×
20.07.2014
216.012.e25d

МНОГОХОДОВАЯ ФОКУСИРУЮЩАЯ СИСТЕМА И СПОСОБ ФОКУСИРОВКИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ, ОБЕСПЕЧИВАЮЩИЙ МНОГОКРАТНОЕ ПРОХОЖДЕНИЕ ЛАЗЕРНОГО ПУЧКА ЧЕРЕЗ ИЗМЕРИТЕЛЬНЫЙ ОБЪЕМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Система может быть использована при исследовании свойств газовых сред, в том числе, с химическими реакциями, в малых объемах, методами спектроскопии рассеяния или поглощения света. Система включает способные перемещаться в направлении к точке фокуса сборки оптических элементов, каждая из которых содержит два плоских поворотных зеркала в юстировочной головке, обеспечивающей независимый наклон каждого зеркала в двух направлениях, и линзу между ними, установленную на двойном фокусном расстоянии по ходу пучка от измерительного объема. Сборки обеспечивают фокусировку отраженного пучка в той же точке. Одна сборка, содержащая линзу и плоское зеркало или только вогнутое зеркало, направляет лазерный пучок так, что он проходит весь свой путь в обратном направлении, при этом число проходов равно от 4 и более в зависимости от числа установленных сборок оптических элементов. Технический результат - повышение интенсивности полезного сигнала и уменьшение оптических искажений лазерного пучка за счет многократного прохождения лазерного пучка через измерительный объем. 2 н.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к оптическому приборостроению, в частности к осветительным системам, предназначенным для фокусировки лазерного излучения. Изобретение может быть использовано при исследовании свойств газовых сред, в том числе с химическими реакциями, в малых объемах, методами спектроскопии рассеяния или поглощения света.

Информацию о параметрах среды, исследуемой спектроскопическими методами, в частности методом спонтанного комбинационного рассеяния света (СКР), получают, используя форму и амплитуду регистрируемых спектров. Спектры СКР возбуждают излучением лазера с фиксированной частотой, например, ω0, которое фокусируют и направляют в исследуемую среду. В результате взаимодействия светового пучка с исследуемой средой происходит рассеяние - возникает излучение, распространяющееся во всех направлениях. В его спектре содержатся новые компоненты, с частотами ω=ω0±Ω, где Ω - колебательная или вращательная частоты молекул всех газов, входящих в состав исследуемой среды. Интенсивность комбинационных линий в спектре рассеянного света очень мала - приблизительно в 10 раз меньше интенсивности лазерного излучения, что серьезно затрудняет их регистрацию.

Один из методов решения проблемы усиления слабого светового сигнала заключается в использовании большого числа проходов лазерного излучения через объект исследования.

Известен способ, применявшийся во многих работах, например, в [М.С.Drake and G.M. Rosenblatt Rotational Raman Scattering from Premixed and Diffusion Flames // Combustion and Flame, 1978, v.33, p.179-196], когда используется возвращающее зеркало для отражения лазерного излучения в обратном направлении.

Недостатком описанного способа является ограниченная возможность увеличить интенсивность сигнала только в два раза за счет двойного прохождения излучения лазера через измерительный объем, из-за того, что падающий и отраженный пучки совмещены друг с другом.

Известен способ, также применявшийся многими исследователями, например [J.J.Barrett, in: Laser Raman Gas Diagnostics, Ed. by M. Lapp and CM. Penney, Plenum Press, N.Y. (1974), pp.63-85], при котором исследуемая среда помещается внутрь резонатора лазера. В этом случае интенсивность возбуждающего излучения, а, следовательно, и сигнала возрастает примерно в 10 раз.

Недостатком описанного способа является то, что его эффективность высока только в схемах с непрерывными лазерами, в которых существенно различается интенсивность излучения внутри и вне резонатора. Кроме того, внутрирезонаторная схема, где излучение совершает большое число проходов, оказывается очень чувствительной к оптическим неоднородностям исследуемой среды, способным даже сорвать генерацию.

Наиболее близким по технической сущности к заявляемому устройству является многоходовая зеркальная система высокого пространственного разрешения [Патент RU №2025750, C1, G02B 17/06, 08.01.1990], содержащая источник и приемник излучения, расположенные симметрично относительно плоскости, проходящей через оптическую ось, на которой установлены два противостоящих зеркальных объектива, а также два отражателя, оптически сопряженные между собой через соответствующий зеркальный объектив. С целью повышения светосилы и упрощения конструкции системы отражатели выполнены вогнутыми со сферическими поверхностями и расположены относительно зеркальных объективов на расстоянии, равном радиусам кривизны сферических поверхностей, при этом отражатели расположены противоположно друг другу относительно плоскости симметрии приемника и источника излучения вне зоны прохождения световых лучей между зеркальными объективами.

Недостатком этого устройства является использование сферических зеркал для отражения внеосевых пучков, что приведет к астигматизму и, следовательно, к снижению качества фокусировки. Присутствие оптических элементов между фокусирующим объективом и измерительным объемом затрудняет размещение крупного исследуемого объекта внутри такой осветительной системы. Это устройство может применяться в схеме пропускания и поглощения излучения, но оно будет иметь ограничения в схеме рассеяния, когда используют все три ортогональные координаты: по одной оси направляют лазерный пучок, по другой собирают рассеянный свет, по третьей ориентируют исследуемую горелку, например.

Задачей заявляемого изобретения является повышение эффективности использования лазерного излучения, т.е. повышение интенсивности полезного сигнала и уменьшение оптических искажений лазерного пучка, которое достигается многократным прохождением лазерного излучения через измерительный объем.

Поставленная задача решается тем, что многоходовая фокусирующая система, содержащая линзы для фокусировки лазерного пучка и зеркала для его возврата в измерительный объем, в котором происходит взаимодействие света с газовой средой, согласно изобретению включает размещенные на общем основании одну и более способных перемещаться в направлении к точке фокуса сборок оптических элементов, каждая из которых содержит два плоских поворотных зеркала в юстировочной головке, обеспечивающей независимый наклон каждого зеркала в двух направлениях, и перефокусирующую линзу между ними, установленную соосно с отраженным лазерным пучком на двойном фокусном расстоянии по ходу пучка от измерительного объема, установленных в положениях, обеспечивающих фокусировку отраженного пучка в той же точке, и одну сборку, содержащую линзу и плоское зеркало или только вогнутое зеркало, направляющую лазерный пучок так, что он проходит весь свой путь в обратном направлении, при этом число проходов равно от 4 более в зависимости от числа установленных сборок оптических элементов.

В многоходовой фокусирующей системе сборки оптических элементов располагают вплотную друг к другу.

В многоходовой фокусирующей системе реализуют способ фокусировки лазерного излучения, обеспечивающий многократное прохождение лазерного пучка через измерительный объем системой линз и зеркал, заключающийся в том, что излучение лазера поляризуют перпендикулярно плоскости основания многоходовой системы, лазерный пучок распространяется в одной плоскости, параллельной плоскости основания многоходовой системы, прошедший через объект исследования лазерный пучок попадает на сборку оптических элементов, включающую два плоских поворотных зеркала в юстировочной головке, обеспечивающей независимый наклон каждого зеркала в двух направлениях, и перефокусирующую линзу между ними, установленную соосно с отраженным лазерным пучком на двойном фокусном расстоянии по ходу пучка от измерительного объема, обеспечивающую перефокусировку пучка без изменения размера перетяжки, и возвращается в область измерений по другому пути, таким образом, лазерный пучок последовательно проходит одну и более сборок оптических элементов и попадает на сборку, содержащую линзу и плоское зеркало или только вогнутое зеркало, затем возвращается, проходя весь пройденный путь в обратном направлении, при этом число проходов составляет 4 и более в зависимости от числа пройденных сборок оптических элементов.

На фиг.1 представлена принципиальная схема устройства. Система содержит линзу 1, фокусирующую подаваемое на нее лазерное излучение с частотой ω0, а также сборки оптических элементов 2, включающие в себя поворотные зеркала 3 и перефокусирующие линзы 4, и сборку 2', включающую в себя еще одну линзу 1 и зеркало 5, возвращающее лазерное излучение.

Устройство работает следующим образом.

Лазерное излучение фиксированной частоты ω0 фокусируют линзой 1 в объекте исследований. Излучение лазера поляризуют перпендикулярно плоскости основания многоходовой системы, а лазерный пучок распространяется в плоскости, параллельной плоскости основания многоходовой системы. При прохождении лазерного пучка через газовую среду происходит его рассеяние на молекулах во всех направлениях с появлением новых частотных компонент. Анализируя спектр рассеянного излучения, собранного из ограниченной области сфокусированного лазерного пучка, получают информацию о составе и температуре газа в точке измерений. Прошедшее через объект исследования лазерное излучение попадает на сборку оптических элементов 2, обеспечивающую перефокусировку пучка без изменения размера перетяжки, и возвращается в область измерений по другому пути. Сборка оптических элементов 2 содержит два поворотных зеркала 3 в юстировочной головке, обеспечивающей независимый наклон каждого в двух направлениях, и перефокусирующую линзу 4. Способная перемещаться в направлении к точке фокуса, сборка оптических элементов 2 устанавливается в положении, обеспечивающем фокусировку отраженного пучка в той же точке. При этом расстояние от точки фокусировки пучка до центра линзы 4 оказывается равным ее двойному фокусному расстоянию. Такое положение линзы, равноудаленное от сопряженных фокальных плоскостей, обеспечивает перефокусировку пучка без изменения размера перетяжки. Пучок через линзу проходит по ее оси и поэтому испытывает минимальные искажения.

Система может иметь одну и более идентичных сборок оптических элементов 2. На схеме, фиг.1, показано шесть идентичных сборок 2.

Лазерный пучок последовательно проходит все сборки оптических элементов и попадает на сборку 2', содержащую линзу 1 и плоское зеркало 5 или только вогнутое зеркало, и возвращается, проходя весь пройденный путь в обратном направлении. Количество проходов зависит от количества используемых сборок оптических элементов 2 и может равняться 4 при использовании одной сборки 2 и более. В схеме, показанной на фиг.1, число проходов равно 14. Все элементы схемы размещены на общем основании.

Использование заявляемого изобретения позволяет, применяя многократное прохождение лазерного пучка через измерительный объем, увеличить интенсивность полезного сигнала. Предлагаемая оптическая схема максимально упрощена, она не требует изготовления специальных оптических элементов и вызывает минимальные искажения лазерного пучка.

Обоснование промышленной применимости.

При испытаниях многоходовой фокусирующей системы использовано излучение импульсного Nd:YAG лазера ЛТИ-401 (г.Минск, Белоруссия) с преобразованием излучения во вторую гармонику с частотой ω0=18788 см-1 (длина волны 532 нм). Длительность импульсов излучения ~15 не, частота повторения ~10 Гц, энергия в импульсе ~30 мДж (при использовании дополнительных блоков усиления).

Оптическая схема измерений соответствовала фиг.2. Схема содержала лазер 6, многоходовую фокусирующую систему 7, возвращающее зеркало для рассеянного излучения 8, приемную оптическую систему 9, спектрограф 10, многоканальный фотоприемник 11, компьютер 12, объект исследования 13.

В тестовых измерениях применение многоходовой фокусирующей системы позволило увеличить интенсивность спектров СКР в 10 раз. Для получения спектров такой интенсивности в схеме с одним проходом лазерного излучения потребовался бы лазер с энергией в импульсе ~300 мДж. Однако излучение с такими энергетическими параметрами неизбежно вызывает оптический пробой в фокусе. Для уменьшения плотности мощности сфокусированного лазерного излучения авторы [J.Kojima and Q.-V. Nguyen Measurement and simulation of spontaneous Raman scattering in high v.15, p.565-580] применяют специальную оптическую схему (т.н. "pulse-stretcher") для расширения лазерного импульса во времени. В предлагаемой многоходовой схеме использовали импульсное лазерное излучение с плотностью мощности в фокусе немного ниже пороговой. При многократном пересечении пучков плотность мощности также не превышала критического уровня, потому что излучение попадало в измерительный объем при каждом последующем проходе с задержкой по времени. Величину задержки можно установить подбором линз 1 и 4 с требуемыми для этого фокусными расстояниями. Это еще одно полезное свойство многоходовой системы.


МНОГОХОДОВАЯ ФОКУСИРУЮЩАЯ СИСТЕМА И СПОСОБ ФОКУСИРОВКИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ, ОБЕСПЕЧИВАЮЩИЙ МНОГОКРАТНОЕ ПРОХОЖДЕНИЕ ЛАЗЕРНОГО ПУЧКА ЧЕРЕЗ ИЗМЕРИТЕЛЬНЫЙ ОБЪЕМ
МНОГОХОДОВАЯ ФОКУСИРУЮЩАЯ СИСТЕМА И СПОСОБ ФОКУСИРОВКИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ, ОБЕСПЕЧИВАЮЩИЙ МНОГОКРАТНОЕ ПРОХОЖДЕНИЕ ЛАЗЕРНОГО ПУЧКА ЧЕРЕЗ ИЗМЕРИТЕЛЬНЫЙ ОБЪЕМ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 95.
27.07.2013
№216.012.5916

Способ сепарации низкокипящего компонента из смеси паров и устройство для его осуществления

Группа изобретений относится к нефтяной, газовой отраслям промышленности и может быть использована при разделении углеводородных смесей и сжиженных газов. Согласно способу сепарации низкокипящего компонента из смеси паров смесь подают в состоянии пароконденсата и закручивают внутри вертикальной...
Тип: Изобретение
Номер охранного документа: 0002488427
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5dd6

Конденсационная котельная установка (варианты)

Изобретение относится к энергетике. Конденсационная котельная установка включает паровой котел с основным и байпасным газоходами, водяной экономайзер (ЭВ), конденсационный теплообменник-утилизатор теплоты продуктов сгорания топлива (КТУ), дымосос и дымовую трубу, а также поверхностный...
Тип: Изобретение
Номер охранного документа: 0002489643
Дата охранного документа: 10.08.2013
10.11.2013
№216.012.7f86

Способ бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений и устройство для его реализации

Изобретение относится к контрольно-измерительной технике и позволяет исследовать потоки жидкости и газа. Изобретение основано на совместном использовании ЛДА и PIV. Устройство включает импульсный лазер с энергией импульса не менее 120 мДж, частотой срабатывания не менее 16 Гц, две CCD камеры...
Тип: Изобретение
Номер охранного документа: 0002498319
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8dee

Способ экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов и мусоросжигательный завод для его осуществления

Изобретение относится к области сжигания отходов или низкосортных топлив. Мусоросжигательный завод состоит из бункерного блока, блока сжигания ТБО во вращающейся печи барабанного типа, блока дымоочистки, блока водоподготовки и утилизации тепла, блока утилизации золы, который содержит плавильный...
Тип: Изобретение
Номер охранного документа: 0002502017
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8def

Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов

Изобретение относится к области сжигания отходов или низкосортных топлив. Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов содержит 2 цеха: мусоросжигающий цех (МСЦ) и теплоцех, причем...
Тип: Изобретение
Номер охранного документа: 0002502018
Дата охранного документа: 20.12.2013
27.01.2014
№216.012.9d33

Трансформаторный плазматрон низкого давления для ионно-плазменной обработки поверхности материалов

Изобретение относится к плазменной технике, а именно к трансформаторным плазмотронам низкого давления, и может быть использовано в микроэлектронике для обработки полупроводниковых материалов (плазменное травление, оксидирование, очистка поверхности и т.д.), осаждения тонких пленок, в...
Тип: Изобретение
Номер охранного документа: 0002505949
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f7d

Оптический способ измерения мгновенного поля толщины прозрачной пленки

Способ может быть использован для бесконтактных, непрерывных измерений толщин прозрачной пленки. Способ включает направленное воздействие лучей света на пленку, их полное внутреннее отражение на границе раздела сред и последующую обработку отраженного света. Источник света помещают над пленкой...
Тип: Изобретение
Номер охранного документа: 0002506537
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a2fb

Инжектор для криогенной жидкости

Изобретение относится к области криогенной и вакуумной техники и касается устройств дозированной выдачи криогенной жидкости в технологические зоны с высоким и сверхвысоким давлением. Инжектор криогенной жидкости включает узел ввода криогенной жидкости, криорезервуар и узел вывода криогенной...
Тип: Изобретение
Номер охранного документа: 0002507438
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afd9

Система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике и может быть использовано при конструировании эффективных систем охлаждения модулей мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла от расположенных на поверхности модуля полупроводниковых светодиодов при...
Тип: Изобретение
Номер охранного документа: 0002510732
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b21e

Дезинтегратор для помола угля

Изобретение относится к области энергетики и может быть использовано для помола угля в установках глубокой переработки угля в другие виды топлива. Дезинтегратор для помола угля содержит корпус 1, два вращающихся в противоположных направлениях и жестко закрепленных на полых горизонтальных валах...
Тип: Изобретение
Номер охранного документа: 0002511314
Дата охранного документа: 10.04.2014
Показаны записи 1-10 из 63.
27.07.2013
№216.012.5916

Способ сепарации низкокипящего компонента из смеси паров и устройство для его осуществления

Группа изобретений относится к нефтяной, газовой отраслям промышленности и может быть использована при разделении углеводородных смесей и сжиженных газов. Согласно способу сепарации низкокипящего компонента из смеси паров смесь подают в состоянии пароконденсата и закручивают внутри вертикальной...
Тип: Изобретение
Номер охранного документа: 0002488427
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5dd6

Конденсационная котельная установка (варианты)

Изобретение относится к энергетике. Конденсационная котельная установка включает паровой котел с основным и байпасным газоходами, водяной экономайзер (ЭВ), конденсационный теплообменник-утилизатор теплоты продуктов сгорания топлива (КТУ), дымосос и дымовую трубу, а также поверхностный...
Тип: Изобретение
Номер охранного документа: 0002489643
Дата охранного документа: 10.08.2013
10.11.2013
№216.012.7f86

Способ бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений и устройство для его реализации

Изобретение относится к контрольно-измерительной технике и позволяет исследовать потоки жидкости и газа. Изобретение основано на совместном использовании ЛДА и PIV. Устройство включает импульсный лазер с энергией импульса не менее 120 мДж, частотой срабатывания не менее 16 Гц, две CCD камеры...
Тип: Изобретение
Номер охранного документа: 0002498319
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8dee

Способ экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов и мусоросжигательный завод для его осуществления

Изобретение относится к области сжигания отходов или низкосортных топлив. Мусоросжигательный завод состоит из бункерного блока, блока сжигания ТБО во вращающейся печи барабанного типа, блока дымоочистки, блока водоподготовки и утилизации тепла, блока утилизации золы, который содержит плавильный...
Тип: Изобретение
Номер охранного документа: 0002502017
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8def

Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов

Изобретение относится к области сжигания отходов или низкосортных топлив. Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов содержит 2 цеха: мусоросжигающий цех (МСЦ) и теплоцех, причем...
Тип: Изобретение
Номер охранного документа: 0002502018
Дата охранного документа: 20.12.2013
27.01.2014
№216.012.9d33

Трансформаторный плазматрон низкого давления для ионно-плазменной обработки поверхности материалов

Изобретение относится к плазменной технике, а именно к трансформаторным плазмотронам низкого давления, и может быть использовано в микроэлектронике для обработки полупроводниковых материалов (плазменное травление, оксидирование, очистка поверхности и т.д.), осаждения тонких пленок, в...
Тип: Изобретение
Номер охранного документа: 0002505949
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f7d

Оптический способ измерения мгновенного поля толщины прозрачной пленки

Способ может быть использован для бесконтактных, непрерывных измерений толщин прозрачной пленки. Способ включает направленное воздействие лучей света на пленку, их полное внутреннее отражение на границе раздела сред и последующую обработку отраженного света. Источник света помещают над пленкой...
Тип: Изобретение
Номер охранного документа: 0002506537
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a2fb

Инжектор для криогенной жидкости

Изобретение относится к области криогенной и вакуумной техники и касается устройств дозированной выдачи криогенной жидкости в технологические зоны с высоким и сверхвысоким давлением. Инжектор криогенной жидкости включает узел ввода криогенной жидкости, криорезервуар и узел вывода криогенной...
Тип: Изобретение
Номер охранного документа: 0002507438
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afd9

Система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике и может быть использовано при конструировании эффективных систем охлаждения модулей мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла от расположенных на поверхности модуля полупроводниковых светодиодов при...
Тип: Изобретение
Номер охранного документа: 0002510732
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b21e

Дезинтегратор для помола угля

Изобретение относится к области энергетики и может быть использовано для помола угля в установках глубокой переработки угля в другие виды топлива. Дезинтегратор для помола угля содержит корпус 1, два вращающихся в противоположных направлениях и жестко закрепленных на полых горизонтальных валах...
Тип: Изобретение
Номер охранного документа: 0002511314
Дата охранного документа: 10.04.2014
+ добавить свой РИД