×
20.07.2014
216.012.e27b

Результат интеллектуальной деятельности: ФОТОИОНИЗАЦИОННЫЙ ДЕТЕКТОР ДЛЯ ГАЗОАНАЛИТИЧЕСКОЙ АППАРАТУРЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области аналитической техники, а именно к средствам измерений концентраций компонентов при газовом анализе. Фотоионизационный детектор для газоаналитической аппаратуры содержит лампу ультрафиолетового излучения с плоским выходным окном, над которым размещена проточная камера, образованная двумя дисковыми электродами, расположенными друг над другом, изготовленными из металлов с различной работой выхода электронов и разделенными кольцеобразной фторопластовой прокладкой, электрометр, к которому подключены электроды, и регистратор сигнала детектора, подключенный к выходу электрометра, причем нижний электрод выполнен с центральным отверстием, а верхний снабжен каналом для входа потока анализируемого газа. Согласно изобретению детектор дополнительно содержит плоский нагреватель, размещенный на верхнем электроде с возможность теплового контакта с ним, и цилиндр из теплоизоляционного диэлектрического материала, размещенный между нижним электродом и плоским выходным окном лампы ультрафиолетового излучения так, что его ось симметрии совпадает с осью симметрии проточной камеры, при этом цилиндр снабжен центральным отверстием и каналом для выхода потока анализируемого газа, соединенным с этим отверстием. При этом нижняя сторона верхнего электрода покрыта слоем палладийсодержащего материала. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области аналитической техники, а именно к средствам измерений концентраций компонентов при газовом анализе.

Известен фотоионизационный детектор газов и паров (Фарзане Н.Г., Илясов Л.В., Азим-Заде А.Ю. Автоматические детекторы газов и жидкостей. М.: Энергоатомиздат, 1983 г., с.96), состоящий из ионизационной камеры, снабженной двумя электродами для создания коронного разряда, поляризующего электрода и коллекторного электрода для измерения количества образовавшихся ионов. Также в камере находятся отверстия для ввода и вывода анализируемого газа. Принцип действия детектора состоит в том, что в потоке дополнительного газа, например аргона, возбуждается коронный газовый разряд постоянного тока. В результате разряда образуются метастабильные атомы аргона, которые при высвечивании создают поток ионов, на пути которых помещают коллекторный электрод. Фотоионы либо непосредственно ионизируют молекулы компонентов смеси, либо ионизация происходит за счет передачи энергии фотонов через вновь образующиеся метастабильные атомы аргона. Ионный ток между поляризующим и коллекторным электродом, к которым приложена разность потенциалов, равная 240 В, измеряется с помощью электрометра.

Недостатком такого фотоионизационного детектора является высокий уровень шума сигнала, возникающий за счет того, что в камере детектора возбуждается коронный газовый разряд.

Наиболее близким по технической сущности является фотоионизационный детектор для газоаналитической аппаратуры (RU 115072, 20.04.2012, Илясов Л.В., Евланова Н.И. Фотоионизационный детектор для газоаналитической аппаратуры.), содержащий лампу ультрафиолетового излучения, снабженную плоским выходным окном, над которым размещена проточная камера, образованная двумя дисковыми электродами, расположенными друг над другом, изготовленными из металлов различной работы выхода электронов и разделенными кольцеобразной фторопластовой прокладкой, электрометр, к которому подключены электроды, и регистратор сигнала детектора, подключенный в выходу электрометра, причем в нижнем электроде выполнено центральное отверстие, в которое вмонтировано окно из прозрачного для ультрафиолетового излучения материала, а верхний электрод снабжен отверстиями для входа потока анализируемого газа.

Недостатком данного детектора является относительно небольшая чувствительность к серосодержащим веществам.

Задачей данного изобретения является увеличение чувствительности к серосодержащим веществам.

Технический результат - создание фотоионизационного детектора, обладающего повышенной чувствительностью к серосодержащим веществам.

Поставленная задача и указанный технический результат достигаются тем, что в фотоионизационный детектор для газоаналитической аппаратуры, содержащий лампу ультрафиолетового излучения с плоским выходным окном, над которым размещена проточная камера, образованная двумя дисковыми электродами, расположенными друг над другом, изготовленными из металлов с различной работой выхода электронов и разделенными кольцеобразной фторопластовой прокладкой, электрометр, к которому подключены электроды, и регистратор сигнала детектора, подключенный к выходу электрометра, причем нижний электрод выполнен с центральным отверстием, а верхний снабжен каналом для входа потока анализируемого газа, согласно изобретению детектор дополнительно содержит плоский нагреватель, размещенный на верхнем электроде с возможностью теплового контакта с ним, и цилиндр из теплоизоляционного диэлектрического материала, размещенный между нижним электродом и плоским выходным окном лампы ультрафиолетового излучения так, что его ось симметрии совпадает с осью симметрии проточной камеры, при этом цилиндр снабжен центральным отверстием и каналом для выхода потока анализируемого газа, соединенным с этим отверстием.

Такая конструкция детектора обеспечивает увеличение чувствительности детектора к серосодержащим веществам за счет того, что нижняя сторона верхнего электрода покрыта слоем палладийсодержащего материала и температура его проточной камеры может задаваться на уровне 300-400°C, в то время как температура лампы ультрафиолетового излучения может оставаться не превышающей допустимую по техническим условиям. Это обеспечивается тем, что между окном лампы ультрафиолетового излучения и нижним дисковым электродом размещается цилиндр из теплоизоляционного диэлектрического материала.

По сравнению с прототипом заявляемая конструкция имеет отличительную особенность в совокупности элементов и их взаимном расположении.

Схема фотоионизационного детектора для газоаналитической аппаратуры показана на чертеже.

Фотоионизационный детектор содержит лампу 1 ультрафиолетового излучения с плоским выходным окном 2, над которым размещена проточная камера 3, образованная двумя дисковыми электродами 4 и 5, расположенными друг над другом, изготовленными из металлов с различной работой выхода электронов и разделенными кольцеобразной фторопластовой прокладкой 6, электрометр 7, к которому подключены электроды, и регистратор 8 сигнала детектора, подключенный к выходу электрометра. Нижний электрод 4 выполнен с центральным отверстием 9, а верхний электрод 5 снабжен каналом 10 для входа потока анализируемого газа. Детектор дополнительно содержит плоский нагреватель 11, размещенный на верхнем электроде 5 с возможностью теплового контакта с ним, и цилиндр 12 из теплоизоляционного диэлектрического материала, размещенный между нижним электродом 4 и плоским выходным окном 2 лампы 1 ультрафиолетового излучения так, что его ось симметрии 13 совпадает с осью симметрии проточной камеры 3, при этом цилиндр 12 снабжен центральным отверстием 14 и каналом 15 для выхода потока анализируемого газа, соединенным с этим отверстием 14. Нижняя сторона верхнего электрода 5 покрыта слоем 16 палладийсодержащего материала. Детектор снабжен фторопластовой изоляцией 17 и металлическим защитным экраном 18.

Работа фотоионизационного детектора осуществляется следующим образом.

Анализируемый газ непрерывно прокачивается через входное отверстие 10 проточной камеры 3 фотоионизационного детектора. В пространстве камеры 3 между нижним дисковым электродом 4 и верхним дисковым электродом 5, покрытым слоем 16 из палладийсодержащего материала, анализируемый газ ионизируется лучом ультрафиолетового излучения лампы 1. Так как электроды 4 и 5 выполнены из различных металлов с отличающимися работами выхода электронов, то между ними возникает разность потенциалов и в проточной камере 3 возникает электрическое поле. Под действием этого поля ионы перемещаются в камере 3. Значение сигнала детектора измеряется и регистрируется с помощью электрометра 7 и регистратора 8. Получаемый сигнал пропорционален микроконцентрации определяемых компонентов анализируемого газа. Так как детектор дополнительно содержит цилиндр 12 из теплоизоляционного диэлектрического материала, то при температуре проточной камеры 3, равной 300-400°C, температура лампы 1 ультрафиолетового излучения не превышает допустимой по техническим условиям.

Экспериментальным путем установлено, что предлагаемый фотоионизационный детектор для газоаналитической аппаратуры, использующий в качестве электродов никель, электрохимически обработанный палладием, и алюминий, цилиндр из теплоизоляционного диэлектрического материала, ультрафиолетовую лампу с длиной волны, равной 170-200 нм, позволяет измерять микроконцентрации серосодержащих веществ порядка долей р.р.m.

Преимуществом предлагаемого технического решения является:

- простота конструкции;

- возможность использования в анализаторах микроконцентраций серосодержащих веществ.

Предложенное устройство может быть реализовано на базе стандартных электронных устройств и ультрафиолетовых источников.

Детектор может найти применение для измерения микроконцентраций серосодержащих веществ в воздухе и в газовой хроматографии.


ФОТОИОНИЗАЦИОННЫЙ ДЕТЕКТОР ДЛЯ ГАЗОАНАЛИТИЧЕСКОЙ АППАРАТУРЫ
Источник поступления информации: Роспатент

Показаны записи 31-34 из 34.
13.01.2017
№217.015.81de

Фибра для дисперсного армирования бетона

Изобретение относится к области строительства. Фибра для дисперсного армирования бетона выполнена в виде отрезка нити с анкерами на концах. Отрезок нити состоит из двух ветвей, соединенных общим анкером, выполненным с возможностью изменения ориентации ветвей относительно общего анкера. В одном...
Тип: Изобретение
Номер охранного документа: 0002601705
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.81e6

Сырьевая смесь для изготовления облицовочных гипсовых панелей

Изобретение относится к технологии производства строительных материалов и может найти применение в области строительства в качестве стенового отделочного материала на основе гипса, для изготовления 3D панелей. Технический результат заключается в упрощении технологии производства, повышении...
Тип: Изобретение
Номер охранного документа: 0002601700
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.cd69

Конструкция для формирования на месте строительства сечения для пропуска воды

Изобретение относится к области обустройства дорог и, в частности, к водопропускным сооружениям. Конструкция для формирования на месте строительства сечения для пропуска воды выполнена в виде послойно спирально намотанной бетонной матрицы на опорный цилиндр, включающей спиральный арматурный...
Тип: Изобретение
Номер охранного документа: 0002619604
Дата охранного документа: 17.05.2017
20.03.2019
№219.016.e939

Способ получения олигомеров хитозана

Изобретение относится к медицине, конкретно к получению олигомеров хитозана, обладающих биологической активностью и предназначенных для использования в пищевой промышленности и медицине. В способе получения олигомеров хитозана раствор хитозана берут концентрацией 0,025÷0,075% (вес/объем) и...
Тип: Изобретение
Номер охранного документа: 0002445101
Дата охранного документа: 20.03.2012
Показаны записи 41-45 из 45.
13.01.2017
№217.015.81e6

Сырьевая смесь для изготовления облицовочных гипсовых панелей

Изобретение относится к технологии производства строительных материалов и может найти применение в области строительства в качестве стенового отделочного материала на основе гипса, для изготовления 3D панелей. Технический результат заключается в упрощении технологии производства, повышении...
Тип: Изобретение
Номер охранного документа: 0002601700
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.cd69

Конструкция для формирования на месте строительства сечения для пропуска воды

Изобретение относится к области обустройства дорог и, в частности, к водопропускным сооружениям. Конструкция для формирования на месте строительства сечения для пропуска воды выполнена в виде послойно спирально намотанной бетонной матрицы на опорный цилиндр, включающей спиральный арматурный...
Тип: Изобретение
Номер охранного документа: 0002619604
Дата охранного документа: 17.05.2017
21.10.2018
№218.016.9494

Лабораторный анализатор плотности газов

Изобретение относится к средствам аналитической лабораторной техники, а именно к анализаторам плотности газов. Лабораторный анализатор плотности газов содержит турбулентное сужающее устройство, вход которого соединен через тройник с камерой для сжатия анализируемого газа, выполненной в виде...
Тип: Изобретение
Номер охранного документа: 0002670210
Дата охранного документа: 19.10.2018
10.01.2019
№219.016.ae35

Лабораторный эффузионный анализатор плотности газов

Изобретение относится к средствам аналитической лабораторной техники, а именно к анализаторам плотности газов. Заявлен лабораторный эффузионный анализатор плотности газов, который содержит турбулентный дроссель 1, выход 2 которого соединен с пневмотумблером 3, камеру для сжатия газов 4,...
Тип: Изобретение
Номер охранного документа: 0002676559
Дата охранного документа: 09.01.2019
24.01.2019
№219.016.b375

Лабораторный анализатор плотности газов

Изобретение относится к средствам аналитической лабораторной техники, а именно к анализаторам плотности газов. Лабораторный анализатор плотности газов состоит из турбулентного дросселя, вход которого соединен через тройник с выходом камеры для сжатия газов, выполненной в виде спирали из...
Тип: Изобретение
Номер охранного документа: 0002677926
Дата охранного документа: 22.01.2019
+ добавить свой РИД