×
20.07.2014
216.012.e22d

Результат интеллектуальной деятельности: МР-ТОМОГРАФИЯ, ИСПОЛЬЗУЮЩАЯ ПАРАЛЛЕЛЬНОЕ ПОЛУЧЕНИЕ СИГНАЛА

Вид РИД

Изобретение

№ охранного документа
0002523687
Дата охранного документа
20.07.2014
Аннотация: Группа изобретений относится к медицине. При осуществлении способа подвергают импульсными последовательностями часть тела пациента, помещенного в исследуемый объем МР-устройства. Получают набор данных обзорного сигнала при низком разрешении изображений параллельно или последовательно через объемную РЧ-катушку и через набор матричных РЧ-катушек. Определяют профили пространственной чувствительности матричных РЧ-катушек при низком разрешении изображений. Получают набор данных опорного сигнала при промежуточном разрешении изображений параллельно через матричные РЧ-катушки. Определяют профили пространственной чувствительности матричных РЧ-катушек при промежуточном разрешении. Получают набор данных диагностического сигнала при высоком разрешении изображений параллельно через матричные РЧ-катушки. Реконструируют диагностическое МРТ-изображение из комбинации набора данных диагностического сигнала и из профилей пространственной чувствительности, определенных при промежуточном разрешении. MP-устройство включает в себя главную магнитную катушку, градиентные катушки, объемную РЧ-катушку, набор матричных РЧ-катушек, блок управления, блок реконструкции и блок визуализации. Носитель данных содержит компьютерную программу, исполняемую на МР-устройстве, которая содержит инструкции для осуществления этапов способа. Группа изобретений позволяет осуществить более быструю методику параллельной МР-томографии. 3 н. и 7 з.п. ф-лы, 2 ил.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Изобретение относится к области магнитно-резонансной (МР) томографии (МРТ). Изобретение касается способа МР-томографии по меньшей мере части тела пациента, помещенного в исследуемый объем МР-устройства. Изобретение также относится к МР-устройству и к компьютерной программе, исполняемой на МР-устройстве.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Способы формирования МРТ-изображений, которые используют взаимодействие между магнитными полями и ядерными спинами для того, чтобы сформировать двумерные или трехмерные изображения, широко применяются в настоящее время, в частности, в области медицинской диагностики, так как при томографии мягких тканей они по многим аспектам превосходят другие способы томографии, не требуют ионизирующего излучения и обычно являются неинвазивными.

В общем, согласно способу магнитного резонанса тело подлежащего обследованию пациента располагается в сильном, однородном магнитном поле, направление которого в то же самое время определяет ось (обычно z-ось) системы координат, на которой основано измерение. Магнитное поле порождает различные уровни энергии у отдельных ядерных спинов в зависимости от интенсивности магнитного поля, которые могут быть возбуждены (спиновый резонанс) при использовании электромагнитного изменяющегося поля (РЧ-поля) заданной частоты (так называемая Ларморова частота или МР-частота). С макроскопической точки зрения распределение отдельных ядерных спинов порождает общее намагничивание, которое может отклоняться от состояния равновесия при использовании электромагнитного импульса соответствующей частоты (РЧ-импульса), когда магнитное поле проходит перпендикулярно z-оси, так что намагничивание осуществляет прецессионное движение вокруг z-оси. Прецессионное движение описывает поверхность конуса, угол апертуры которого упоминается как угол наклона вектора. Величина угла наклона вектора зависит от интенсивности и продолжительности используемого электромагнитного импульса. В случае так называемого 90°-го импульса спины отклоняются от z-оси до поперечной плоскости (угол наклона вектора в 90°).

После прерывания РЧ-импульса намагниченность релаксирует обратно до исходного состояния равновесия, в котором намагниченность в направлении z снова накапливается с первой постоянной T1 времени (время спин-решеточной или продольной релаксации), а намагниченность в направлении, перпендикулярном направлению z, релаксирует со второй постоянной T2 времени (время спин-спиновой или поперечной релаксации). Изменение намагниченности может быть обнаружено посредством принимающих РЧ-катушек, которые расположены и ориентированы в исследуемом объеме МР-устройства таким образом, чтобы изменение намагниченности измерялось в направлении, перпендикулярном z-оси. Затухание поперечной намагниченности сопровождается, например, после использования 90°-го импульса, переходом ядерных спинов (вызываемым неоднородностями локального магнитного поля) из упорядоченного состояния с той же самой фазой в состояние, в котором все фазовые углы однородно распределены (дефазировка). Дефазировка может быть скомпенсирована посредством перефокусирующего импульса (например, 180°-го импульса). Это порождает эхосигнал (спиновое эхо) в принимающих катушках. Для того чтобы реализовать пространственную разрешающую способность в теле, на однородное магнитное поле накладывают градиенты линейного магнитного поля, простирающиеся вдоль трех основных осей, что ведет к линейной пространственной зависимости частоты спинового резонанса. Тогда сигнал, захваченный в принимающих катушках, содержит компоненты различных частот, которые могут ассоциироваться с различными местами в теле. Данные сигнала, получаемые через принимающие катушки, соответствуют области пространственной частоты и называются данными k-пространства. Данные k-пространства обычно включают в себя многочисленные линии, полученные с помощью различного фазового кодирования. Каждая линия оцифровывается с помощью сбора некоторого числа выборок. Набор данных k-пространства преобразовывается в МРТ-изображение посредством преобразования Фурье.

В последнее время разработаны методики для ускорения получения МРТ-изображений, которые названы параллельным получением. Способами в этой категории являются SENSE (Прюсман и др., "SENSE: Sensitivity Encoding for Fast MRI" ("SENSE: кодирование чувствительности для быстрой МРТ"), Магнитный резонанс в медицине, 1999 г., 42 (5), 1952-1962) и SMASH (Содиксон и др. "Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radio frequency coil arrays" ("Одновременное получение пространственных гармоник (SMASH): быстрая томография с помощью матриц радиочастотных катушек"), Магнитный резонанс в медицине, 1997 г., 38, 591-603). SENSE и SMASH используют данные k-пространства с недостаточной выборкой, полученные параллельно от многочисленных принимающих РЧ-катушек. В этих способах (комплексные) данные сигнала от многочисленных катушек объединяются с комплексными взвешиваниями таким образом, чтобы подавлять артефакты недовыборки (ступенчатость) в реконструированных в конечном итоге МРТ-изображениях. Этот тип объединения сложных матриц иногда упоминается как пространственная фильтрация и включает в себя объединение, которое выполняется в области k-пространства (как в SMASH) или в области изображения (как в SENSE), а также способы, которые являются гибридами. В SENSE или SMASH необходимо знать соответствующие весовые коэффициенты или чувствительности катушек с высокой точностью. Для того чтобы получить чувствительности катушек, т.е. профили пространственной чувствительности матричных РЧ-катушек, используемые для обнаружения сигнала, до и/или после фактического получения изображения типично осуществляют калибровочное предварительное сканирование. В этом предварительном сканировании, которое также иногда упоминается как опорное сканирование, МР-сигналы обычно получают с разрешением, которое существенно ниже, чем разрешение, необходимое для конечного диагностического МРТ-изображения. Такое опорное сканирование низкого разрешения состоит из чередования получения сигнала через матричные РЧ-катушки и через опорную катушку, обычнообъемную катушку, например, квадратурную катушку для тела МР-устройства. МРТ-изображения низкого разрешения реконструируют из МР-сигналов, принятых через матричные РЧ-катушки и через объемную РЧ-катушку. Чувствительности катушек, т.е. профили пространственной чувствительности матричных РЧ-катушек, затем вычисляют путем разделения изображений от матричных катушек с помощью изображения от объемной катушки.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Недостаток известного подхода заключается в том, что время получения опорного сканирования является достаточно длительным. В типичном варианте использования необходимо примерно 30 секунд. Это частично происходит из-за схемы чередования получения сигнала через объемную РЧ-катушку и через матричные РЧ-катушки. Еще одна проблема заключается в том, что необходимо дополнительное усреднение для получения достаточного отношения сигнал-шум для объемной РЧ-катушки, так как объемная РЧ-катушка значительно менее чувствительна, чем матричные РЧ-катушки, которые обычно являются поверхностными катушками.

Из вышеизложенного легко понять, что существует необходимость в улучшенной методике параллельной МР-томографии. Следовательно, задачей изобретения является обеспечение возможности более быстрого опорного сканирования для определения профилей пространственной чувствительности матричных РЧ-катушек, используемых в параллельной МР-томографии.

В соответствии с изобретением раскрыт способ МР-томографии по меньшей мере части тела пациента, помещенного в исследуемом объеме МР-устройства. Способ по изобретению содержит следующие этапы:

- подвергают часть тела первой импульсной последовательности для получения набора данных обзорного сигнала, причем этот набор данных обзорного сигнала включает в себя МР-сигналы, принятые параллельно или последовательно через

- объемную РЧ-катушку, имеющую по существу гомогенный профиль пространственной чувствительности в пределах исследуемого объема, и

- набор из по меньшей мере двух матричных РЧ-катушек, имеющих различные профили пространственной чувствительности в пределах исследуемого объема,

при этом первая импульсная последовательность содержит РЧ-импульсы и градиенты переключаемого магнитного поля, управляемые таким образом, что набор данных обзорного сигнала получают при первом разрешении изображений;

- подвергают часть тела второй импульсной последовательности для получения набора данных опорного сигнала, причем этот набор данных опорного сигнала включает в себя МР-сигналы, принятые параллельно через матричные РЧ-катушки, при этом вторая импульсная последовательность содержит РЧ-импульсы и градиенты переключаемого магнитного поля, управляемые таким образом, что набор данных опорного сигнала получают при втором разрешении изображений, которое выше, чем первое разрешение изображений;

- подвергают часть тела третьей импульсной последовательности для получения набора данных диагностического сигнала, причем этот набор данных диагностического сигнала включает в себя МР-сигналы, принятые параллельно через по меньшей мере подмножество из набора матричных РЧ-катушек, при этом третья импульсная последовательность содержит РЧ-импульсы и градиенты переключаемого магнитного поля, управляемые таким образом, что набор данных диагностического сигнала получают при третьем разрешении изображений, которое выше, чем второе разрешение изображений; и

- реконструируют диагностическое МРТ-изображение из комбинации набора данных диагностического сигнала, набора данных обзорного сигнала и набора данных опорного сигнала.

Суть изобретения состоит в том, что вместо применения двух различных сканирований, как в традиционной параллельной томографии, т.е. опорного сканирования и фактического диагностического сканирования, применяют три различных сканирования. Первое сканирование, которое можно назвать обзорным (обследующим) сканированием, обладает существенно меньшим разрешением, чем разрешение традиционно применяемого опорного сканирования, и может состоять из чередующегося сканирования через объемную РЧ-катушку и набор матричных РЧ-катушек. Во время первого и второго сканирований отдельные наборы данных сигналов получают на основе «на каждую катушку», т.е. один набор данных сигнала получают для каждой катушки. Второе сканирование очень похоже на традиционное опорное сканирование. Тем не менее, во время второго сканирования МР-сигналы принимают исключительно параллельно через матричные РЧ-катушки. МР-сигналы через объемную РЧ-катушку не принимают. Поэтому может быть применено существенно меньшее усреднение для того, чтобы ускорить сбор данных. Третье сканирование является фактическим диагностическим сканированием. Далее могут следовать последующие диагностические сканирования.

Профили пространственной чувствительности матричных РЧ-катушек могут быть определены в соответствии с изобретением при втором разрешении изображений из комбинации набора данных обзорного сигнала и набора данных опорного сигнала. Диагностическое МРТ-изображение может быть затем реконструировано из набора данных диагностического сигнала и из профилей пространственной чувствительности, определенных при втором разрешении. Согласно предпочтительному варианту осуществления изобретения профили пространственной чувствительности матричных РЧ-катушек сначала определяют из МР-сигналов, принятых во время обзорного сканирования, т.е. при низком разрешении обзорных изображений. Это низкое разрешение было бы недостаточным для реконструкции диагностических МРТ-изображений, например, при применении алгоритма SENSE или SMASH. По этой причине разрешение профилей пространственной чувствительности повышается после второго сканирования. Профили пространственной чувствительности матричных РЧ-катушек определяют при промежуточном разрешении, т.е. втором разрешении изображений, из комбинации набора опорных изображений, полученных во время второго сканирования, и профилей пространственной чувствительности, определенных при низком разрешении из МР-сигналов, полученных во время первого сканирования. Это повышенное разрешение профилей пространственной чувствительности матричных РЧ-катушек является достаточным для реконструкции диагностических изображений.

Более конкретно, способ по изобретению может содержать следующие этапы:

a) получают набор данных обзорного сигнала;

b) реконструируют набор обзорных изображений при первом разрешении изображений из набора данных обзорного сигнала;

c) определяют профили пространственной чувствительности матричных РЧ-катушек при первом разрешении с помощью сравнения изображений из набора обзорных изображений;

d) получают набор данных опорного сигнала;

e) реконструируют набор опорных изображений при втором разрешении изображений из набора данных опорного сигнала;

f) определяют профили пространственной чувствительности матричных РЧ-катушек при втором разрешении изображений из комбинации набора опорных изображений и профилей пространственной чувствительности, определенных при первом разрешении;

g) получают набор данных диагностического сигнала и

h) реконструируют диагностическое МРТ-изображение из набора данных диагностического сигнала и из профилей пространственной чувствительности, определенных при втором разрешении.

Подход по изобретению имеет несколько преимуществ.

Существенно снижено необходимое общее время сбора данных. Обзорное сканирование имеет значительно более низкое разрешение, чем традиционное опорное сканирование, что приводит к соответствующему снижению времени сбора данных и что также допускает меньшее усреднение. На практике обзорное сканирование может быть обычно в 16 раз быстрее, чем традиционное опорное сканирование, используемое при SENSE- или SMASH-томографии. Следовательно, типичная продолжительность обзорного сканирования в соответствии с изобретением составляет примерно 2 секунды. Последующее второе сканирование также существенно быстрее, чем традиционное опорное сканирование, так как не требуется никакого получения сигнала через объемную РЧ-катушку, и, следовательно, необходимо меньшее усреднение. Общая продолжительность обзорного сканирования (этап а) и последующего опорного сканирования (этап d) в соответствии с изобретением составляет всего лишь несколько секунд, а не около тридцати секунд, как при традиционном подходе с опорным сканированием. Дополнительное преимущество изобретения состоит в том, что всякий раз, когда происходит небольшое движение обследуемого пациента относительно РЧ-катушек, используемых для получения сигнала, опорное сканирование, т.е. второе сканирование (этап d), может быть повторено без неоправданных дополнительных затрат времени. Обычно не требуется повторного проведения обзорного сканирования. Оказывается, что немного устаревшие данные обзорного сигнала не приводят к существенным артефактам изображения в реконструированных в конечном итоге диагностических МРТ-изображениях.

Дополнительное преимущество короткого времени сбора данных предварительных сканирований согласно изобретению состоит в том, что эти сканирования достаточно кратковременны, чтобы сделать их незаметными для пользователя. Поэтому предварительные сканирования не должны появляться в пользовательском интерфейсе МР-устройства. Таким образом, предварительные сканирования воспринимаются пользователем только как фазы подготовки, а не как продолжительные по времени и поэтому нежелательные дополнительные сканирования.

Еще одной проблемой в традиционных подходах параллельной МР-томографии является то, что иногда набор матричных РЧ-катушек содержит очень большое число единичных элементов-катушек, из которого следует использовать лишь некоторое подмножество для соответствующей томографической задачи. При традиционном подходе обычно МР-сигналы получают и обрабатывают через все элементы-катушки, так как пользователь не в состоянии спрогнозировать, какие элементы-катушки, как ожидается, будут вносить вклад в получаемое МРТ-изображение, а какие нет. Подмножество из набора матричных катушек, используемых на этапе g), может преимущественно определяться с помощью способа по изобретению автоматическим выбором только тех матричных катушек, через которые на этапах а) (первое сканирование) или d) (второе сканирование) обнаруживается интенсивность МР-сигнала выше заданного порогового уровня. Во время получения сигналов на этапе g) могут быть исключены те элементы-катушки из набора матричных катушек, которые привносят незначительную амплитуду сигнала на этапах a) или d). Таким образом, для всего последующего сканирования необходимы меньшие ресурсы с точки зрения пропускной способности, емкости запоминающего устройства и реконструкционной обработки. Обзорное сканирование (этап а) и/или опорное сканирование (этап d) могут быть получены с полным числом элементов-катушек. Но так как эти сканирования являются достаточно короткими, требования относительно ресурсов МР-системы являются все еще умеренными.

Альтернативным или дополнительным подходом в этом контексте является автоматическое снижение эффективного числа элементов-катушек во время обработки изображений путем применения так называемого метода сжатия матрицы. В методе сжатия матрицы до реконструкции изображения вычисляют линейные комбинации данных диагностического сигнала, полученных через различные катушки. Таким образом, эффективное число элементов-катушек снижается, что экономит время на вычисления и использование памяти для реконструкции. Коэффициенты комбинирования (сочетания) могут автоматически извлекаться в соответствии с изобретением из данных обзорного и/или опорного сканирований. Другими словами, предварительно комбинируют данные сигнала матричных катушек, а не выбирают подмножество матричных катушек, для того чтобы снизить эффективное число элементов-катушек во время обработки изображений. Коэффициенты предварительного комбинирования (или сжатия матрицы) определяют прямо из данных обзорного и/или опорного сканирования.

Согласно предпочтительному варианту осуществления изобретения поле обзора у наборов данных обзорного и опорного сигналов выбирается большим, чем поле обзора у набора данных диагностического сигнала. Таким образом, предварительные сканирования, т.е. первое и второе сканирования, могут использоваться для нескольких диагностических сканирований, которые располагаются где-либо в пределах большого поля обзора предварительных сканирований. Поэтому набор диагностических сканирований с различными геометрическими положениями поля обзора может совместно использовать данные сигнала тех же самых обзорного и опорного сканирований для реконструкции изображений, при условии, что обзорное и опорное сканирования осуществляют с достаточным полем обзора.

Описанный до сих пор способ по изобретению может быть осуществлен посредством МР-устройства, включающего в себя по меньшей мере одну главную магнитную катушку для создания однородного постоянного магнитного поля в пределах исследуемого объема, некоторое число градиентных катушек для создания градиентов переключаемого магнитного поля в различных пространственных направлениях в пределах исследуемого объема, по меньшей мере одну объемную РЧ-катушку, которая имеет по существу гомогенный профиль пространственной чувствительности, для создания РЧ-импульсов в пределах исследуемого объема и/или для приема МР-сигналов от тела пациента, расположенного в исследуемом объеме, набор матричных РЧ-катушек для параллельного приема МР-сигналов от тела, причем матричные РЧ-катушки имеют различные профили пространственной чувствительности, блок управления для управления временной последовательностью РЧ-импульсов и градиентов переключаемого магнитного поля, блок реконструкции и блок визуализации. Способ по изобретению реализуется с помощью соответствующего программирования блока реконструкции, блока визуализации и/или блока управления МР-устройства.

Способ по изобретению может преимущественно осуществляться в большинстве МР-устройств, имеющихся в клиническом пользовании в настоящее время. С этой целью просто необходимо использовать компьютерную программу, которой МР-устройство управляется так, что оно выполняет вышеизложенные этапы способа по изобретению. Компьютерная программа может находиться либо на носителе данных, либо находиться в сети передачи данных так, чтобы загружаться для установки в блок управления МР-устройства.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Прилагаемые чертежи раскрывают предпочтительные варианты осуществления настоящего изобретения. Тем не менее, следует понимать, что чертежи предназначены лишь для иллюстрации, а не как определение рамок изобретения. На чертежах:

фиг.1 изображает МР-устройство для осуществления способа по изобретению;

фиг.2 изображает блок-схему последовательности операций, иллюстрирующую способ по изобретению.

Со ссылкой на фиг.1 показано МР-устройство 1. Это устройство содержит сверхпроводящие или резистивные главные магнитные катушки 2, так чтобы вдоль z-оси по всему исследуемому объему создавалось по существу однородное, постоянное во времени главное магнитное поле.

ПОДРОБНОЕ ОПИСАНИЕ

Система создания магнитного резонанса и управления подает последовательность РЧ-импульсов и градиенты переключаемого магнитного поля для того, чтобы инвертировать или возбуждать ядерные магнитные спины, индуцировать магнитный резонанс, перефокусировать магнитный резонанс, управлять магнитным резонансом, пространственно и иным образом кодировать магнитный резонанс, насыщать спины и тому подобного для осуществления МР-томографии.

Более конкретно, градиентный импульсный усилитель 3 подает импульсы тока на выбранные из градиентных катушек 4, 5 и 6 для всего тела вдоль x-, y- и z-осей исследуемого объема. Цифровой РЧ-передатчик 7 передает РЧ-импульсы или импульсные пакеты через переключатель 8 «прием-передача» в объемную РЧ-катушку 9 для всего тела для передачи РЧ-импульсов в исследуемый объем. Типичная импульсная последовательность МР-томографии состоит из пакета сегментов РЧ-импульсов малой длительности, которые, взятые вместе друг с другом и любыми применяемыми градиентами магнитного поля, реализуют выбранное управление ядерным магнитным резонансом. РЧ-импульсы используются для насыщения, возбуждения резонанса, инвертирования намагниченности, перефокусировки резонанса или управления резонансом и выбора части тела 10, расположенного в исследуемом объеме. МР-сигналы также захватываются объемной РЧ-катушкой 9 для всего тела. Для создания МРТ-изображений ограниченных областей тела 10 посредством параллельной томографии набор из местных матричных РЧ-катушек 11, 12, 13 располагается граничащим с областью, выбранной для томографии. Матричные катушки 11, 12, 13 могут использоваться для приема МР-сигналов, индуцируемых РЧ-передачами катушек для тела.

Получающиеся в результате МР-сигналы захватываются объемной РЧ-катушкой 9 для всего тела и/или матричными РЧ-катушками 11, 12, 13 и демодулируются приемником 14, предпочтительно включающим в себя предусилитель (не показан). Приемник 14 соединен с РЧ-катушками 9, 11, 12 и 13 через переключатель 8 «прием-передача».

Главный компьютер 15 управляет градиентным импульсным усилителем 3 и передатчиком 7 для создания любой из множества импульсных последовательностей МР-томографии, такой как эхопланарная томография (EPI), эхообъемная томография, градиентная томографии и томография спинового эхо, томография быстрого спинового эхо и тому подобные. Для выбранной последовательности приемник 14 принимает единственную или множество строк МР-данных в быстрой последовательности, следующей за каждым РЧ-импульсом возбуждения. Система 16 сбора данных осуществляет аналого-цифровое преобразование принятых сигналов и преобразовывает каждую строку МР-данных в цифровой формат, подходящий для дальнейшей обработки. В современных МР-устройствах система 16 сбора данных является отдельным компьютером, который специализируется на сборе исходных данных изображения.

В конечном итоге цифровые исходные данные изображений реконструируются в представление изображения с помощью процессора 17 реконструкции, который использует преобразование Фурье или другие подходящие алгоритмы реконструкции, такие как, например, SENSE или SMASH. МРТ-изображение может представлять собой вид пациента в плоском срезе, массив параллельных плоских срезов, трехмерный объем или тому подобное. Затем изображение сохраняется в памяти изображений, где оно может быть доступно для преобразования срезов, проекций или других частей представления изображения в соответствующий формат для визуализации, например, через видеомонитор 18, который выдает считываемое человеком отображение получившегося в результате МРТ-изображения.

Продолжая ссылаться на фиг. 1 и с дополнительной ссылкой на фиг. 2, поясняется вариант осуществления томографического подхода по изобретению. Каждому диагностическому томографическому сканированию с реконструкцией SENSE или SMASH предшествует сочетание обзорного сканирования и опорного сканирования, как пояснялось выше.

На этапе 20 осуществляют обзорное сканирование, во время которого параллельно принимают набор данных обзорного сигнала через набор матричных РЧ-катушек 11, 12, 13 и, чередующимся образом, через объемную РЧ-катушку 9. Данные сигнала, принятые при первом разрешении изображений, которое является низким разрешением, через объемную РЧ-катушку 9, обозначены как 21, а данные сигнала, принятые через набор матричных РЧ-катушек 11, 12, 13, обозначены как 22. Из полученного таким образом набора 21, 22 данных обзорного сигнала реконструируют набор из обзорных изображений при низком разрешении изображений, что означает, что одно обзорное изображение реконструируют из данных обзорного сигнала, принятых через объемную РЧ-катушку 9, и из данных сигнала, принятых через каждую из матричных РЧ-катушек 11, 12, 13. Затем вычисляют профили 23 пространственной чувствительности матричных РЧ-катушек 11, 12, 13 при низком разрешении обзорного сканирования путем разделения обзорных изображений от матричных РЧ-катушек 11, 12, 13 с помощью обзорного изображения от объемной РЧ-катушки 9.

На этапе 24 осуществляют опорное сканирование при промежуточном разрешении, которое выше, чем низкое разрешение обзорного сканирования. Во время опорного сканирования параллельно принимают набор 25 данных опорного сигнала исключительно через матричные РЧ-катушки 11, 12, 13. Объемная РЧ-катушка 9 не используется во время опорного сканирования. Реконструируют опорные изображения из набора 25 данных опорного сигнала при промежуточном разрешении опорного сканирования для каждой матричной РЧ-катушки 11, 12, 13. На этапе 26 осуществляют коррекцию интенсивности набора опорных изображений согласно профилям 23 пространственной чувствительности, определенным при низком разрешении обзорного сканирования. Таким образом, компенсируют изменения интенсивности в опорных изображениях из-за различных профилей пространственной чувствительности матричных РЧ-катушек 11, 12, 13. Из скорректированных по интенсивности опорных изображений получают «подобное опорной катушке» изображение при промежуточном разрешении, например, с помощью (взвешиваемого) наложения скорректированных по интенсивности опорных изображений. Это «подобное опорной катушке» изображение, которое по существу имитирует опорное МРТ-изображение, полученное через объемную РЧ-катушку 9 при промежуточном разрешении опорного сканирования, затем используют для вычисления профилей 27 пространственной чувствительности матричных катушек 11, 12, 13 при промежуточном разрешении. Это достигается путем разделения нескорректированных опорных изображений, ассоциированных с матричными катушками 11, 12, 13, с помощью «подобного опорной катушке» изображения.

На этапе 28 осуществляют диагностическое сканирование при высоком разрешении. Во время диагностического сканирования получают набор 29 данных диагностического сигнала снова исключительно через набор матричных РЧ-катушек 11, 12, 13. Диагностическое МРТ-изображение 30 реконструируют, используя алгоритм SENSE или SMASH, из набора 29 данных диагностического сигнала и из профилей 27 пространственной чувствительности, вычисленных на предыдущих этапах. Далее могут следовать дополнительные диагностические сканирования, из которых реконструируют дополнительные диагностические МРТ-изображения, используя те же самые профили 27 пространственной чувствительности.


МР-ТОМОГРАФИЯ, ИСПОЛЬЗУЮЩАЯ ПАРАЛЛЕЛЬНОЕ ПОЛУЧЕНИЕ СИГНАЛА
МР-ТОМОГРАФИЯ, ИСПОЛЬЗУЮЩАЯ ПАРАЛЛЕЛЬНОЕ ПОЛУЧЕНИЕ СИГНАЛА
Источник поступления информации: Роспатент

Показаны записи 221-230 из 254.
27.05.2016
№216.015.2b15

Способ определения пространства поиска pdcch в системе связи, использующей агрегацию несущих

Изобретение относится к мобильной связи. Технический результат заключается в повышении надежности поддержки канала PDCCH, по которому передаются управляющие сигнальные сообщения о распределении ресурсов передачи. Вторичная станция осуществляет поиск PDCCH в пространствах поиска по множеству...
Тип: Изобретение
Номер охранного документа: 0002585167
Дата охранного документа: 27.05.2016
10.04.2016
№216.015.2d01

Получение тонких слоев текучей среды, содержащей клетки для анализа

Группа изобретений относится к области медицины и может быть использована при проведении анализа тонких слоев, в частности монослоев клеток. Устройство для получения слоев, содержащих монослой из клеток, для анализа имеет двумерную матрицу из аналитических камер (45) и разветвленную...
Тип: Изобретение
Номер охранного документа: 0002579311
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d39

Устройство кровати с подвижным узлом обогревателя

Изобретение относится к детским кроватям, содержащим подвижный узел обогревателя, и направлено на равномерность обогрева ребенка. Усовершенствованное устройство кровати включает в себя кровать и подвижный узел обогревателя. Кровать подвижно расположена на опоре, и узел обогревателя выполнен с...
Тип: Изобретение
Номер охранного документа: 0002579922
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2fff

Интервенционная мр-томография с компенсацией движения

Группа изобретений относится к области медицины. Способ магнитно-резонансной томографии (МРТ) движущейся части тела пациента, помещенной в область исследования аппарата МРТ, причем указанный способ содержит этапы, на которых: a) осуществляют сбор отслеживаемых данных от микрокатушки,...
Тип: Изобретение
Номер охранного документа: 0002580189
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3068

Медицинская сеть около тела (mban) с основанным на ключе управлением использованием спектра

Изобретение относится к области медицинского мониторинга. Техническим результатом является повышение надежности беспроводных линий связи MBAN. Система содержит множество узлов сети, взаимно связывающихся с помощью беспроводной связи ближнего действия, система MBAN включает в себя подмодуль...
Тип: Изобретение
Номер охранного документа: 0002580069
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3271

Медицинская нательная сеть (mban) с автоматическим принуждением использования спектра в помещении

Изобретение относится к технике связи и может использоваться в нательной сети связи. Технический результат состоит в повышении пропускной способности нательной сети связи. Для этого медицинская система содержит: систему медицинской нательной сети (MBAN), содержащую множество сетевых узлов,...
Тип: Изобретение
Номер охранного документа: 0002581031
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.3781

Устройство и способ для предотвращения блуждания

Изобретение относится к способу и устройству для оказания помощи в предотвращении выхода пользователя за пределы безопасной области. Устройство содержит звуковой блок для генерирования первого выходного сигнала, слышимого для пользователя, в качестве реакции на определение того, что...
Тип: Изобретение
Номер охранного документа: 0002582546
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3ae1

Способ связи в мобильной сети в течение промежуточного режима конфигурирования

Изобретение относится к беспроводной связи. Способ содержит (а) конфигурирование вторичной станции осуществлять поиск в первых пространствах поиска, которые содержат определенное число наборов ресурсов, причем набор ресурсов используется для передачи управляющего сообщения вторичной станции,...
Тип: Изобретение
Номер охранного документа: 0002583376
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dc5

Система и способ высоконадежной доставки жизненно важных тревожных сигналов по совместно используемым беспроводным каналам

Группа изобретений относится к области медицины. Способ передачи тревожного сигнала, содержащий этапы, на которых: устанавливают линию связи между многорежимным устройством мониторинга пациента и одной или более точками доступа по одной или более сетям, по которым устройство мониторинга...
Тип: Изобретение
Номер охранного документа: 0002583250
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3eb2

Данные ультразвукового объемного изображения, переформатированные в виде последовательности плоских изображений

Изобретение относится к диагностическим ультразвуковым системам для трехмерной визуализации. Ультразвуковая диагностическая система визуализации содержит ультразвуковой датчик, выполненный с возможностью сбора набора данных 3-мерного изображения объемной области, блок мультипланарного...
Тип: Изобретение
Номер охранного документа: 0002584127
Дата охранного документа: 20.05.2016
Показаны записи 221-230 из 1 336.
20.02.2014
№216.012.a0d7

Подложка для опоры сенсоров, исполнительных элементов или электрических компонентов

Изобретение относится к медицине. Узел сенсора выполнен с возможностью прикрепления к поверхности тела человека или животного и с возможностью измерения внутренней температуры тела. Узел сенсора содержит многослойную структуру гибкой подложки и сенсоры, исполнительные элементы, электронные...
Тип: Изобретение
Номер охранного документа: 0002506890
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a33c

Способ и устройство для проведения оптических исследований содержимого мутных сред

Изобретение относится к области оптических исследований содержимого мутных сред. Способ содержит этапы, на которых обеспечивают широкополосный свет, пространственно выделяют множество полос длин волн, содержащихся в широкополосном свете, отдельно модулируют множество полос длин волн, повторно...
Тип: Изобретение
Номер охранного документа: 0002507503
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a35c

Визуализация ультразвуковых изображений с расширенным полем обзора с помощью двумерного матричного зонда

Использование: изобретение относится к медицинским диагностическим ультразвуковым системам и, в частности, к ультразвуковым системам, которые выполняют панорамную визуализацию или визуализацию с расширенным полем обзора (EFOV). Сущность: ультразвуковая система диагностической визуализации...
Тип: Изобретение
Номер охранного документа: 0002507535
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a36b

Оптическая сборка и автостереоскопическое устройство отображения на ее основе

Устройство отображения содержит дисплейную панель для формирования автостереоскопического изображения, имеющего по меньшей мере два субизображения, каждое из которых представляет различный вид объекта, и оптическую сборку перед средством обеспечения изображения. Оптическая сборка имеет линзовую...
Тип: Изобретение
Номер охранного документа: 0002507550
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a380

Архитектура беспроводного сенсорного узла с автономной потоковой передачей данных

Изобретение относится к сенсорному устройству и способу для сбора сенсорных данных в сенсорных сетях. Технический результат - повышение надежности за счет устранения любой непредсказуемой передачи данных, повышение эффективности потребления мощности на системном уровне, повышение...
Тип: Изобретение
Номер охранного документа: 0002507571
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3b0

Переносной детектор рентгеновских лучей с воспринимающим решетку блоком и система получения рентгеновских изображений для автоматической настройки экспозиции для переносного детектора рентгеновских лучей

Изобретение относится к области рентгенотехники. Переносная рентгеновская система (200) имеет воспринимающее средство, чтобы обнаруживать, прикреплена ли отсеивающая решетка (230) к переносному детектору (240) или нет. Система выполнена с возможностью изменения автоматическим образом настроек...
Тип: Изобретение
Номер охранного документа: 0002507619
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3c2

Устройство светоизлучающего диода

Изобретение относится к органическим светодиодам. Конструкция светоизлучающего диода содержит гибкую подложку, являющуюся фольгой и включающую в себя внутреннюю поверхность и наружную поверхность, и светоизлучающий диод, распложенный на внутренней поверхности гибкой подложки, причем...
Тип: Изобретение
Номер охранного документа: 0002507637
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3c3

Устройство oled с покрытой шунтирующей линией

Устройство органического светоизлучающего диода (OLED) включает подложку (1), проводящий слой (3), органический слой (2) в качестве активного слоя и шунтирующую линию (4) в качестве дополнительного канала распределения тока, причем проводящий слой (3) обеспечен на подложке (1), шунтирующая...
Тип: Изобретение
Номер охранного документа: 0002507638
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3c4

Устройство прозрачного органического светодиода

Изобретение относится к устройству (100) прозрачного органического светодиода, содержащему органический слой (130) между анодом (120) и катодом (140) и зеркальный слой (150) на аноде или катоде. Органический слой (130) структурируется на электролюминесцентные зоны (131) и неактивные зоны (132),...
Тип: Изобретение
Номер охранного документа: 0002507639
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3fe

Способы и устройства для управления сетью

Изобретение относится к способу и устройству управления сетью. Технический результат заключается в повышении эффективности управления потоком сетевого трафика за счет своевременного высвобождения сетевых ресурсов. Способ управления сетью состоит в том, что в сети, содержащей группу устройств...
Тип: Изобретение
Номер охранного документа: 0002507697
Дата охранного документа: 20.02.2014
+ добавить свой РИД