродинамическому подшипнику, систему отводных каналов для отвода части подаваемого воздуха; систему...
Тип: Изобретение
Номер охранного документа: 0002562682
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.797a

Крепление турбинной лопатки для турбомашины

Крепление турбинной лопатки содержит канавку для лопатки и хвостовик лопатки, расположенный в канавке. Хвостовик лопатки имеет расположенную на стороне конца в направлении оси вращения ротора вершину хвостовика лопатки. Хвостовик лопатки содержит крепежные зубцы для введения в соответствующие...
Тип: Изобретение
Номер охранного документа: 0002562687
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79ef

Дугогасительная камера для силового выключателя, а также силовой выключатель с дугогасительной камерой

Дугогасительная камера для силового выключателя имеет первое и второе арматурные тела (1, 2), которые относительно продольной оси (3) камеры прилегают, каждое, на стороне конца к электрически изоляционному участку (8), который имеет по меньшей мере два чашевидных частичных участка...
Тип: Изобретение
Номер охранного документа: 0002562804
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79fa

Рельсовое транспортное средство с перекрытой поворотной тележкой

Изобретение относится железнодорожному транспорту. В рельсовом транспортном средстве, боковая поверхность которого в районе пола вырезана для размещения поворотной тележки с по меньшей мере боковыми перекрывающими элементами (VL), имитирующими движение поворотной тележки, между кузовом (W) и...
Тип: Изобретение
Номер охранного документа: 0002562815
Дата охранного документа: 10.09.2015
Показаны записи 431-440 из 955.
10.08.2015
№216.013.6b9d

Устройство для регулирования регулируемых направляющих лопаток

Устройство (3) для регулирования регулируемых направляющих лопаток (10, 11) компрессора газотурбинного двигателя с осевым потоком содержит управляющий стержень (50) для регулирования углового положения лопаток (10, 11) и вращающийся вал (61), с которым шарнирно соединен управляющий стержень...
Тип: Изобретение
Номер охранного документа: 0002559107
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c02

Вспомогательный парогенератор в качестве дополнительного средства регулирования частоты или средства первичного и/или вторичного регулирования в пароэлектростанции

Изобретение относится к энергетике. Способ электрического повышения мощности пароэлектростанции с водопаровым контуром и расположенной в нем, состоящей из нескольких частей турбиной в электросеть. Пароэлектростанция содержит вспомогательный парогенератор, посредством которого потребители...
Тип: Изобретение
Номер охранного документа: 0002559208
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d1f

Очистка загрязнённого внесением оксидов серы растворителя на основе амина

Изобретение относится к способу и устройству для очистки загрязненного внесением диоксидов серы растворителя на основе амина. В загрязненный растворитель вводят соединение калия и окислитель, в результате чего сульфит окисляется в сульфат, при этом окислитель и соединение калия смешивают между...
Тип: Изобретение
Номер охранного документа: 0002559493
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6e2a

Способ коммутации фазы выпрямителя тока с биполярными транзисторами с изолированным затвором (igbt) с обратной проводимостью

Изобретение относится к способу коммутации от работающего в диодном режиме биполярного транзистора с изолированным затвором (IGBT) (Т1) с обратной проводимостью на работающий в IGBT-режиме IGBT (Т2) с обратной проводимостью. Технический результат заключается в обеспечении наименьшей...
Тип: Изобретение
Номер охранного документа: 0002559760
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6ee3

Ротор турбомашины и способ его сборки

Ротор турбомашины содержит вращающийся элемент с установленной на нем лопаткой. Лопатка содержит хвостовик с выступающей структурой, формирующей стопорную поверхность, поддерживающую установленный хвостовик относительно вращающегося элемента под действием силы, направленной радиально внутрь....
Тип: Изобретение
Номер охранного документа: 0002559957
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f91

Выхлопной диффузор газовой турбины

Выхлопной диффузор (10) для газовой турбины имеет расширяющийся в направлении выхода (20) диффузора проточный канал (22), в центре которого предусмотрен распространяющийся в осевом направлении направляющий аппарат (14). Направляющий аппарат 14 по меньшей мере на одном осевом участке своей...
Тип: Изобретение
Номер охранного документа: 0002560131
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6fe1

Способ и устройство управления для определения длины по меньшей мере одного участка пути

Изобретение относится к области автоматики и телемеханики на железнодорожном транспорте и может использоваться для определения длины участка пути. Техническое решение заключается в определении длины по меньшей мере одного участка пути, регистрации сообщений о прохождении, вызванных прохождением...
Тип: Изобретение
Номер охранного документа: 0002560211
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.72d9

Система, включающая в себя уплотнение вала

Изобретение касается уплотнения вала, которое включает в себя более одного уплотнительного модуля, по меньшей мере один подвод жидкости и один отвод жидкости, снабженной главным уплотнением, на которое приходится наибольшая часть разности давлений. Второе главное уплотнение выполнено в виде...
Тип: Изобретение
Номер охранного документа: 0002560971
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7383

Динамоэлектрическая машина с воздушно-водяным охлаждением

Изобретение относится к электротехнике, к охлаждению динамоэлектрических машин. Технический результат состоит в улучшении охлаждения. Ветрогенератор содержит выполненный в виде листового пакета статор (1) с системой обмотки, образующей на торцах статора (1) лобовые части (16) обмотки....
Тип: Изобретение
Номер охранного документа: 0002561146
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.74cd

Способ эксплуатации подводной лодки, а также подводная лодка

Группа изобретений относится к оборудованию для подводных лодок. При способе эксплуатации подводной лодки используют приводной двигатель, подпитываемый через импульсные вентильные преобразователи частоты. В зависимости от вариантов подключения его фазных обмоток получают два режима его работы...
Тип: Изобретение
Номер охранного документа: 0002561476
Дата охранного документа: 27.08.2015
+ добавить свой РИД