×
27.07.2014
216.012.e4f3

СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002524401
Дата охранного документа
27.07.2014
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Достигаемый технический результат - повышение качества обнаружения и пространственной локализации малозаметных объектов. Повышение качества обнаружения и пространственной локализации малозаметных объектов достигается за счет применения в каждом канале N-элементной антенной решетки новых операций адаптивной и нелинейной обработки, обеспечивающих повышение разрешающей способности и динамического диапазона синтеза частотно-временного изображения радиосигналов, рассеянных контролируемыми объектами. 1 ил.
Основные результаты: Способ обнаружения и пространственной локализации объектов, заключающийся в том, что выбирают передатчик, излучающий радиосигнал с расширенным спектром, синхронно принимают решеткой из N антенн многолучевые радиосигналы, включающие прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика, синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы s, где n - номер антенны, которые объединяют в матричный цифровой сигнал S={s,…,s,…,s} и запоминают, из матричного цифрового сигнала S формируют сигнал пространственной корреляционной матрицы R, который преобразуют в сигнал оптимального весового вектора w=Rv, где v - вектор наведения, определяемый азимутально-угломестным направлением приема прямого радиосигнала, длиной волны и геометрией решетки, преобразуют матричный цифровой сигнал S в прямой цифровой сигнал s=wS, который запоминают, где (·) - символ эрмитова сопряжения, отличающийся тем, что преобразуют цифровой прямой сигнал s в матричный сигнал комплексной фазирующей функции А, включающий гипотетические сигналы, рассеиваемые каждым потенциальным объектом, запоминают матричный сигнал А, преобразуют цифровой сигнал отдельной антенны s в сигнал комплексного частотно-временного изображения , где А - матрица, эрмитово сопряженная с А, сигнал запоминают и используют в качестве начального приближения, а также итерационно формируют зависящий от предыдущего решения вспомогательный матричный сигнал - z-й элемент вектора , k=1,2,… - номер итерации, и сигнал очередного приближения комплексного частотно-временного изображения , где λ - множитель Лагранжа, до тех пор, пока номер текущей итерации не превысит заданный порог, после чего усредняют модули текущих частотно-временных изображений отдельных антенн , по локальным максимумам усредненного частотно-временного изображения определяют число рассеянных радиосигналов и фиксируют значения временной задержки и доплеровского сдвига каждого р-го рассеянного радиосигнала, идентифицируют соответствующие отдельному максимуму усредненного изображения элементы комплексных частотно-временных изображений как составляющие р-го рассеянного радиосигнала, выделяют и запоминают значения идентифицированных составляющих , по которым синтезируют комплексный угловой спектр, по максимумам модуля которого определяют азимутально-угломестное направление прихода р-го рассеянного сигнала, по значениям временной задержки, доплеровского сдвига и азимутально-угломестного направления прихода обнаруживают и определяют пространственные координаты подвижных объектов.
Реферат Свернуть Развернуть

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Достижение высокой эффективности обнаружения, локализации и идентификации наземных, морских и воздушных объектов ограничивается существенной априорной неопределенностью размеров, ориентации в пространстве, отражающих свойств и параметров движения объектов, а также несовершенством известных способов обнаружения и слежения за подвижными объектами.

Технология скрытного обнаружения и слежения за подвижными объектами, использующая естественный радиоподсвет целей, создаваемый на множестве частот радиоизлучениями передатчиков различного назначения в диапазонах коротких, метровых, дециметровых и сантиметровых волн: широковещательные (коммерческое FM-радиовещание, телевидение высокой четкости), информационные (связь) и измерительные (управление, навигация), пока еще не получила достаточного распространения, несмотря на то, что может существенно повысить скрытность и эффективность обнаружения, пространственной локализации и идентификации широкого класса подвижных объектов.

Известен способ обнаружения и пространственной локализации объектов [1], заключающийся в том, что выбирают передатчик, излучающий радиосигнал с расширенным спектром, синхронно принимают решеткой антенн многолучевые радиосигналы, включающие прямой радиосигнал передатчика и рассеянные от объектов радиосигналы этого передатчика, синхронно преобразуют ансамбль принятых антеннами радиосигналов в цифровые сигналы, из цифровых сигналов формируют прямые и сжатые рассеянные сигналы, сравнивают выделенные прямые и рассеянные сигналы и определяют временные задержки, доплеровские сдвиги и направления прихода рассеянных сигналов, по временным задержкам, доплеровским сдвигам и направлениям прихода выполняют обнаружение и пространственную локализацию воздушных объектов.

Данный способ не содержит операций подавления когерентной помехи в виде прямого радиосигнала передатчика и, как следствие, обеспечивает эффективное обнаружение только очень крупных близко расположенных объектов.

Более эффективным является способ обнаружения и пространственной локализации объектов [2], свободный от этого недостатка и выбранный в качестве прототипа. Согласно этому способу:

выбирают передатчик, излучающий радиосигнал с расширенным спектром;

синхронно принимают решеткой из N антенн многолучевые радиосигналы, включающие прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика;

синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы sn, где n - номер антенны, которые объединяют в матричный цифровой сигнал S={s1,…,sn,…,sN}T и запоминают;

из матричного цифрового сигнала S формируют сигнал пространственной корреляционной матрицы R, который преобразуют в сигнал оптимального весового вектора w=R-1v, где v - вектор наведения, определяемый азимутально-угломестным направлением приема прямого радиосигнала, длиной волны и геометрией решетки;

преобразуют матричный цифровой сигнал S в прямой цифровой сигнал s=wHS, который запоминают, где (·)H - символ эрмитова сопряжения;

формируют и запоминают зависящие от временного сдвига комплексные взаимно корреляционные функции (ВКФ) между цифровым сигналом отдельной антенны sn и прямым цифровым сигналом s;

определяют максимальное значение модуля каждой комплексной ВКФ и фиксируют соответствующие этим максимумам значения комплексной ВКФ;

вычисляют разностные цифровые сигналы;

формируют зависящие от временного и частотного сдвигов комплексные двумерные взаимно корреляционные функции (ДВКФ) между каждым разностным цифровым сигналом и прямым цифровым сигналом;

усредняют модули комплексных ДКФВ;

определяют по максимумам усредненной ДКФВ число сжатых сигналов и фиксируют значения задержки по времени и абсолютного доплеровского сдвига каждого р-го сжатого сигнала;

идентифицируют соответствующие отдельному максимуму усредненной ДКФВ составляющие комплексных ДКФВ как сжатый по времени и частоте р-й сигнал;

выделяют и запоминают значения составляющих комплексных ДКФВ, задержки по времени и абсолютного доплеровского сдвига каждого р-го сжатого сигнала;

по выделенным значениям р-х идентифицированных составляющих комплексных ДКФВ синтезируют комплексный двумерный угловой спектр, по максимумам модуля которого определяют азимутально-угломестное направление прихода р-го сжатого сигнала;

по значениям задержки и абсолютного доплеровского сдвига и азимутально-угломестного направления прихода обнаруживают и определяют пространственные координаты подвижных объектов.

Способ-прототип благодаря наличию операций адаптивной пространственной фильтрации и операций радиоэлектронной компенсации когерентной помехи в виде мощного прямого радиосигнала передатчика подсвета обеспечивает обнаружение более широкого класса подвижных объектов. Однако способ-прототип содержит операции формирования классической двумерной взаимной корреляционной функции, которая, кроме основного лепестка, ширина которого ограничивает разрешающую способность обнаружения, содержит высокие боковые лепестки, маскирующие сигналы далеких и слабо рассеивающих объектов.

Таким образом, недостатком способа-прототипа является низкое качество обнаружения и пространственной локализации малозаметных объектов.

Техническим результатом изобретения является повышение качества обнаружения и пространственной локализации малозаметных объектов.

Повышение качества обнаружения и пространственной локализации малозаметных объектов достигается за счет применения в каждом канале N-элементной антенной решетки новых операций адаптивной и нелинейной обработки, обеспечивающих повышение разрешающей способности и динамического диапазона синтеза частотно-временного изображения радиосигналов, рассеянных контролируемыми объектами.

Технический результат достигается тем, что в способе обнаружения и пространственной локализации объектов, заключающемся в том, что выбирают передатчик, излучающий радиосигнал с расширенным спектром, синхронно принимают решеткой из N антенн многолучевые радиосигналы, включающие прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика, синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы sn, где n - номер антенны, которые объединяют в матричный цифровой сигнал S={s1,…,sn,…,sN}T и запоминают, из матричного цифрового сигнала S формируют сигнал пространственной корреляционной матрицы R, который преобразуют в сигнал оптимального весового вектора w=R-1v, где v - вектор наведения, определяемый азимутально-угломестным направлением приема прямого радиосигнала, длиной волны и геометрией решетки, преобразуют матричный цифровой сигнал S в прямой цифровой сигнал s=wHS, который запоминают, где (·)H - символ эрмитова сопряжения, согласно изобретению преобразуют цифровой прямой сигнал s в матричный сигнал комплексной фазирующей функции А, включающий гипотетические сигналы, рассеиваемые каждым потенциальным объектом, запоминают матричный сигнал А, преобразуют цифровой сигнал отдельной антенны sn в сигнал комплексного частотно-временного изображения , где АH - матрица, эрмитово сопряженная с А, сигнал запоминают и используют в качестве начального приближения, а также итерационно формируют зависящий от предыдущего решения вспомогательный матричный сигнал - z-й элемент вектора , k=1,2,… - номер итерации, и сигнал очередного приближения комплексного частотно-временного изображения где λ - множитель Лагранжа, до тех пор, пока номер текущей итерации не превысит заданный порог, после чего усредняют модули текущих частотно-временных изображений отдельных антенн - по локальным максимумам усредненного частотно-временного изображения определяют число рассеянных радиосигналов и фиксируют значения временной задержки и доплеровского сдвига каждого р-го рассеянного радиосигнала, идентифицируют соответствующие отдельному максимуму усредненного изображения элементы комплексных частотно-временных изображений как составляющие р-го рассеянного радиосигнала, выделяют и запоминают значения идентифицированных составляющих , по которым синтезируют комплексный угловой спектр, по максимумам модуля которого определяют азимутально-угломестное направление прихода р-го рассеянного сигнала, по значениям временной задержки, доплеровского сдвига и азимутально-угломестного направления прихода обнаруживают и определяют пространственные координаты подвижных объектов. Операции способа поясняются чертежом.

Устройство, в котором реализуется предложенный способ, содержит последовательно соединенные систему приема и предварительной обработки 1, систему моделирования и выбора радиопередатчиков (РПД) 2, вычислительную систему 3 и блок управления и индикации 4.

В свою очередь система приема и предварительной обработки 1 включает антенную решетку 1-1, тракт поиска источников подсвета, включающий преобразователь частоты 1-2, АЦП 1-3 и устройство обнаружения 1-4, а также тракт приема прямых и рассеянных сигналов, включающий преобразователь частоты 1-7, АЦП 1-6 и устройство адаптивной пространственной фильтрации 1-5. Вычислительная система 3 включает блок синтеза частотно-временного изображения 3-1, блок сравнения 3-2, устройство формирования вспомогательного и взвешивающего сигнала 3-3 и блок формирования сигнала фазирующей функции 3-4. При этом система 2 соединена с входом блока 4, а также имеет интерфейс для соединения с внешней базой РПД. Кроме того, блок 4 имеет выход, предназначенный для подключения к внешним системам. Подсистема 1 является аналогово-цифровым устройством и предназначена для поиска и измерения параметров синхронизации передатчиков подсвета объектов, излучающих радиосигналы с расширенным спектром, а также для адаптивной пространственной фильтрации полезных прямых и рассеянных радиосигналов. Отметим, что после того как параметры синхронизации прямого радиосигнала выбранного передатчика подсвета измерены или когда они априорно известны, прямой радиосигнал передатчика может быть сформирован путем моделирования в системе 2.

Антенная решетка 1-1 состоит из N антенн с номерами . Пространственная конфигурация антенной решетки должна обеспечивать измерение азимутально-угломестного направления прихода радиосигналов и может быть произвольной пространственной конфигурации: плоской прямоугольной, плоской кольцевой или объемной, в частности конформной. Для улучшения различения сигналов не только по пространству, но и по поляризации требуется существенное различие поляризационных откликов антенн решетки, то есть антенная решетка должна быть неоднородной (гетерогенной), то есть иметь антенные элементы с отличающимися векторными диаграммами направленности. Преобразователи частоты 1-2 и 1-7 являются N-канальными, выполнены с общим гетеродином и с полосой пропускания каждого канала, изменяемой в соответствии с шириной спектра принимаемого радиосигнала. Общий гетеродин обеспечивает многоканальный когерентный прием сигналов. АЦП 1-3 и 1-6 также является N-канальным и синхронизирован сигналом одного опорного генератора (для упрощения опорный генератор на схеме не показан). Если разрядность и быстродействие АЦП достаточны для непосредственного аналого-цифрового преобразования входных сигналов, как, например, в KB диапазоне, то вместо преобразователей частоты 1-2 и 1-7 могут использоваться частотно избирательные полосовые фильтры и усилители. Кроме того, преобразователи частоты 1-2 и 1-7 обеспечивают подключение одной из антенн вместо всех антенн решетки для периодической калибровки приемных каналов по внешнему источнику сигнала. Возможна калибровка с использованием внутреннего генератора, выход которого также подключается вместо всех антенн для периодической калибровки каналов. Устройство обнаружения 1-4 и устройство адаптивной пространственной фильтрации 1-5 представляют собой вычислительные устройства. Подсистема 2 является вычислительным устройством и предназначена для идентификации, отбора и периодического обновления передатчиков радиосигналов с расширенным спектром, используемых для подсвета заданной области контролируемого пространства, а также для формирования модельных сигналов выбранных передатчиков. Вычислительная система 3 предназначена для формирования сигнала фазирующей функции (блок 3-4), формирования вспомогательного и взвешивающего сигналов (устройство 3-3), сравнения сигналов частотно-временных изображений, формируемых на смежных итерациях (блок 3-2) и синтеза частотно-временного изображения (блок 3-1).

Устройство работает следующим образом.

В системе 2 на основе данных внешней базы радиопередатчиков, а также данных об обнаруженных радиопередатчиках подсвета, поступающих от устройства 1-4, с использованием программных средств моделирования идентифицируется, выбирается и периодически обновляется совокупность передатчиков, излучающих радиосигналы с расширенным спектром. При моделировании оцениваются возможные зоны покрытия, вероятности обнаружения и достижимые точности локализации и идентификации воздушных объектов различного класса, которые могут быть обеспечены при различных вариантах размещения передатчиков относительно станции обнаружения-пеленгования. Кроме того, в системе 2 регенерируются принятые прямые радиосигналы или формируются модельные сигналы передатчиков с требуемыми параметрами синхронизации.

Параметры выбранного множества передатчиков (номер, несущая частота, ширина спектра, форма, параметры синхронизации и мощность излучаемого сигнала, координаты или расстояние и угловое положение относительно точки приема) запоминаются в подсистеме 2, поступают в блок 4, а также используются для настройки преобразователей 1-2 и 1-7. С целью упрощения цепи управления преобразователем не показаны.

По сигналам системы 2 преобразователь частоты 1-2 начинает перестраиваться с заданным темпом в заданном диапазоне частот поиска радиосигналов, например, в диапазоне 10-1000 МГц. При этом тракт поиска осуществляет поиск и измерение параметров синхронизации передатчиков подсвета, излучающих радиосигналы с расширенным спектром, на частотах fk дискретной сетки частот поиска. При этом принятый каждым антенным элементом с номером n антенной решетки 1-1 зависящий от времени t радиосигнал skn(t) фильтруется по частоте и переносится на более низкую частоту в преобразователе 1-2. Сформированные в преобразователе 1-2 радиосигналы skn(t) преобразуются с помощью АЦП 1-3 в цифровые сигналы, которые поступают в устройство обнаружения 1-4, в котором на каждой частоте fk дискретной сетки частот поиска осуществляется обнаружение и измерение параметров синхронизации передатчиков подсвета. Функционирование устройства обнаружения 1-4 основано на широко известных способах радиоконтроля, например, [3].

Одновременно по сигналам системы 2 преобразователь частоты 1-7 перестраивается на заданную частоту приема fk. Тракт приема синхронно принимает на частоте fk многолучевые радиосигналы, включающие прямой радиосигнал выбранного передатчика с расширенным спектром и рассеянные объектами радиосигналы этого передатчика.

Принятый каждым антенным элементом с номером n антенной решетки 1-1 зависящий от времени t радиосигнал sn(t) фильтруется по частоте и переносится на более низкую частоту в преобразователе 1-7.

Сформированные в преобразователе 1-7 радиосигналы sn(t) синхронно преобразуются с помощью АЦП 1-6 в цифровые сигналы sn={sn(1),…,sn(z),…,sn(Z)}, где - номер временного отсчета сигнала.

Цифровые сигналы отдельных антенн sn поступают в устройстве 1-5, где объединяются в матричный сигнал S={s1,…,sn,…,sN}T и запоминаются. Матричный сигнал S имеет размерность N×Z.

Кроме того, в устройстве 1-5 выполняются следующие действия:

- из матричного цифрового сигнала S формируется N×N сигнал пространственной корреляционной матрицы R;

- сигнал корреляционной матрицы R преобразуется в N×1 сигнал

оптимального весового вектора w=R-1v, где v - N×1 вектор наведения, определяемый азимутально-угломестным направлением приема прямого радиосигнала, длиной волны (частотой fk) и геометрией решетки;

- преобразуется матричный цифровой сигнал S в 1×Z прямой цифровой сигнал s=wHS.

Физически описанные операции адаптивной пространственной фильтрации обеспечивают направленный прием полезного прямого радиосигнала выбранного передатчика подсвета с заданного направления с одновременным подавлением широкого класса помех, приходящих с других направлений. Отметим, что технически реализуемая глубина подавления помех достигает величины 40 дБ [4]. Это обеспечивает выигрыш в чувствительности при формировании слабых рассеянных сигналов на последующих этапах обработки.

Сформированный в устройстве 1-5 прямой цифровой сигнал s поступает и запоминается в блоке 3-4, а запомненные цифровые сигналы отдельных антенн sn поступают в устройство 3-1, где также запоминаются.

После этого, в блоке 3-4 цифровой прямой сигнал s преобразуется в матричный сигнал комплексной фазирующей функции А, который поступает в устройство 3-3, где запоминается.

Преобразование прямого сигнала s в матричный сигнал А осуществляют по следующей формуле: А=[Ds0,…,Dsj,…,Dsj-1], где sj=[s(1-j),…,s(z-j)]T- векторы размером Z×1, являющиеся сдвинутыми по времени на jTs версиями опорного сигнала s, j=0,…,J-1, J - число временных задержек прямого сигнала, Ts - период выборки сигнала;

- матрицы доплеровских сдвигов, ℓ=0,…,±L, L - размер координатной сетки по доплеровскому сдвигу.

Таким образом, столбцы матрицы А представляют собой задержанные по времени и сдвинутые по частоте доплеровского сдвига версии прямого сигнала S, а размер этой матрицы Z×J(2L+1), определяется числом отсчетов в разведываемом сигнале (длительностью интервала наблюдения) и размерами координатной сетки по временному запаздыванию и доплеровскому сдвигу частоты.

Кроме того, в устройстве 3-3 из сигнала а последовательно вычисляются сигналы AH, AHA и (AHA)-1, которые поступают в блок 3-1, где запоминаются.

В блоке 3-1 с использованием цифрового сигнала отдельной антенны sn, поступившего от устройства 1-5, и сигналов AH и (AHA)-1, поступивших от блока 3-3, вычисляется сигнал начального приближения комплексного частотно-временного изображения

Полученный в блоке 3-1 сигнал начального приближения запоминается в блоке 3-2 и транслируется в устройство 3-3 для запоминания и инициализации очередной итерации с номером k=1.

В устройстве 3-3 с использованием сигнала частотно-временного изображения, полученного на предыдущей итерации, то есть при k-1, формируется вспомогательный матричный сигнал z-й элемент вектора , и взвешивающий сигнал Значение множителя Лагранжа λ выбирают исходя из уровня шумов в каналах приема. Взвешивающий сигнал поступает в блок 3-1.

В блоке 3-1 с использованием сигнала и запомненного цифрового сигнала отдельной антенны sn синтезируется сигнал текущего приближения комплексного частотно-временного изображения Полученный сигнал поступает в блок 3-2.

В блоке 3-2 сигнал запоминается для использования на следующей итерации. Кроме того, в блоке 3-2 номер текущей итерации k сравнивается с заранее установленным фиксированным порогом k0. Экспериментально установленное значение порога равно k0=10.

При выполнении условия k≤k0 сигнал поступает в устройство 3-3 для запоминания и инициализации очередной итерации синтеза частотно-временного изображения.

После чего, в устройстве 3-3, блоках 3-1 и 3-2 выполняется описанная ранее последовательность операций по формированию сигналов запоминанию сигнала и проверке выполнения условия k≤k0.

При невыполнении условия k≤k0 сигнал из блока 3-2 поступает в блок 4. Сигнал является векторным сигналом и описывает сформированное из цифрового сигнала отдельной антенны sn текущее частотно-временное изображения с элементами

Учитывая, что сигнал текущего комплексного частотно-временного изображения зависит от предыдущего решения , предложенный способ реализует адаптацию с обратной связью по полезному сигналу в каждом канале N-элементной антенной решетки, что повышает чувствительность и динамический диапазон формирования изображения. Кроме того, новые операции нелинейной обработки сигналов повышают в каждом канале N - элементной антенной решетки разрешающую способность формирования изображения радиосигналов, рассеянных объектами. Это в совокупности повышает качество выполняемых на последующих этапах операций обнаружения и пространственной локализации малозаметных объектов.

В блоке 4 выполняются следующие действия:

- усредняются модули текущих частотно-временных изображений отдельных антенн

- по локальным максимумам усредненного частотно-временного изображения определяется число рассеянных радиосигналов и фиксируются значения временной задержки τр и доплеровского сдвига Fр каждого р-го рассеянного радиосигнала;

- идентифицируются соответствующие отдельному максимуму усредненного изображения элементы комплексных частотно-временных изображений как составляющие р-го рассеянного радиосигнала;

- выделяются и запоминаются значения идентифицированных составляющих , по которым синтезируется комплексный угловой спектр. Комплексный угловой спектр синтезируется известными способами, например, [3];

- по максимумам модуля синтезированного комплексного углового спектра определяется азимутально-угломестное направление прихода (αр, βр) р-го рассеянного сигнала;

- по значениям задержки τз, доплеровского сдвига Fр и азимутально-угломестного направления прихода (αp, βp) обнаруживаются и определяются пространственные координаты подвижных объектов.

Обнаружение и определение пространственных координат подвижных объектов осуществляется известными способами, например, [2];

- результаты обнаружения и пространственной локализации отображаются для повышения информативности.

Из приведенного описания следует, что устройство, реализующее предложенный способ, обеспечивает повышение качества обнаружения и пространственной локализации малозаметных объектов за счет применения в каждом канале N-элементной антенной решетки новых операций адаптивной и нелинейной обработки радиосигналов.

Таким образом, за счет применения в каждом канале N-элементной антенной решетки вместо классической двумерной взаимной корреляции операций адаптивной обработки с обратной связью по полезному радиосигналу и операций нелинейной обработки принятых радиосигналов, обеспечивающих повышение чувствительности, динамического диапазона и разрешающей способности синтеза частотно-временного изображения радиосигналов целей, удается решить поставленную задачу с достижением указанного технического результата.

Источники информации

1. US, патент, 6703968 В2, кл. G01S 13/87, 2004 г.

2. RU, патент, 2444754, кл. G01S 13/02, 2012 г.

3. RU, патент, 2190236, кл. G01S 5/04, 2002 г.

4. Ратынский М.В. Адаптация и сверхразрешение в антенных решетках. М.: Радио и связь. 2003 г.

Способ обнаружения и пространственной локализации объектов, заключающийся в том, что выбирают передатчик, излучающий радиосигнал с расширенным спектром, синхронно принимают решеткой из N антенн многолучевые радиосигналы, включающие прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика, синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы s, где n - номер антенны, которые объединяют в матричный цифровой сигнал S={s,…,s,…,s} и запоминают, из матричного цифрового сигнала S формируют сигнал пространственной корреляционной матрицы R, который преобразуют в сигнал оптимального весового вектора w=Rv, где v - вектор наведения, определяемый азимутально-угломестным направлением приема прямого радиосигнала, длиной волны и геометрией решетки, преобразуют матричный цифровой сигнал S в прямой цифровой сигнал s=wS, который запоминают, где (·) - символ эрмитова сопряжения, отличающийся тем, что преобразуют цифровой прямой сигнал s в матричный сигнал комплексной фазирующей функции А, включающий гипотетические сигналы, рассеиваемые каждым потенциальным объектом, запоминают матричный сигнал А, преобразуют цифровой сигнал отдельной антенны s в сигнал комплексного частотно-временного изображения , где А - матрица, эрмитово сопряженная с А, сигнал запоминают и используют в качестве начального приближения, а также итерационно формируют зависящий от предыдущего решения вспомогательный матричный сигнал - z-й элемент вектора , k=1,2,… - номер итерации, и сигнал очередного приближения комплексного частотно-временного изображения , где λ - множитель Лагранжа, до тех пор, пока номер текущей итерации не превысит заданный порог, после чего усредняют модули текущих частотно-временных изображений отдельных антенн , по локальным максимумам усредненного частотно-временного изображения определяют число рассеянных радиосигналов и фиксируют значения временной задержки и доплеровского сдвига каждого р-го рассеянного радиосигнала, идентифицируют соответствующие отдельному максимуму усредненного изображения элементы комплексных частотно-временных изображений как составляющие р-го рассеянного радиосигнала, выделяют и запоминают значения идентифицированных составляющих , по которым синтезируют комплексный угловой спектр, по максимумам модуля которого определяют азимутально-угломестное направление прихода р-го рассеянного сигнала, по значениям временной задержки, доплеровского сдвига и азимутально-угломестного направления прихода обнаруживают и определяют пространственные координаты подвижных объектов.
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 18.
10.01.2013
№216.012.1a1c

Способ пассивного обнаружения воздушных объектов

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного пространства с использованием прямых и рассеянных от воздушных объектов сигналов, излучаемых передатчиками радиоэлектронных систем различного назначения. Достигаемым техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002472176
Дата охранного документа: 10.01.2013
27.05.2013
№216.012.454d

Способ измерения времени прихода сигнала и устройство для его реализации

Изобретение относится к радиотехнике и может использоваться в приемниках для измерения времени прихода сигналов с двухпозиционной угловой манипуляцией. Технический результат - повышение вычислительной эффективности за счет исключения неопределенности частоты приема, позволяющее обойтись поиском...
Тип: Изобретение
Номер охранного документа: 0002483318
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.49e1

Способ приема сигналов в системах скрытной радиолокации

Изобретение может быть использовано в системах, предназначенных для контроля воздушного, надводного и наземного пространства и основанных на технологии скрытного обнаружения и слежения за подвижными объектами с использованием прямых и рассеянных подвижными объектами сигналов, излучаемых...
Тип: Изобретение
Номер охранного документа: 0002484493
Дата охранного документа: 10.06.2013
27.08.2013
№216.012.654c

Способ пеленгования с повышенной разрешающей способностью

Изобретение относится к измерительной технике и может быть использовано в акустике и радиотехнике для восстановления изображений и определения с повышенной разрешающей способностью азимутального и угломестного направлений на источники волн различной природы: упругих волн в различных средах, в...
Тип: Изобретение
Номер охранного документа: 0002491569
Дата охранного документа: 27.08.2013
10.07.2014
№216.012.da16

Способ скрытного обнаружения подвижных объектов

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного, наземного и морского пространства с использованием прямых и рассеянных подвижными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем...
Тип: Изобретение
Номер охранного документа: 0002521608
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc48

Способ обнаружения подвижных объектов

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного...
Тип: Изобретение
Номер охранного документа: 0002522170
Дата охранного документа: 10.07.2014
27.07.2014
№216.012.e4f1

Способ обнаружения малоразмерных подвижных объектов

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного...
Тип: Изобретение
Номер охранного документа: 0002524399
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e6aa

Способ измерения времени прихода сигнала и устройство для его реализации

Изобретение относится к средствам для измерения времени прихода сигналов с двухпозиционной угловой манипуляцией на приемной позиции. Техническим результатом изобретения является повышение вычислительной эффективности и повышение точности измерения. Данный технический результат достигается за...
Тип: Изобретение
Номер охранного документа: 0002524843
Дата охранного документа: 10.08.2014
20.09.2014
№216.012.f45e

Способ поиска малозаметных подвижных объектов

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного...
Тип: Изобретение
Номер охранного документа: 0002528391
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f89e

Способ скрытной радиолокации подвижных объектов

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного...
Тип: Изобретение
Номер охранного документа: 0002529483
Дата охранного документа: 27.09.2014
Показаны записи 1-10 из 27.
10.01.2013
№216.012.1a1c

Способ пассивного обнаружения воздушных объектов

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного пространства с использованием прямых и рассеянных от воздушных объектов сигналов, излучаемых передатчиками радиоэлектронных систем различного назначения. Достигаемым техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002472176
Дата охранного документа: 10.01.2013
27.05.2013
№216.012.454d

Способ измерения времени прихода сигнала и устройство для его реализации

Изобретение относится к радиотехнике и может использоваться в приемниках для измерения времени прихода сигналов с двухпозиционной угловой манипуляцией. Технический результат - повышение вычислительной эффективности за счет исключения неопределенности частоты приема, позволяющее обойтись поиском...
Тип: Изобретение
Номер охранного документа: 0002483318
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.49e1

Способ приема сигналов в системах скрытной радиолокации

Изобретение может быть использовано в системах, предназначенных для контроля воздушного, надводного и наземного пространства и основанных на технологии скрытного обнаружения и слежения за подвижными объектами с использованием прямых и рассеянных подвижными объектами сигналов, излучаемых...
Тип: Изобретение
Номер охранного документа: 0002484493
Дата охранного документа: 10.06.2013
27.08.2013
№216.012.654c

Способ пеленгования с повышенной разрешающей способностью

Изобретение относится к измерительной технике и может быть использовано в акустике и радиотехнике для восстановления изображений и определения с повышенной разрешающей способностью азимутального и угломестного направлений на источники волн различной природы: упругих волн в различных средах, в...
Тип: Изобретение
Номер охранного документа: 0002491569
Дата охранного документа: 27.08.2013
10.07.2014
№216.012.da16

Способ скрытного обнаружения подвижных объектов

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного, наземного и морского пространства с использованием прямых и рассеянных подвижными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем...
Тип: Изобретение
Номер охранного документа: 0002521608
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc48

Способ обнаружения подвижных объектов

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного...
Тип: Изобретение
Номер охранного документа: 0002522170
Дата охранного документа: 10.07.2014
27.07.2014
№216.012.e4f1

Способ обнаружения малоразмерных подвижных объектов

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного...
Тип: Изобретение
Номер охранного документа: 0002524399
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e6aa

Способ измерения времени прихода сигнала и устройство для его реализации

Изобретение относится к средствам для измерения времени прихода сигналов с двухпозиционной угловой манипуляцией на приемной позиции. Техническим результатом изобретения является повышение вычислительной эффективности и повышение точности измерения. Данный технический результат достигается за...
Тип: Изобретение
Номер охранного документа: 0002524843
Дата охранного документа: 10.08.2014
20.09.2014
№216.012.f45e

Способ поиска малозаметных подвижных объектов

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного...
Тип: Изобретение
Номер охранного документа: 0002528391
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f89e

Способ скрытной радиолокации подвижных объектов

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного...
Тип: Изобретение
Номер охранного документа: 0002529483
Дата охранного документа: 27.09.2014
+ добавить свой РИД