×
27.07.2014
216.012.e4ce

СПОСОБ ИЗГОТОВЛЕНИЯ КОНСТРУКЦИОННО-ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к производству конструкционно-теплоизоляционных материалов. Способ изготовления конструкционно-теплоизоляционного материала состоит в том, что силикат-глыбу измельчают до удельной поверхности 2500 см/г, смешивают ее с модификатором, упрочняющей добавкой в виде портландцемента, вспенивающим реагентом в виде перекиси водорода и водой затворения, заливают в форму изделия и далее проводят тепловую обработку изделия токами СВЧ в течение 15 минут при температуре 300°С, при этом в качестве модификатора используют суперпластификатор С-3, а в качестве дополнительной упрочняющей добавки - базальтовую микрофибру при следующем соотношении компонентов смеси, мас.%: указанная силикат-глыба 62-64, суперпластификатор С-3 0,01-0,012, портландцемент 10-12, базальтовая микрофибра 0,04-0,1, перекись водорода 0,5-0,7, вода затворения 25. Технический результат - улучшение физико-механических свойств. 1 табл.
Основные результаты: Способ изготовления конструкционно-теплоизоляционного материала, заключающийся в том, что силикат-глыбу измельчают до удельной поверхности 2500 см/г, смешивают ее с модификатором, упрочняющей добавкой в виде портландцемента, вспенивающим реагентом в виде перекиси водорода и водой затворения, заливают в форму изделия и далее проводят тепловую обработку изделия токами СВЧ в течение 15 минут при температуре 300°С, отличающийся тем, что в качестве модификатора используют суперпластификатор С-3, а в качестве дополнительной упрочняющей добавки используют базальтовую микрофибру при следующем соотношении компонентов смеси, мас.%:
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к области производства строительных материалов, а именно к производству теплоизоляционных конструкционных материалов. Предложенный способ предназначен для изготовления теплоизоляционных изделий с минимальными энергозатратами и временем при приемлемых теплофизических (прочностных, звукоизоляционных, теплоизоляционных и т.д.) характеристиках, в том числе и при знакопеременных температурных воздействиях.

Известны способы получения сырьевых смесей для изготовления теплоизоляционного материала по авторскому свидетельству СССР №272879, 1967 г., МПК С04В 38/08 - [1] и по авторскому свидетельству СССР №1282468, 1985 г., МПК С04В 38/02 - [2].

Недостатком аналогов является то, что получаемые по ним теплоизоляционные материалы обладают низкой прочностью при сжатии, высокими пожароопасностью и водопоглощением.

Также известен «Способ получения сырьевых смесей для изготовления теплоизоляционного материала» по авторскому свидетельству СССР №1396511, 1993 г., МПК С04В 38/02, С04В 28/26 - [3], включающий перемешивание тонкомолотой силикат-глыбы 100 мас.ч., кремнефтористого натрия 18-20 мас.ч., порообразователя 5-10 мас.ч., минерального наполнителя 8-16 мас.ч. и вспенивающегося полистирола 20-30 мас.ч., загрузку смеси в форму и последующее вспенивание, причем сначала гранулы вспенивающего полистирола перемешивают с 16-24 мас.ч. водного раствора силиката натрия плотностью 1,3-1,5 г/см3, затем вводят тонкомолотую силикат-глыбу, после чего в полученную смесь вводят остальные компоненты и перемешивают. Другими словами, способ изготовления теплоизоляционного конструкционного материала состоит в измельчении силикат-глыбы, смешивании ее с модификатором, упрочняющей добавкой, вспенивающим реагентом и водой затворения и последующей тепловой обработке.

Способ позволяет повысить прочность (на сжатие) полученного теплоизоляционного материала, а также снизить его пожароопасность и водопоглощение. Однако можно указать на следующие недостатки аналога [3]:

во-первых, использование полистирола значительно уменьшает пожаростойкость теплоизоляционного материала, получаемого из смеси;

во-вторых, большие энергозатраты на тепловую обработку;

в-третьих, повышенная трудоемкость технологии последовательного смешивания компонентов смеси (обязательным является первоначальное перемешивание гранул пенополистирола с водным раствором силиката натрия).

Указанные недостатки решаются в прототипе заявляемого изобретения - заявке: «Способ изготовления теплоизоляционного конструкционного материала» №2007121986 от 20.12.2008 г., МПК С04В 28/00 - [4], включающий измельчение силикат-глыбы, смешивание ее с модификатором, упрочняющей добавкой, вспенивающим реагентом и водой затворения и последующую тепловую обработку, при этом измельчение силикат-глыбы осуществляют до удельной поверхности 2500 см2/г, в качестве модификатора используют лигносульфонат, в качестве упрочняющей добавки - портландцемент, в качестве вспенивающего реагента - перекись водорода, при следующем соотношении компонентов смеси, мас.%: указанная силикат-глыба 62-64, лигносульфонат 0,04-0,06, портландцемент 5-7, перекись водорода 0,5-0,7, вода затворения 30, тепловую обработку изделия осуществляют токами СВЧ в течение 15 минут при температуре 300°С.

Недостатком прототипа является то, что применение в нем лигносульфоната не обеспечивает хорошей растекаемости, требуется больше воды затворения, что существенно ухудшает его физико-механические свойства. Кроме того, прототип обладает сравнительно низкой прочностью на растяжение (изгиб, скалывание), а также низкими динамической прочностью и работой разрушения.

Указанные недостатки аналогов и прототипа ставят задачи по улучшению растекаемости предложенного конструкционно-теплоизоляционного материала и его физико-механических свойств. В частности, существенного увеличения прочности на растяжение (на изгиб, скалывание и т.д.), а также на увеличение динамической прочности и работы разрушения.

Указанные задачи решаются тем, что в способе изготовления конструкционно-теплоизоляционного материала, состоящем в том, что силикат-глыбу измельчают до удельной поверхности 2500 см2/г, смешивают ее с модификатором, упрочняющей добавкой в виде портландцемента, вспенивающим реагентом в виде перекиси водорода и водой затворения, заливают в форму изделия и далее проводят тепловую обработку изделия токами СВЧ в течение 15 минут при температуре 300°С, в качестве модификатора используют суперпластификатор С-3, а в качестве дополнительной упрочняющей добавки используют базальтовую микрофибру при следующем соотношении компонентов смеси, мас.%:

указанная силикат-глыба 62-64
суперпластификатор С-3 0,01-0,012
портландцемент 10-12
базальтовая микрофибра 0,04-0,1
перекись водорода 0,5-0,7
вода затворения 25

При этом так же, как и в прототипе, в состав смеси входят только негорючие материалы, а сам процесс идет при сравнительно невысоких температурах и времени обработки материала.

Кроме того, известен «Восстановленный строительный элемент» по патенту на полезную модель РФ №79579 от 06.06.2008 г., МПК E02D 37/00, E02G 23/02 - [5], строительная смесь которого в своем составе содержит суперпластификатор С-3 и фибру, в том числе и из стальных волокон. Однако аналог [5] предназначен для других целей, имеет высокую теплопроводность, в том числе и из-за высокой теплопроводности фибры из стальных волокон.

Известный аналог: «Многослойная наружная стеновая панель» по патенту на полезную модель РФ №81742 от 27.03.2009 г., МПК Е02С 2/06 - [6], строительная смесь, из которой она изготовлена, в своем составе содержит полистиролбетон, армированный фиброй, в том числе и базальтовой. Как недостаток аналога [6] следует отметить, что входящий в его состав полистирол горюч и при этом применение такого состава в строительных конструкциях сильно ограничено.

Известный аналог: «Смесь для пенобетона» по патенту РФ №2306300 от 20.09.2007 г., МПК С04В 38/10 - [7], содержит в своем составе базальтовую фибру, но в остальном имеет совсем другие компоненты, чем в заявляемом техническом решении. При этом как недостаток аналога [7] можно отметить его низкую прочность.

Также известен аналог: «Способ изготовления пенокерамических изделий» по патенту РФ №2251540 от 10.05.2005 г., МПК С04В 38/02 - [8], содержащий в своем составе базальтовую фибру, но при его изготовлении необходим высокотемпературный обжиг при температуре 940÷980°С, а это требует высокие энергозатраты на производство изделий и, как следствие, приводит к резкому увеличению их стоимости.

Таким образом, реализация предложенного способа изготовления конструкционно-теплоизоляционного материала заключается в следующем:

силикат-глыбу измельчают в шаровой мельнице до образования частиц с поверхностью 2500 см2/г, смешивают с упрочняющей добавкой (портландцементом), модификатором (суперпластификатором С-3), базальтовой микрофиброй, вспенивающим агентом (перекисью водорода) и водой затворения и помещают смесь в форму. Форма со смесью подвергается тепловой обработке токами сверхвысокой частоты (СВЧ) при t=300°С и времени обработки 15 минут.

По предложенному способу приготовления нового конструкционно-теплоизоляционного материала была проведена серия экспериментов на опытном производстве. При этом состав смеси для конструкционного теплоизоляционного материала брался согласно формуле заявляемого изобретения.

Один из вариантов выполнения «Конструкционно-теплоизоляционного материала» в составе ингредиентов приведен в следующем единичном соотношении, мас.%:

указанная силикат-глыба 63
суперпластификатор С-3 0,01
портландцемент 11,29
базальтовая микрофибра 0,1
перекись водорода 0,6
вода затворения 25

Результаты проведенных экспериментов на опытном производстве по производству конструкционно-теплоизоляционного материала:

плотность: 398-417 кг/м3;

предел прочности при сжатии: 2,5-4,5 МПа;

теплопроводность: 0,085-0,098 Вт/(м·К).

Проведение тепловой обработки смеси полем токов СВЧ создает условия равномерного нагрева и вспучивания смеси компонентов. Обеспечивается равномерность пористой структуры изготавливаемого конструкционно-теплоизоляционного материала и его качества (стабильности его теплофизических свойств).

Также в предложенном способе исключен промежуточный процесс варки жидкого стекла и введена тепловая обработка токами СВЧ при t=300°С. Известные способы аналоги (из негорючих материалов) включают тепловую обработку при температурах, равных 1000-1200°С, и времени обработки в течение ~9 часов.

Сравнительные энергозатраты на производство известных строительных конструкционно-теплоизоляционных материалов и по предлагаемому способу изготовления конструкционно-теплоизоляционного материала приведены в таблице 1.

Таблица 1
Сравнительные энергозатраты
№п/п Наименование материала Энергозатраты, кВт/м3
1 Минеральная вата 10000
2 Пенобетон, газобетон 1700
3 Кирпич 500
4 Древесина 180
5 Предложенный конструкционно-теплоизоляционный материал 190

Таким образом, реализация предложенного способа позволит достичь существенного улучшения растекаемости предложенного конструкционно-теплоизоляционного материала и его физико-механических свойств. В частности, увеличения прочности на растяжение (на изгиб, скалывание и т.д.), а также на увеличение динамической прочности и работы на разрушение. При этом энергозатраты и трудоемкость производства конструкционно-теплоизоляционных изделий при их приемлемых теплофизических характеристиках будут на минимальном уровне.

Использование базальтовой микрофибры в малом количестве позволит существенно увеличить прочность (в том числе и динамическую) изделий и работу на их разрушение, то есть их физико-механические свойства. Уменьшение количества воды затворения дополнительно увеличивает прочность готовых изделий и уменьшает энергозатраты на удаление излишней влаги при тепловой обработке. При этом обработка токами СВЧ позволяет получить температуру внутри изделия выше, чем на поверхности, что способствует равномерному нагреву и выделению излишней влаги и газов по всему объему изделия. Это приведет к образованию равномерной пористой структуры изделия. Равномерный состав и пористость теплоизоляционного изделия обеспечивают одинаковые прочностные и теплофизические и другие характеристики по всему объему материала, а также позволяют его использовать как облицовочный, так и в качестве элементов несущих и самонесущих конструкций, в качестве заполнения строительных конструкций.

Использование принципиально новой исходной смеси, обеспечивающей получение нового конструкционно-теплоизоляционного материла при сравнительно низких температурах (t=300°C) и тепловой обработкой ее в поле токов СВЧ позволяет получить равномерные физико-механические характеристики по всей массе изделия при минимальном времени обработки.

Элементы строительных конструкций, изготовленные по предложенному способу, можно использовать для многоэтажного строительства как ограждающие и самонесущие, а для малоэтажного строительства - как несущие и ограждающие.

Изготовленные элементы строительных конструкций, в которых применялись блоки из предложенного конструкционно-теплоизоляционного материала, эксплуатируются с 2008 года без видимых признаков деструкции последних.

Реализация способа изготовления конструкционно-теплоизоляционного материала в совокупности признаков формулы изобретения является новым для способов изготовления теплоизоляционных материалов, что соответствует критерию"новизна".

Вышеприведенная совокупность признаков не известна в настоящее время из уровня техники и не следует из общеизвестных правил, способов изготовления конструкционно-теплоизоляционных материалов, и это доказывает соответствие критерию "изобретательский уровень".

Реализация предложенного способа изготовления конструкционно-теплоизоляционного материала с указанной совокупностью существенных признаков не представляет никаких конструктивно-технических и технологических трудностей, отсюда следует соответствие критерию "промышленная применимость".

Список использованных источников

1. Авторское свидетельство СССР №272879, 1967 г., МПК С04В 38/08.

2. Авторское свидетельство СССР №1282468, 1985 г., МПК С04В 38/02.

3. Авторское свидетельство СССР №1396511, 1993 г., МПК С04В 38/02, С04В 28/26.

4. Прототип - заявка на изобретение №2007121986 от 20.12.2008 г., МПК С04В 28/00.

5. Патент на полезную модель РФ №79579 от 06.06.2008 г., МПК E02D 37/00, E02G 23/02.

6. Патент на полезную модель РФ №81742 от 27.03.2009 г., МПК Е02С 2/06.

7. Патент РФ №2306300 от 20.09.2007 г., МПК С04В 38/10.

8. Патент РФ №2251540 от 10.05.2005 г., МПК С04В 38/02.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 27.
27.04.2013
№216.012.3ad6

Теплоиспользующий компрессор

Устройство может использоваться в самых различных областях техники для сжатия и перекачки газа. Содержит цилиндр 1, вытеснитель 2 со встроенным генератором 3 и радиально наклоненными отверстиями 4 и 5 для соединения регенератора соответственно с холодной 6 и горячей 7 полостями цилиндра 1....
Тип: Изобретение
Номер охранного документа: 0002480623
Дата охранного документа: 27.04.2013
27.05.2013
№216.012.4511

Способ сжижения природного или нефтяного газа и устройство для его осуществления

Изобретение относится к криогенной технике, а именно к технологии сжижения природных или других нефтехимических газов. Способ сжижения природного или нефтяного газа включает предварительную осушку от влаги, очистку от механической пыли, охлаждение исходного потока, сепарацию охлажденной...
Тип: Изобретение
Номер охранного документа: 0002483258
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.4714

Универсальная гиря

Изобретение относится к снарядам и устройствам для выполнения физических упражнений, а именно к спортивным гирям. Универсальная гиря содержит сферический сбалансированный полый корпус (1) со срезом (2) внизу, дужкой (3) наверху и грузами (4) с резьбовой фиксацией внутри полости корпуса (1)....
Тип: Изобретение
Номер охранного документа: 0002483776
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b58

Гиря

Предлагаемое изобретение относится к снарядам и устройствам для выполнения физических упражнений, а именно к спортивным гирям. Содержит сферический сбалансированный полый корпус (1) со срезом (2) внизу, дужкой (3) на верху и грузами (6) с резьбовой фиксацией внутри полости, полость сферического...
Тип: Изобретение
Номер охранного документа: 0002484870
Дата охранного документа: 20.06.2013
20.07.2013
№216.012.583e

Стабилизированный комбинированный источник электропитания

Изобретение относится к комбинированным источникам электропитания и, в частности, может быть использовано в качестве бортового источника питания космического аппарата, выполненного на базе двух накопителей энергии - ионисторе и аккумуляторе. Содержит клеммы для подсоединения к внешнему...
Тип: Изобретение
Номер охранного документа: 0002488198
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.5a61

Способ заполнения резервных хранилищ сжиженным природным газом

Изобретение относится к низкотемпературному заполнению и хранению сжиженного природного газа (СПГ) в хранилищах. Способ заполнения резервных хранилищ СПГ состоит в заполнении СПГ резервного подземного хранилища и наземного расходного хранилища, расположенных на небольшом расстоянии от...
Тип: Изобретение
Номер охранного документа: 0002488758
Дата охранного документа: 27.07.2013
27.09.2013
№216.012.6f89

Способ усиления железобетонной колонны

Изобретение относится к области строительства, а именно к усилениям строительных конструкций, и в частности к способу усиления колонны. Технический результат изобретения заключается в повышении несущей способности железобетонной колонны. Способ усиления железобетонной колонны с помощью ее...
Тип: Изобретение
Номер охранного документа: 0002494204
Дата охранного документа: 27.09.2013
20.10.2013
№216.012.76c8

Способ осушки и очистки природного газа с последующим сжижением и устройство для его осуществления

Группа изобретений относится к криогенной технике и технологии, а именно к способам и устройствам осушки, очистки и сжижения природного газа, отбираемого из магистрального газопровода, и других низкомолекулярных газов, получаемых на нефтехимическом производстве газоразделения, а также при...
Тип: Изобретение
Номер охранного документа: 0002496068
Дата охранного документа: 20.10.2013
10.12.2013
№216.012.89cd

Способ сжижения природного газа и устройство для его осуществления

Изобретение относится к низкотемпературному сжижению газа, например природного газа. При реализации способа вихревую трубу размещают вертикально в трехсекционной емкости-сепараторе, разделенной горизонтальными перегородками. В средней секции горячий конец вихревой трубы охлаждают холодным...
Тип: Изобретение
Номер охранного документа: 0002500959
Дата охранного документа: 10.12.2013
20.02.2014
№216.012.a310

Способ сепарации и сжижения попутного нефтяного газа с его изотермическим хранением

Изобретение относится к технологии подготовки и переработки попутного газа в товарную продукцию. Способ заключается в том, что попутный нефтяной газ после охлаждения в рекуперативном теплообменнике сепарируют в многоступенчатом центробежном сепараторе от нефтебензиновых жидких фракций, водного...
Тип: Изобретение
Номер охранного документа: 0002507459
Дата охранного документа: 20.02.2014
+ добавить свой РИД