×
27.07.2014
216.012.e396

Результат интеллектуальной деятельности: СПОСОБ ОБЕСПЕЧЕНИЯ НАВИГАЦИИ АВТОНОМНОГО ПОДВОДНОГО РОБОТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к средствам подводной навигации и может быть использовано для навигационного обеспечения автономных подводных роботов (АПР) с неограниченным и произвольным районом работы. Способ обеспечения навигации автономного подводного робота, положение которого контролируется с борта обеспечивающего судна, при котором на борту автономного подводного робота счисляют траекторию его движения по данным датчиков скорости, курса и глубины, принимают навигационные сигналы, излучаемые гидроакустическим маяком с известными координатами, измеряют время распространения акустического сигнала между автономным подводным роботом и обеспечивающим судном, а на его основе и расстояние между автономным подводным роботом и гидроакустическим маяком и используют величину этого расстояния для получения текущих пространственных координат автономного подводного робота, при этом текущие координаты гидроакустического маяка определяют средствами судовой навигации и передают их по гидроакустическому каналу связи на борт автономного подводного робота в составе навигационных сигналов, излучаемых гидроакустическим маяком, а полученные на борту автономного подводного робота данные обработки информации, содержащие оценку его координат, в составе обратного навигационного сигнала по гидроакустическому каналу передают на обеспечивающее судно, отличается тем, что обеспечивающее судно маневрирует по водной поверхности относительно траектории движения автономного подводного робота, пересекая ее проекцию на водную поверхность и перемещаясь в конкретную точку водной поверхности, при этом для определения координат этой точки используют информацию о текущих расстояниях между гидроакустическим маяком и автономным подводным роботом, а также оценку ошибки определения местоположения автономного подводного робота, поступающую на борт обеспечивающего судна от автономного подводного робота в составе обратного навигационного сигнала. Технический результат: повышение точности определения текущего местоположения АПР в пространстве без использования гидроакустической навигационной системы с ультракороткой базой, которая не обеспечивает необходимую точность определения пеленга на гидроакустический маяк (направление в пространстве от АПР на ГМ) и, соответственно, требуемую точность определения местоположения АПР. 1 ил.
Основные результаты: Способ обеспечения навигации автономного подводного робота, положение которого контролируется с борта обеспечивающего судна, при котором на борту автономного подводного робота счисляют траекторию его движения по данным датчиков скорости, курса и глубины, принимают навигационные сигналы, излучаемые гидроакустическим маяком с известными координатами, измеряют время распространения акустического сигнала между автономным подводным роботом и обеспечивающим судном, а на его основе и расстояние между автономным подводным роботом и гидроакустическим маяком и используют величину этого расстояния для получения текущих пространственных координат автономного подводного робота, при этом текущие координаты гидроакустического маяка определяют средствами судовой навигации и передают их по гидроакустическому каналу связи на борт автономного подводного робота в составе навигационных сигналов, излучаемых гидроакустическим маяком, а полученные на борту автономного подводного робота данные обработки информации, содержащие оценку его координат, в составе обратного навигационного сигнала по гидроакустическому каналу передают на обеспечивающее судно, отличающийся тем, что обеспечивающее судно маневрирует по водной поверхности относительно траектории движения автономного подводного робота, пересекая ее проекцию на водную поверхность и перемещаясь в конкретную точку водной поверхности, при этом для определения координат этой точки используют информацию о текущих расстояниях между гидроакустическим маяком и автономным подводным роботом, а также оценку ошибки определения местоположения автономного подводного робота, поступающую на борт обеспечивающего судна от автономного подводного робота в составе обратного навигационного сигнала.

Изобретение относится к средствам подводной навигации и может быть использовано для навигационного обеспечения автономных подводных роботов (АПР) с неограниченным и произвольным районом работы.

Известен способ навигационного обеспечения автономного подводного робота, совершающего протяженную миссию с контролем его положения на борту обеспечивающего судна. В этом способе на борту автономного подводного робота устанавливают координаты его стартовой точки, затем счисляют траекторию его движения по данным датчиков скорости, курса и глубины, после чего принимают навигационные сигналы, излучаемые гидроакустическим маяком с известными координатами, затем определяют собственные координаты автономного подводного робота относительно гидроакустического маяка путем измерения дальности до него и его углового положения. Полученные координатные данные комплексно обрабатывают, получают оценку координат автономного подводного робота на его борту и передают ее по гидроакустическому каналу на борт обеспечивающего судна, где отображают траекторию движения автономного подводного робота. Данный способ навигационного обеспечения основан на использовании сети внешних опорных стационарных гидроакустических маяков, излучающих навигационные сигналы при наличии бортовой системы измерения дальности маяков, специальной системы гидроакустической связи между обеспечивающим судном и автономным подводным роботом. Каждый из этих маяков по очереди является опорным в своем районе трассы работ. Положение автономного подводного робота определяется путем измерения дальности и углового положения гидроакустического маяка, координаты которого предварительно установлены на автономном подводном роботе. Рассчитанные на борту автономного подводного робота комплектованные навигационные данные по гидроакустической системе связи передаются на борт обеспечивающего судна, позволяя контролировать его положение в ходе работ в реальном времени. Для коррекции системы счисления применяют только один гидроакустический маяк с известными координатами, а для увеличения оперативности на борту автономного подводного робота дополнительно устанавливают измеритель углового положения гидроакустического маяка (Satoshi Tsukioka, Taro Aoki, Takashi Murashima. Experimental Results of an Autonomous Underwater Vehicle «Urashima» - Oceans-2003, p.940-945).

Недостатком этого способа навигационного обеспечения АПР, контролируемого с борта обеспечивающего судна (ОС), при его реализации в навигационных системах для АПР с большой дальностью действия является необходимость предварительной установки большого числа стационарных опорных гидроакустических маяков вдоль трассы движения АПР и их точного координирования. Указанный недостаток в целом значительно увеличивает время проведения работ и их стоимость.

Известен также способ навигационного обеспечения автономного подводного робота, контролируемого с борта обеспечивающего судна, при котором на борту автономного подводного робота устанавливают координаты его стартовой точки, счисляют траекторию его движения по данным датчиков скорости, курса и глубины, принимают навигационные сигналы, излучаемые опорным гидроакустическим маяком с известными координатами, определяют собственные координаты автономного подводного робота относительно опорного гидроакустического маяка путем измерения его дальности и углового положения, полученные координатные данные комплексно обрабатывают, получают оценку координат автономного подводного робота на его борту, передают ее по гидроакустическому каналу на борт обеспечивающего судна и отображают на борту судна траекторию движения автономного подводного робота, обеспечивающее судно перемещают в соответствии с движением автономного подводного робота вдоль его трассы, опорный гидроакустический маяк выполняют буксируемым, дополнительно на нем устанавливают приемник навигационных сигналов, соединяют кабельной линией связи с обеспечивающим судном и выставляют посредством буксирующего устройства за борт обеспечивающего судна, совмещают его движение с движением обеспечивающего судна, а на борту автономного подводного робота дополнительно устанавливают передатчик навигационных сигналов, при этом координаты стартовой точки автономного подводного робота и текущие координаты опорного гидроакустического маяка определяют средствами судовой навигации и передают по кабельной линии связи на опорный гидроакустический маяк и далее по гидроакустическому каналу на борт автономного подводного робота в составе навигационных сигналов, излучаемых опорным гидроакустическим маяком, а полученные на борту автономного подводного робота данные комплексной обработки информации, содержащие оценку его координат, в составе обратного навигационного сигнала по гидроакустическому каналу передают на опорный гидроакустический маяк, а затем по кабельной линии связи на борт обеспечивающего судна (Патент РФ №2344435. Бюл. №2, 2009).

Недостаток этого способа, являющегося наиболее близким к предлагаемому способу и принятого за прототип, заключается в том, что он не обеспечивает точную навигацию АПР с помощью только одного мобильного гидроакустического маяка (ГМ), так как пеленг от АПР на ГМ, определяемый в прототипе с помощью гидроакустической навигационной системы с ультракороткой базой (ГАНС УКБ), измеряется неточно.

Задачей, на решение которой направлено предлагаемое техническое решение, является повышение точности определения текущего местоположения АПР в пространстве без использования ГАНС УКБ, которая не обеспечивает необходимую точность определения пеленга на ГМ (направление в пространстве от АПР на ГМ) и, соответственно, требуемую точность определения местоположения АПР.

Технический результат, получаемый при решении поставленной задачи, выражается в повышении точности определения текущего местоположения АПР в пространстве за счет того, что обеспечивающее судно маневрирует по водной поверхности относительно траектории движения автономного подводного робота, пересекая ее проекцию на водную поверхность и перемещаясь в конкретную точку водной поверхности, при этом для определения координат этой точки используют информацию о текущих расстояниях между гидроакустическим маяком и автономным подводным роботом, а также оценку ошибки определения местоположения автономного подводного робота, поступающую на борт обеспечивающего судна от автономного подводного робота в составе обратного навигационного сигнала.

Поставленная задача решается тем, что способ обеспечения навигации автономного подводного робота, положение которого контролируется с борта обеспечивающего судна, при котором на борту автономного подводного робота счисляют траекторию его движения по данным датчиков скорости, курса и глубины, принимают навигационные сигналы, излучаемые гидроакустическим маяком с известными координатами, измеряют время распространения акустического сигнала между автономным подводным роботом и обеспечивающим судном, а на его основе и расстояние между автономным подводным роботом и гидроакустическим маяком и используют величину этого расстояния для получения текущих пространственных координат автономного подводного робота, при этом текущие координаты гидроакустического маяка определяют средствами судовой навигации и передают их по гидроакустическому каналу связи на борт автономного подводного робота в составе навигационных сигналов, излучаемых гидроакустическим маяком, а полученные на борту автономного подводного робота данные обработки информации, содержащие оценку его координат, в составе обратного навигационного сигнала по гидроакустическому каналу передают на обеспечивающее судно, отличается тем, что обеспечивающее судно маневрирует по водной поверхности относительно траектории движения автономного подводного робота, пересекая ее проекцию на водную поверхность и перемещаясь в конкретную точку водной поверхности, при этом для определения координат этой точки используют информацию о текущих расстояниях между гидроакустическим маяком и автономным подводным роботом, а также оценку ошибки определения местоположения автономного подводного робота, поступающую на борт обеспечивающего судна от автономного подводного робота в составе обратного навигационного сигнала.

Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналога свидетельствует о соответствии заявленного решения критерию "новизна".

Признаки отличительной части формулы изобретения обеспечивают решение следующих функциональных задач.

Признак «…обеспечивающее судно маневрирует по водной поверхности относительно траектории движения автономного подводного робота, пересекая ее проекцию на водную поверхность и перемещаясь в конкретную точку водной поверхности...» позволяет переместить ГМ в ту точку водной поверхности, из которой очередное измерение расстояния между ГМ и АПР позволит уточнить реальное местоположение АПР в пространстве, уменьшая область погрешности исчисления пространственного положения АПР, которое осуществляется на борту АПР с использованием информации, поступающей от его датчиков скорости, курса и глубины.

Признак, указывающий на то, что «для определения координат точки», в которую должно переместиться обеспечивающее судно, «используют информацию о текущих расстояниях между гидроакустическим маяком и автономным подводным роботом, а также оценку ошибки определения местоположения автономного подводного робота, поступающую на борт обеспечивающего судна от автономного подводного робота в составе обратного навигационного сигнала», обеспечивает реализуемость способа, поскольку несложно определить это расстояние на основе измерения времени распространения акустического сигнала между АПР и ГМ и передать сообщение об исчисленном очередном местоположении ОС с борта АПР на это ОС по типовому гидроакустическому каналу связи. В вертикальной плоскости положение АПР, измеряемое датчиком глубины, определяется достаточно точно.

Заявленное изобретение иллюстрируется фиг.1, где показана схема, реализующая заявленный способ навигации АПР.

На чертеже показаны: проекция 1 текущего положение АПР на горизонтальную плоскость, расположенную на водной поверхности; текущее положение 2 ОС с ГМ в указанной плоскости; проекция 3 на эту плоскость линии, определяющей расстояние между АПР и ГМ; эллипсообразная проекция 4 на указанную плоскость области вероятного нахождения АПР, построенной с учетом погрешностей счисления его положения, которое осуществляется на борту АПР; эллипсообразная проекция 5 на эту же плоскость области уточненного вероятного нахождения АПР, скорректированной на основе измерения расстояния между АПР и ГМ; проекция 6 на указанную горизонтальную плоскость большой оси эллипсообразной проекции 4, перпендикулярная проекции 3; точка 7 желаемого нахождения ОС с ГМ во время следующего определении расстояния между АПР и ГМ; проекция 8 на указанную горизонтальную плоскость следующего реального положения АПР в момент очередного измерения расстояния между АПР и ГМ; эллипсообразная проекция 9 на эту же плоскость области текущего вероятного нахождения АПР с учетом новых добавившихся погрешностей счисления его очередного положения; проекция 10 на указанную горизонтальную плоскость линии, определяющей расстояние между очередным положением АПР и ГМ, находящимся вместе с ОС в точке 7; эллипсоидальная проекция 11 на рассматриваемую горизонтальную плоскость области очередного уточненного вероятного нахождения АПР, скорректированной на основе очередных измерений расстояний между АПР и ГМ; проекция 12 на рассматриваемую горизонтальную плоскость большой оси элипсообразной проекции 9; проекция 13 на эту горизонтальную плоскость большой оси элипсообразной проекции 11, перпендикулярная проекции 10; реальная траектория 14 движения АПР.

Все устройства, устанавливаемые на бортах АПР и ОС, известны.

Заявленный способ реализуется следующим образом.

После начала движения АПР из исходной точки его бортовой компьютер с погрешностью, определяемой характеристиками используемых датчиков и внешними факторами, воздействующими на этот АПР, начинает счислять траекторию его движения, определяя текущее положение АПР в пространстве. С учетом указанных погрешностей реальное положение 1 АПР в пространстве (см. фиг.1) в текущий момент времени будет располагаться внутри некоторого эллипсоида, проекция которого на фиг.1 обозначена цифрой 4. В текущий момент определения расстояния между АПР и ГМ обеспечивающее судно располагается в позиции 2. Поскольку это расстояние определяется с малой погрешностью, то область 5 уточненного вероятного нахождения АПР, скорректированная на основе измерения дальностей, существенно уменьшается по сравнению с проекцией 4, и текущее пространственное положение АПР уточняется. Положение точки 7 на оси 6 определяется таким образом, чтобы очередное измерение расстояния между АПР и ГМ имело минимальную погрешность. При этом для обеспечения большей точности определения очередного положения АПР точка 7 должна находиться по другую сторону относительно траектории 14 от точки 2. Промежуток времени между очередными измерениями расстояния между АПР и ГМ должно быть таким, чтобы ОСуспело переместиться из точки 2 в точку 7. При этом указанное время должно быть малым, чтобы расстояние между точками 1 и 8 тоже было малым, а направление оси 12 мало отличалось от направления оси 6. Это возможно в случаях, когда скорость ОС существенно выше скорости АПР.

Очевидно, что по прошествии указанного короткого времени площадь эллипсообразной проекции 9 за счет накопления новых ошибок исчисления положения АПР увеличивается незначительно по сравнению с площадью проекции 5. Поэтому при очередном измерении расстояния между АПР и ГМ ОС по линии, проекция которой на горизонтальную плоскость определяется линией 10, происходит еще большее уточнение текущего положения АПР в пространстве, которое начинает определяться уже эллипсообразной проекцией 11 на рассматриваемой горизонтальной плоскости, большая ось 13 которой перпендикулярна проекции 10. Очевидно, что площадь проекции 11 много меньше площади проекций 9 и 5.

Указанная последовательность описанных действий непрерывно продолжается и повторяется в процессе перемещения АПР по некоторой пространственной траектории 14. При этом происходит непрерывное уточнение текущего положения АПР в пространстве, несмотря на непрерывно накапливающуюся погрешность исчисления его положения, производимого на его бортовой ЭМВ.

Способ обеспечения навигации автономного подводного робота, положение которого контролируется с борта обеспечивающего судна, при котором на борту автономного подводного робота счисляют траекторию его движения по данным датчиков скорости, курса и глубины, принимают навигационные сигналы, излучаемые гидроакустическим маяком с известными координатами, измеряют время распространения акустического сигнала между автономным подводным роботом и обеспечивающим судном, а на его основе и расстояние между автономным подводным роботом и гидроакустическим маяком и используют величину этого расстояния для получения текущих пространственных координат автономного подводного робота, при этом текущие координаты гидроакустического маяка определяют средствами судовой навигации и передают их по гидроакустическому каналу связи на борт автономного подводного робота в составе навигационных сигналов, излучаемых гидроакустическим маяком, а полученные на борту автономного подводного робота данные обработки информации, содержащие оценку его координат, в составе обратного навигационного сигнала по гидроакустическому каналу передают на обеспечивающее судно, отличающийся тем, что обеспечивающее судно маневрирует по водной поверхности относительно траектории движения автономного подводного робота, пересекая ее проекцию на водную поверхность и перемещаясь в конкретную точку водной поверхности, при этом для определения координат этой точки используют информацию о текущих расстояниях между гидроакустическим маяком и автономным подводным роботом, а также оценку ошибки определения местоположения автономного подводного робота, поступающую на борт обеспечивающего судна от автономного подводного робота в составе обратного навигационного сигнала.
СПОСОБ ОБЕСПЕЧЕНИЯ НАВИГАЦИИ АВТОНОМНОГО ПОДВОДНОГО РОБОТА
Источник поступления информации: Роспатент

Показаны записи 111-120 из 291.
20.03.2015
№216.013.3229

Электропривод манипулятора

Изобретение относится к робототехнике и может быть использовано для создания систем управления электроприводами манипулятора. Изобретение направлено на обеспечение полной инвариантности динамических свойств электропривода к изменениям его моментных (нагрузочных) характеристик при движении...
Тип: Изобретение
Номер охранного документа: 0002544316
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3447

Способ синтеза тетрацианоэтилена на основе динитрила малоновой кислоты

Изобретение относится к органической химии, конкретно к способу синтеза тетрацианоэтилена на основе динитрила малоновой кислоты. Согласно предлагаемому способу синтез тетрацианоэтилена производят путем окислительной димеризации динитрила малоновой кислоты с оксидом селена(IV) в неполярном...
Тип: Изобретение
Номер охранного документа: 0002544858
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.347f

Электромашина

Изобретение относится к области электротехники. Технический результат: упрощение конструкции, повышение надёжности. Электромашина содержит опорный корпус статора, шихтованный сердечник статора, снабженный пазами, в которых размещены катушки обмотки статора, ротор, включающий корпус и индуктор,...
Тип: Изобретение
Номер охранного документа: 0002544914
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.3629

Способ получения гидролизата из шелухи гречихи в качестве замены какао-порошка для пряничных и кондитерских изделий

Изобретение относится к пищевой промышленности. Измельчают шелуху гречихи, осуществляют гидролиз сырья раствором гидроксида натрия при соотношении их веса от 1:3 до 1:20. Выдерживают смесь от 2 до 6 ч при температуре 50-110°С. Полученный материал охлаждают до 25-40°С и нейтрализуют соляной...
Тип: Изобретение
Номер охранного документа: 0002545349
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3709

Реактор для пиролизной переработки органосодержащих отходов

Изобретение относится к области переработки органосодержащих отходов, в том числе илистых отходов бытовых сточных вод, животноводческих комплексов и птицефабрик для получения горючих продуктов, сырья для производства строительных материалов и удобрений для мелиорации почв, и может...
Тип: Изобретение
Номер охранного документа: 0002545577
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.387b

Сухая смесь для производства мороженого

Изобретение относится к молочной промышленности и может быть использовано при производстве мороженого с функциональными свойствами. Смесь для производства мороженого содержит сухое обезжиренное молоко и сливки молочные сухие 42% жирности, фруктозу, ванилин, стабилизатор-эмульгатор ISC 06001 и...
Тип: Изобретение
Номер охранного документа: 0002545947
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3955

Хлебопекарный улучшитель

Изобретение относится к хлебопекарной отрасли пищевой промышленности. Хлебопекарный улучшитель содержит функциональную основу и, в эффективных количествах, смесь минеральных солей. При этом в качестве функциональной основы использована мука льняная, а в качестве смеси минеральных солей...
Тип: Изобретение
Номер охранного документа: 0002546165
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.395f

Способ получения шоколадной глазури

Изобретение относится к кондитерской промышленности и может быть использовано при производстве шоколадной глазури. Способ включает измельчение какаосодержащего продукта, его смешивание с добавками и термическое воздействие на смесь. При этом в качестве какаосодержащего продукта используют...
Тип: Изобретение
Номер охранного документа: 0002546175
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.39aa

Способ получения молочного напитка

Изобретение относится к молочной промышленности. Нормализуют молоко до массовой доли жира 2,5-3,5%. Проводят очистку молока при температуре 35-40°С, гомогенизируют при давлении 12,5±2,5 МПа при температуре 45-70°С с выдержкой от 2 до 40 мин. Пастеризуют при температуре 76±2°С с выдержкой от 2...
Тип: Изобретение
Номер охранного документа: 0002546250
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3a66

Способ изготовления имплантата для пластики дефектов костной ткани

Изобретение относится к травматологии и ортопедии и может быть применимо для изготовления имплантата для пластики дефектов костной ткани. В процессе моделирования имплантата используют стерилизованную пищевую фольгу, из которой формируют объемный элемент, который вводят в зону пластики дефектов...
Тип: Изобретение
Номер охранного документа: 0002546438
Дата охранного документа: 10.04.2015
Показаны записи 111-120 из 305.
20.02.2015
№216.013.2b82

Установка для исследования образца материала на истирание льдом

Изобретение относится к технике механических испытаний материалов на стойкость к истиранию до разрушения и может быть использовано, в частности, для испытаний на ледовое истирание. Установка содержит основание, на котором размещена горизонтальная платформа, снабженная приводом вращения вокруг...
Тип: Изобретение
Номер охранного документа: 0002542595
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b93

Установка для исследования образца материала на истирание льдом

Изобретение относится к технике механических испытаний материалов на стойкость к истиранию до разрушения и может быть использовано, в частности, для испытаний на ледовое истирание. Конструкция установки для исследования образца материала на истирание льдом содержит основание, на котором...
Тип: Изобретение
Номер охранного документа: 0002542612
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b94

Установка для исследования образца материала на истирание льдом

Изобретение относится к технике механических испытаний материалов на стойкость к истиранию до разрушения и может быть использовано, в частности, для испытаний на ледовое истирание. Установка содержит привод вращения кольцеобразного образца льда и средства для удержания образцов истираемого...
Тип: Изобретение
Номер охранного документа: 0002542613
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2bb8

Механизм трансформации лопасти турбины

Изобретение относится к области ветроэнергетики, в частности к ветродвигателям с вертикальной осью вращения. Механизм трансформации лопасти турбины, содержащий основную часть лопасти, установленную на роторе турбины с возможностью поворота относительно вертикальной оси между механическими...
Тип: Изобретение
Номер охранного документа: 0002542649
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2bff

Механизм трансформации лопасти турбины

Изобретение относится к области ветроэнергетики, в частности к ветродвигателям с вертикальной осью вращения. Механизм трансформации лопасти турбины содержит основную часть лопасти, установленную на роторе турбины с возможностью поворота относительно вертикальной оси между механическими...
Тип: Изобретение
Номер охранного документа: 0002542731
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2c4a

Упорный подшипниковый узел

Изобретение относится к области турбостроения и может быть использовано при проектировании, например, газотурбинных установок. Упорный подшипниковый узел состоит из подпятника и пяты (7). Подпятник образован корпусом (1), снабженным цилиндрической выемкой с плоским дном, образованной кольцевым...
Тип: Изобретение
Номер охранного документа: 0002542806
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2cac

Самонастраивающийся электропривод

Изобретение относится к электроприводам и может быть использовано при создании систем управления. Техническим результатом является повышение скорости работы электропривода без превышения заданной динамической ошибки при текущей амплитуде входного гармонического сигнала и с учетом индуктивности...
Тип: Изобретение
Номер охранного документа: 0002542904
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e74

Способ подготовки пробы для газохроматографического определения пестицидов в биоматериале

Изобретение относится к аналитической химии, а именно к способам подготовки проб, и описывает способ подготовки пробы для газохроматографического определения пестицидов в биоматериале. Способ включает отбор, измельчение биоматериала, двухстадийную экстракцию пестицидов n-гексаном, очищение...
Тип: Изобретение
Номер охранного документа: 0002543360
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2f1f

Объемно-профилированная свая

Изобретение относится к области строительства, конкретнее к фундаментам, и может быть использовано для устройства буронабивных свай, а также в качестве анкера, воспринимающего выдергивающие усилия. Объемно-профилированная свая включает цилиндрическую оболочку, выполненную с возможностью ее...
Тип: Изобретение
Номер охранного документа: 0002543531
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.30f6

Электромашина

Изобретение относится к области электротехники. Технический результат: увеличение окружной скорости индуктора, упрощение конструкции. Электромашина содержит опорный корпус статора, шихтованный сердечник статора, снабженный пазами, в которых размещены катушки обмотки статора, ротор, включающий...
Тип: Изобретение
Номер охранного документа: 0002544002
Дата охранного документа: 10.03.2015
+ добавить свой РИД