×
20.07.2014
216.012.e1d9

Результат интеллектуальной деятельности: СПОСОБ И УСТАНОВКА ДЛЯ УДАЛЕНИЯ ДВОЙНОЙ ИНДИКАЦИИ ДЕФЕКТОВ ПРИ КОНТРОЛЕ ТРУБ ПО ДАЛЬНЕМУ ПОЛЮ ВИХРЕВЫХ ТОКОВ

Вид РИД

Изобретение

№ охранного документа
0002523603
Дата охранного документа
20.07.2014
Аннотация: Изобретение относится к измерительной технике. Сущность: устройство обнаружения дальнего поля вихревых токов вводится в цилиндрические трубы и перемещается по ним. Устройство может быть использовано для измерения толщины трубы и содержит излучающую рамку и множество симметрично расположенных приемных устройств по противоположным сторонам излучающей рамки, схему для возбуждения излучающей рамки, схему для приема сигнала от каждого приемного устройства и для обработки указанного сигнала с исключением двойной индикации дефектов. Сигнал является свернутым сигналом, пропорциональным толщине трубы вблизи каждого из приемных устройств. Множество симметрично расположенных приемных устройств представляют собой две пары рамок. Каждая пара расположена по каждую сторону излучающей рамки на расстоянии L1=k1×dz и L2=k2×dz, где k1 и k2 не имеют общего делителя и dz является длиной шага вдоль продольной оси установки. Удаление ложных дефектов из измерений содержит определение линейной комбинации сигналов множества симметрично размещенных приемных рамок. Технический результат: возможность удаления ложных артефактов. 2 н. и 7 з.п. ф-лы, 8 ил., 1 табл.

Предпосылки создания изобретения

Данное описание относится к способу и установке для обнаружения коррозионных потерь в скважинных трубах, и эти способ и установка относятся к удалению двойной индикации дефектов, возникающей в результате изменения геометрии трубы, при выполнении неразрушающего контроля таких труб по дальнему полю вихревых токов.

Введение и предшествующий уровень техники

На фиг.1 схематично показаны местоположение углеводородной скважины на суше и наземное оборудование SE над углеводородным геологическим пластом CF после выполнения операции бурения ствола WB скважины, после спуска обсадной колонны CS и после выполнения работ по цементированию для герметизации кольцевого пространства СА (то есть пространства между стволом WB скважины и обсадной колонной CS).

Обычно обсадная колонна содержит множество обсадных труб, при этом две обсадные трубы соединены друг с другом муфтой обсадной колонны. Обсадная колонна стабилизирует ствол скважины.

Обсадная труба представляет собой отрезок стальной трубы, обычно длиной около 13 м или 40 футов с внешним резьбовым соединением (наружной резьбой) на каждом конце. Обсадные трубы собирают, чтобы образовать обсадную колонну с длиной и параметрами, соответствующими стволу скважины, в который ее устанавливают.

Муфта обсадной колонны представляет собой короткий отрезок трубы с внутренней резьбой, используемый для соединения двух обсадных труб. Получающееся соединение должно обеспечивать соответствующую механическую прочность, позволяющую спускать обсадную колонну и цементировать на месте. Кроме того, муфта обсадной колонны должна обеспечивать достаточную гидравлическую изоляцию при расчетных условиях, определяемых режимами внутреннего и внешнего давления и характеристиками флюида.

Обсадную колонну можно изготавливать из нелегированной углеродистой стали, нержавеющей стали или другого материала, чтобы она выдерживала различные силы, такие как сминающие, разрывающие и растягивающие, а также химически агрессивные флюиды. Тем не менее в агрессивной среде обсадная колонна может подвергаться воздействию коррозии, которая может сказываться на ее функциональных возможностях.

На этой стадии можно выполнять скважинные каротажные работы. Скважинные каротажные работы служат для измерения различных параметров углеводородного геологического пласта возле скважины (например, удельного сопротивления, пористости и т.д. на различных глубинах) и в стволе скважины (например, температуры, давления, типа флюида, расхода флюида и т.д. на различных глубинах). Такие измерения выполняют каротажным прибором TL. Обычно каротажный прибор содержит по меньшей мере один датчик (например зонд удельного сопротивления, механический зонд, зонд нейтронного гамма-каротажа, акселерометр, датчик давления, датчик температуры и т.д.) и измеряет по меньшей мере один параметр. Он может включать в себя множество одинаковых или разных датчиков, чувствительных к одному или нескольким параметрам. С помощью кабеля LN каротажный прибор перемещают вверх и вниз в буровой скважине для сбора данных о различных параметрах. Кабель может быть механическим кабелем, электрическим кабелем или электрооптическим кабелем, содержащим волоконную линию, защищенную от потенциальной агрессивной среды, существующей в стволе скважины. По механическому, электрическому или электрооптическому кабелю электрические сигналы или оптические сигналы передаются с каротажного прибора к наземному блоку.

Каротажный прибор можно также развертывать внутри ствола скважины с помощью подходящего наземного оборудования, которое может включать в себя транспортное средство SU и подходящую развертывающую систему, например каротажный кабель, или нагнетательную буровую установку, или что-либо подобное, все хорошо известные средства в этой отрасли. Данные, относящиеся к углеводородному геологическому пласту или к стволу скважины, собираемые каротажным прибором, могут передаваться в реальном времени на поверхность, например на транспортное средство, снабженное соответствующим компьютером и программным обеспечением для сбора и анализа данных. В частности, при таком применении каротажный прибор TL может содержать прибор контроля обсадных труб для осуществления обнаружения коррозии обсадной колонны.

На фиг.1 также схематично показан увеличенный вид части обсаженного ствола скважины, в которой прибор TL содержит прибор контроля обсадных труб. Прибором контроля обсадных труб можно обнаруживать положение, форму и размер зоны CR коррозии, затрагивающей звено 10 обсадных труб. С прибора TL результаты измерений доставляются к наземному оборудованию по соединительной линии LN. Благодаря корреляции этого обнаружения с измерениями глубины, выполняемыми прибором TL, надлежащий прибор можно спускать вниз по стволу скважины для выполнения соответствующей ремонтной обработки (например химической обработки, наложения накладки, замены обсадной трубы или выполнения аналогичного) для упрочения корродированной обсадной трубы 10.

Прибор контроля обсадных труб может быть механическим каверномером, ультразвуковым прибором или электромагнитным прибором. Механический каверномер содержит множество пальцев для измерения внутренней геометрии обсадной колонны. Механические каверномеры не могут использоваться для определения толщины обсадной колонны, не могут отличать неметаллические отложения на обсадной колонне от самой металлической обсадной колонны и могут инициировать коррозию путем образования царапин на поверхности обсадной колонны. Ультразвуковые приборы измеряют время пробега акустического импульса между излучением прибором, отражениями на внутренней и внешней поверхностях обсадной колонны и приемом обнаружителем акустической волны в приборе. Ими можно измерять внутренний диаметр, а также толщину обсадной колонны. Ультразвуковой прибор нельзя использовать при транспортировке по обсадной колонне смеси флюидов, содержащей определенное количество газа относительно жидкости, а при наличии шероховатости поверхности, которая обычно возникает на корродированной обсадной колонне, отраженные сигналы ухудшаются.

Электромагнитный прибор представляет собой прибор неразрушающего контроля обсадных труб. Он может быть основан на принципе рассеяния магнитного потока, принципе вихревых токов или на сочетании их. Электромагнитный прибор является нечувствительным к непроводящим отложениям и может работать независимо от характера смеси флюидов, втекающей в обсадную колонну.

Электромагнитный прибор, основанный на принципе рассеяния магнитного потока, обычно используют для обнаружения локализованного дефекта в ферромагнитных трубах. Этот прибор обычно воздействует на обсадную колонну сильным статическим магнитным полем. Вследствие ферромагнитных свойств обсадной колонны магнитный обратный поток в основном удерживается внутри металлической обсадной колонны. При наличии разрывов в металле, таких как изъязвления и отверстия, вызванные коррозией, магнитный поток рассеивается из массы металла и может обнаруживаться соответствующими магнитными датчиками, такими как рамки, зонды Холла или магниторезистивные датчики. Для ознакомления с развертыванием датчиков на основе эффекта Холла см. патент США №6924640 (Fickert et al.), выданный 2 августа 2005 года. Чтобы получать достаточную чувствительность и обеспечивать количественные измерения, для основанного на рассеянии магнитного потока прибора требуются сильные магнитные поля и хорошая связь потока с контролируемой массой. Это влечет за собой непосредственную близость источника магнитного поля к внутренней поверхности обсадной колонны. За дальнейшим описанием этого способа можно обратиться к патенту США №3940689 (Johnson), выданному 24 февраля 1976 года, в котором рассматривается основанное на рассеянии магнитного потока и вихревых токах измерительное устройство, и этот патент включен в данную заявку путем ссылки для дальнейшего пояснения предпосылок создания этого изобретения. В комбинациях обсадных колонн и насосно-компрессорных труб, используемых в углеводородных скважинах, часто имеются трубы различных диаметров, что приводит к необходимости иметь достаточно сильный и хорошо связанный магнитный поток, который трудно поддерживать. Кроме того, основанные на рассеянии магнитного потока приборы не пригодны для измерений постепенно утончающихся труб.

Электромагнитный прибор, основанный на принципе вихревых токов, хорошо подходит для измерения внутреннего диаметра и толщины стенки ферромагнитной металлической обсадной колонны. См., например, патент США №4292588 (Smith), выданный 29 сентября 1981 года, в котором описывается основанное на вихревых токах измерение скважинных труб с рассмотрением рамок для определения толщины. В этом приборе переменный ток возбуждается в излучающей рамке, выполненной с возможностью наведения вихревых токов в окружающей проводящей обсадной колонне, и наводимое напряжение измеряется на отдельной приемной рамке. Как вариант прибором можно измерять импеданс излучающей рамки. На трансимпеданс оказывают влияние магнитная проницаемость (µ), электрическая удельная проводимость (σ) обсадной колонны и внутренний диаметр близлежащей обсадной трубы. В случае электромагнитного прибора, в котором применяются достаточно низкие частоты и разнесение рамок на большое расстояние, измерение трансимпеданса используют для получения отношения толщины d стенки обсадной колонны к глубине δ скин-эффекта, так называемой электромагнитной толщины d/δ (ЭМ-толщины).

Краткое изложение изобретения

В этой установке для измерения толщины ферромагнитной трубы используется обнаружение дальнего поля вихревых токов, при этом установка выполнена из корпуса, соединенного с каротажным кабелем, для ввода в скважинную трубу, имеющего излучающую рамку и множество симметрично расположенных приемных устройств по противоположным сторонам излучающей рамки; схему для возбуждения излучающей рамки на выбираемой частоте; схему для приема сигнала от каждого приемного устройства и для обработки указанного сигнала с исключением двойной индикации дефектов.

Предпочтительно, чтобы каждое приемное устройство представляло собой рамку, центрированную на продольной оси установки. В установке пользователю предоставляется возможность выбора частоты между 8,75; 17,5; 35 и 70 Гц, которая идентифицируется как достаточно низкая для проникновения электродвижущей силы в скважинную трубу или обсадную колонну и как пригодная для работы в случае, когда электромагнитная толщина, то есть отношение толщины стенки трубы к глубине скин-эффекта материала, равна или меньше пяти (5). Приемные рамки отстоят на расстоянии, которое после деления на внутренний диаметр трубы больше чем или равно 2,5. Для большей части труб или обсадных колонн, используемых на нефтепромыслах, это означает частотный диапазон между 8,75 и 70 Гц и расстояние между излучателем и приемником не меньше чем 25 дюймов (635 мм).

Предпочтительно, чтобы установка была снабжена четырьмя симметрично отстоящими приемными рамками, и чтобы при этом каждая пара была расположена по противоположным сторонам излучающей рамки на расстоянии L1=k1×dz и L2=k2×dz, где k1 и k2 не имеют общего делителя и dz является длиной шага вдоль продольной оси установки. Схема для приема сигнала и для обработки указанного сигнала с исключением двойной индикации дефектов может быть программируемым цифровым компьютером, снабженным центральным процессором, снабженным запоминающим устройством и соединениями с аналого-цифровым преобразователем для дискретизации сигнала в дискретные данные для обработки программируемым цифровым компьютером.

Без отступления от сущности или назначения этого раскрытия установка также может содержать приемники, выбираемые из одного из следующих: рамок, обнаружителей напряжения на основе эффекта Холла и магниторезистивных датчиков.

Обычно эта установка для измерения дефектов в скважинной трубе с использованием измерения дальнего поля вихревых токов снабжена излучающей рамкой и множеством приемных рамок, разнесенных по оси друг от друга; схемой, генерирующей ток излучателя и обнаруживающей напряжение приемника на каждой из множества приемных рамок, собирающей свернутый сигнал, пропорциональный толщине трубы вблизи каждой приемной рамки; и схемой анализа данных, которая обращает свертку каждого обнаруживаемого сигнала для удаления сигналов ложного изображения из такого сигнала приемника. Предпочтительно, чтобы приемные рамки были симметрично расположены по противоположным сторонам излучающей рамки. Предпочтительная компоновка этой установки для измерения дефектов в трубе с использованием измерения дальнего поля вихревых токов содержит излучатель, создающий выбираемую низкочастотную электродвижущую силу; пару приемных рамок, отстоящих в продольном направлении, по первую сторону излучателя и пару приемных рамок, отстоящих в продольном направлении, по вторую сторону излучателя, при этом каждая пара рамок симметрично согласована с аналогичным образом расположенной приемной рамкой на противоположной стороне излучателя; схему для корреляции тока излучателя и напряжений приемников, когда установка перемещается по трубе; благодаря чему указанная схема может измерять отклонения фазы трансимпеданса, когда установка перемещается мимо одной и той же точки в трубе, делая возможным исключение двойного изображения и усреднение импульсов, излучаемых излучателем, и принимаемых, снижение отношения сигнала к шуму при измерении напряжения приемника.

Установка позволяет осуществлять способ удаления ложных дефектов на основании устройства обнаружения дальнего поля вихревых токов, содержащий создание излучателем вихревого тока на внешней поверхности скважинной трубы; обнаружение сигнала вихревого тока более чем одним удаленным приемником; создание сигнала вихревого тока на внешней поверхности скважинной трубы из пошагово другого положения; обнаружение вихревого тока более чем одним удаленным приемником из пошагово другого положения; определение линейной комбинации сигналов вихревых токов, обнаруживаемых более чем одним удаленным приемником, для исключения ложных дефектов из таких принимаемых сигналов.

По существу, в этом способе удаления ложных дефектов на основании устройства обнаружения дальнего поля вихревых токов, снабженного излучающей рамкой и множеством симметрично размещенных приемных рамок на продольной оси устройства, предусмотрены этапы возбуждения излучающей рамки в скважинной трубе низкочастотным током для наведения вихревого тока в скважинной трубе; обнаружения наведенной электродвижущей силы на множестве приемных рамок, находящихся на определенных расстояниях относительно излучающей рамки, на первом месте; запоминания обнаруживаемых сигналов от каждой приемной рамки на указанном первом месте; неоднократного перемещения излучающей рамки в скважинной трубе на новые дискретные места и обнаружения наведенной электродвижущей силы на множестве приемных рамок при каждом перемещении излучающей рамки; сохранения каждого обнаруживаемого сигнала с каждой приемной рамки на указанном множестве мест; и обработки сохраненных сигналов от каждой приемной рамки для исключения двойных отсчетов. Эту обработку можно осуществлять в реальном времени или сохранять данные в запоминающем устройстве и обрабатывать позднее или сравнивать с данными прежних спусков в ту же самую скважинную трубу для обнаружения долговременной деградации толщины трубы. Предпочтительно, чтобы в способе были предусмотрены четыре одинаковые рамки, размещенные по противоположным сторонам излучающей рамки и расположенные на расстоянии L от излучающей рамки, которое по меньшей мере в 2,5 раза больше внутреннего диаметра измеряемой трубы, а измеряемая электромагнитная толщина трубы была меньше чем или равна 5.

Краткое описание чертежей

На чертежах:

фиг.1 - схематичный вид типичного местоположения углеводородной скважины на суше и вид увеличенного участка зоны, где измерения выполняют стандартным, спускаемым на кабеле устройством или прибором;

фиг.2 - сечение обсадной колонны, схематично иллюстрирующее измерительное устройство изобретения;

фиг.3 - схематичный вид предпочтительного осуществления настоящего изобретения, иллюстрирующий два набора симметрично отстоящих приемных рамок по каждую сторону излучающей рамки;

фиг.4 - составной схематичный график функции (G) отклика пары излучающей и приемной рамок в обсадной колонне, расположенный над графиком, показывающим ложные изображения в фазовой характеристике трансимпеданса при возбуждении на низкой частоте, полученной при наблюдении существующими приборами, при этом фазовые характеристики ослабляются при наличии муфт обсадной колонны, каждая муфта отождествляется с ложным изображением, обусловленным двухпиковой функцией отклика;

фиг.5 - составной схематичный пример компоновки приборов с разнесением, при этом в верхней части показаны излучатель и две приемные рамки в одном положении, а после перемещения прибора вправо на шаг dz рамки сдвинуты в положение, показанное в нижней части;

фиг.6 - схематичное графическое представление комбинации импульсных характеристик примера прибора, показанного на фиг.5, для иллюстрации исключения двухпиковой характеристики одной пары излучатель-приемник;

фиг.7 - схематичный пример симметричной компоновки прибора при k1=5 и k2=6 по обеим сторонам центрального излучателя; и

фиг.8 - пример процесса удаления ложного изображения с показом исходной характеристики (в верхней части) и вычисленной при наличии пяти дефектов-выемок в стенке обсадной колонны (показанной в нижней части).

Подробное описание осуществления изобретения

На фиг.2 схематично показано измерительное устройство 1 согласно предпочтительному осуществлению изобретения. Измерительное устройство 1 установлено в каротажном приборе TL, показанном на фиг.1.

В предпочтительном осуществлении изобретения все измерения прибором основаны на нахождении трансимпеданса , который определяется как взаимный импеданс между током излучателя и напряжением приемника из данной пары излучатель-приемник:

. (1)

Характеристику прибора можно сравнить с характеристикой слабо связанного и имеющего потери трансформатора, где излучатель первичной цепи наводит напряжение в приемной катушке вторичной цепи. Эта трансформаторная связь образована связью потока через среду внутри обсадной колонны и вкладами в результате прохождения потока сквозь металл и за пределы трубы. На электромагнитное поле сильно влияют вихревые токи внутри металла, которые протекают по окружности фактически свободно. Магнитное поле внутри обсадной колонны имеет преобладающую осевую составляющую. Изменения свойств металла, например толщины, проявляются в соответствующих изменениях трансимпеданса .

Предпочтительно выполнять калибровку в воздухе. Калиброванное отношение измерений можно определить как:

. (2)

Калиброванное отношение измерений является полезным, поскольку отношение является нечувствительным к систематическим ошибкам, связанным с реализацией измерительного устройства. Систематические ошибки обычно обусловлены числом витков рамок и влиянием металлических частей, таких как металлические втулки и корпус измерительного устройства. Однако калиброванное отношение измерений не компенсировано за влияние изменений измерений в воздухе или обсадной колонне, обусловленных температурой, давлением и дрейфом в электронном устройстве.

В общем случае можно разложить трансимпеданс или отношение на синфазную (действительную) составляющую и несинфазную (мнимую) составляющую или на действительную амплитуду и относительную фазу , например

. (3)

Измерительное устройство 100 схематично показано на фиг.2. Прибор снабжен излучающей рамкой 110 и приемными рамками 120 (только одна из которых показана на этом чертеже), расположенными на продольной оси Ах прибора. В предпочтительном осуществлении изобретения все излучатели и приемники представляют собой соленоиды с осями, параллельными оси Ах прибора или совпадающими с ней. Как отмечалось ранее, как вариант приемники могут быть твердотельными приборами, такими как приборы на основе эффекта Холла, магниторезистивные приборы или другие магнитные датчики поля.

Трансимпеданс определяют для каждой пары, образованной данной приемной рамкой и единственным излучателем. Как хорошо известно специалистам в данной области техники, все рамки характеризуются геометрией рамки, например числом витков рамки, длиной рамки, радиусом обмотки и калибром проволоки. В дополнение к этому относительное положение данной пары излучатель-приемник определяется взаимным разнесением вдоль оси Ах прибора.

Кроме того, измерение характеризуется рабочей частотой, которая может быть одной из множества выбираемых пользователем частот. В частности, измерительное устройство специально рассчитано на оптимизацию чувствительности измерения трансимпеданса применительно к заданному физическому параметру, которым является средняя электромагнитная толщина трубы в данном поперечном сечении.

Удобно использовать безразмерные переменные для классификации отклика трубы при различных геометриях датчиков и частотах. Уже упоминалось, что электромагнитная толщина трубы представляет собой отношение , где является толщиной трубы, (см. фиг.2), при этом глубина скин-эффекта определяется формулой

, (4)

где - магнитная проницаемость и - электрическая удельная проводимость обсадной колонны при угловой частоте излучателя ω=2πf. Вторая безразмерная величина L/(2a) описывает расположение датчика по отношению к диаметру трубы.

Режим дальнего поля вихревых токов

При небольшом отношении

, (5)

то есть при большом пределе глубины скин-эффекта, электромагнитные поля могут проникать сквозь толщу стенки трубы и излучаться в область с наружной стороны обсадной колонны (в среду 3), считающуюся однородной. Для этого требуется достаточно низкие частоты возбуждения (см. ниже).

Если к тому же расстояние между излучающей рамкой ТС1 и приемной рамкой RC1 достаточно большое, приблизительно задаваемое как

L/(2a)≥2,5, (6)

то фаза измерения трансимпеданса становится почти линейной функцией электромагнитной толщины трубы, приблизительно определяемой в соответствии с

. (7)

Это является так называемым режимом дальнего поля вихревых токов. В этом режиме непосредственная, вне волновода, подобная критической связь между излучателем и приемником внутри трубы значительно ослабляется, так что характеристика трансимпеданса становится преобладающей благодаря полю, которое проникает сквозь трубу во внешнюю среду 3 вблизи излучателя (с приобретением первого фазового сдвига d/δ), распространяется почти подобно излучению диполя в среде 3 и в конце концов повторно проходит сквозь трубу в среду 1 вблизи приемника (с приобретением второго фазового сдвига d/δ). Поэтому измерения прибором фазы используют для обращения электромагнитной толщины трубы. Верхний предел L/(2a) является функцией отношения сигнала к шуму (с/ш) измерения. Сигнал напряжения на приемнике пропорционален комплексной постоянной распространения, exp(ik2d), где k=(1-i)/δ и где 2d является удвоенным путем сквозь обсадную колонну. В более общем виде можно записать

, (8)

где преобладающая экспоненциальная функция выделена, остальные параметры в функции f() зависят от геометрии прибора и свойств обсадной колонны. Параметры b 1 130 и b 2 140 представляют собой средние радиусы излучателя и приемника, ID (=2a на фиг.2) является внутренним диаметром обсадной колонны, µ/σ является отношением магнитной проницаемости обсадной колонны к ее удельной проводимости, представляет так называемые электромагнитные свойства обсадной колонны. Рассмотрение уравнения (8) показывает, что амплитуда и фаза описываются одной и той же величиной 2d/δ.

Даже если имеются несколько обсадных колонн, измерения, получаемые с помощью этой установки, все-таки обеспечивают получение электромагнитной толщины, в том числе вкладов от внешних металлических труб, при условии, что поле, проникающее сквозь все слои, может быть обнаружено с достаточным отношением сигнала к шуму. Поэтому сравнением каротажных диаграмм при спусках в различные моменты времени (через промежутки времени) можно получать информацию о постепенной потери металла комбинированных труб. Этот способ длительное время используют в системах обнаружения коррозии одиночных обсадных колонн.

Краткое изложение расчета

В случае типичных нефтепромысловых труб для удовлетворительных измерений прибором требуется, чтобы типичный безразмерный параметр d/δ находился в пределах от 0,2 до 5, а другой такой параметр L/(2a) был больше или равен 2,5. Электромагнитные параметры трубы, удельная проводимость и относительная магнитная проницаемость попадают в пределы

, (9)

, (10)

где µ 0 - магнитная проницаемость вакуума, между тем, как геометрические параметры типичных обсадных колонн имеют пределы

0,2 дюйма (5,08 мм)≤d≤0,9 дюйма (22,86 мм) (11)

и

2,4 дюйма (69,6 мм)≤ID≤9 дюймов (228,6 мм). (12)

В предпочтительном осуществлении с использованием предыдущих параметров предлагаются следующие диапазоны частот и пределы расстояний излучатель-приемник:

8,75 Гц≤f≤70 Гц и

25 дюймов (635 мм)≤L.

Окончательный выбор частот, расстояний, длины витков рамок, витков рамок и радиусов обмоток необходимо делать на основании оптимизации чувствительности измерения трансимпеданса к заданным параметрам трубы и на основании требований к алгоритмам обработки данных, что все хорошо известно специалистам в данной области техники. В частности, могут иметься многочисленные приемники на различных расстояниях.

В предпочтительном осуществлении настоящего изобретения предусмотрена выбираемая пользователем частота из 8,75; 17,5; 35 и 70 Гц, приемные рамки расположены по каждую сторону излучающей рамки на L=[-36, -30, +30, +36] дюймов [-914,4; -762; +762; +914,4 мм], при этом начало отсчета z или продольная ось показаны на фиг.3 возле излучающей рамки.

Отметим, что в этом осуществлении измерения приемными рамками выполняются на одной частоте, выбираемой из четырех. Также отметим, что были указаны четыре расстояния L, связанные с измерением средней электромагнитной толщины в режиме дальнего поля вихревых токов.

Вариант с четырьмя приемниками, симметрично расположенными выше и ниже излучателя 300, показан на фиг.3. Они называются двойными рамками А (310 на расстоянии LA1=-36 дюймов (-914,4 мм) и 320 на расстоянии LA2=-30 дюймов (-762 мм) и двойными рамками В (330 на расстоянии LB1=30 дюймов (762 мм) и 340 на расстоянии LB2=36 дюймов (914,4 мм). Как описывается ниже, выбор такой компоновки позволяет удалять двойную индикацию дефектов, удалять так называемое ложное изображение из измерений средней электромагнитной толщины в режиме дальнего поля вихревых токов.

Излучатель 300 работает на одной из выбранных частот, такой как 8,75 Гц; 17,5 Гц; 35 Гц; 70 Гц, чтобы оператору гарантировалась возможность оптимизации отношения сигнала к шуму (с/ш) и разрешающей способности по толщине при данных условиях на месте расположения скважины. Хотя частота 35 Гц обычно позволяет прибору работать в единственной обсадной колонне, может потребоваться измерение на более низких частотах, чтобы выполнять каротаж в толстых обсадных колоннах или нескольких обсадных колоннах.

В нижеследующую таблицу А сведены характеристики рамок и типичные уровни сигналов токов излучателя и напряжений приемника для этого осуществления установки, описанного в данной заявке.

Таблица А
Излучающая рамка Число
рамок
Длина
[дюймы]
Средний
радиус
[дюймы]
Витки Сопротивление
на постоянном
токе
[Ом]
Среднеквадратичный уровень сигнала [А]
300 1 14
(355 мм)
0,76
(19,3 мм)
7550 61 0,5; 35 Гц
Приемные рамки Число
рамок
Длина
[дюймы]
Средний
радиус
[дюймы]
Витки Сопротивление
на постоянном
токе
[Ом]
Среднеквадратичный уровень сигнала [В]
310, 320, 330, 340 4 3
(76,2 мм)
0,56
(14,22 мм)
9275 7035 1е3;
35 Гц

Средний радиус рамки является средним значением внутреннего и внешнего диаметров рамки. Все значения при 20°С.

После определения рабочих диапазонов и расчетных параметров всех датчиков ниже рассматриваются концепции обработки.

Удаление двойной индикации дефектов

Когда установка перемещается мимо ступенчатых изменений электромагнитной толщины, например проходит мимо муфт обсадной колонны, то вместо наблюдения одного отклонения фазы данного трансимпеданса вследствие локального увеличения количества металла вариация имеется два раза, один раз, когда излучатель приближается к муфте, и второй раз, когда приемником просматривается та же самая муфта (см. фиг.4). Это обусловлено геометрическим фактором, который сосредотачивается в обсадной колонне по радиусу и локализуется вокруг излучателя и приемника в направлении z. В таких приборах этот нежелательный артефакт ложного изображения затрудняет интерпретацию измерений электромагнитной толщины.

Фазовый сдвиг (φ) трансимпеданса реагирует на вариации электромагнитной толщины аналогично свертке первого порядка:

, (13)

где th(y) является толщиной (функцией глубины y), h R и h T являются характеристиками приемной рамки и излучающей рамки в положениях z R и z T соответственно. При таком приближении не предполагаются ни значительные вклады от электромагнитных свойств обсадной колонны, ни сильные вариации внутреннего диаметра обсадной колонны в области, представляющей интерес.

Различные конструкции излучающих рамок и приемных рамок являются пригодными. Поэтому функции h R и h T должны быть различными. В соответствии с этим предпочтительно, чтобы приемники, расположенные по каждую сторону излучателя, были эквивалентными приемниками, размещенными симметрично. Следовательно, как показано на фиг.3, рамка 310 эквивалентна рамке 340, а рамка 320 эквивалентна рамке 330. В настоящем осуществлении все эти рамки являются идентичными. В случае такой конфигурации прибора фазовый сдвиг, измеряемый между излучателем и первым приемником в каждом положении прибора, можно сравнивать с фазовым сдвигом, измеряемым между излучателем и вторым приемником, когда прибор перемещается в положение, в котором излучатель находится на прежнем месте первого приемника и второй приемник находится на прежнем месте излучателя. В частности, среднее этих двух фазовых сдвигов будет подчиняться следующему уравнению:

.

В случае, если импульсные характеристики приемников можно считать приближенно равными, импульсную характеристику можно аппроксимировать как:

. (14)

Эта комбинированная импульсная характеристика содержит вклады h R и h T. Кроме того, последнее уравнение формально эквивалентно изречению: измеряемый фазовый сдвиг является сверткой двух функций Дирака с толщиной металла, свернутой с . И можно заключить, что получение среднего фазовых сдвигов при соответствующем перемещении прибора является способом решения проблемы асимметрии между импульсными функциями излучателя и приемников. При такой конкретизации импульсные характеристики всех рамок можно считать равными.

Алгоритм удаления ложного изображения рассчитан на использование нескольких расстояний приемника-излучателя для восстановления из свертки с использованием данных при различных расстояниях и в различные времена измерений, то есть при различных положениях прибора. Задача заключается в удалении двух функций Дирака из уравнения (14) и замене их одной функцией. Это позволит определять с помощью установки точное положение каждого дефекта в обсадной колонне.

Сначала рассмотрим решение, предлагаемое для двух разнесений L1 и L2. Предположим, что:

L1=kdz, (15)

L2=kdz, (16)

где dz представляет множество выборок по вертикали и k1, k2 являются целыми числами без общих делителей. Выберем функцию отклика на некотором выборочном интервале dz. Для расстояния L1 имеем, например:

φ(z i)=α T(z i)+α R(z i+L1)=α T(i)+α R(i+k1). (17)

Задача формулируется в виде линейной системы, связывающей наблюдения (φ) со сверткой толщины с импульсными характеристиками излучателя и приемника (α T и α R).

Для примера рассмотрим случай k1=1 и k2=2. Соответствующая компоновка прибора схематично показана на фиг.5. На фиг.6 дано схематичное представление комбинации импульсных характеристик для прибора из примера с k1=1 и k2=2, показанного на фиг.5, благодаря которому исключается двухпиковая характеристика одной пары излучатель-приемник. В верхней части (а) показана характеристика, относящаяся к излучателю и приемной рамке, разнесенным на L1=dz, при одном положении каротажа. Характеристика той же самой пары излучатель-приемник в сдвинутом положении после того, как прибор переместился вправо на шаг dz, показана в средней части (b). На третьей линии графика показана характеристика, относящаяся к разнесению излучателя и приемной катушки на L2=2dz при исходном положении каротажа. Наконец, на нижнем графике (d) представлена линейная комбинация характеристик (a)-(b)+(c), в которой имеется только единственный пик, то есть отклик ложного изображения отсутствует.

Одно из решений проблемы удаления двойной индикации дефектов показано на фиг.6. В этом случае линейной комбинацией двух характеристик пары расположенных на небольшом расстоянии (L1=dz) рамок при различных положениях 0 и +dz и характеристик пары расположенных на большом расстоянии (L2=2dz) рамок обеспечивается желаемый результат. Три способа формирования характеристики с одним пиком можно представить в соответствии с

f 1=g(0,L1)-g(dz,L1)+g(0,L2),

f 2=g(0,L1)+g(dz,L1)-g(0,L2), (17)

f 3=-g(0,L1)+g(dz,L1)+g(0,L2).

Простой способ получения решений заключается в создании матрицы ,

, (18)

соответствующей функции отклика, связанной с функциями Дирака из уравнения (14), в которой каждый столбец представляет положение в единицах выборочного интервала dz. Первые две строки соответствуют расположенной на небольшом расстоянии (L1=dz) паре рамок при различных положениях 0 и +dz взятия выборок и третья строка соответствует характеристике расположенной на большом расстоянии (L2=2dz) паре рамок в положении 0.

Рассматривая матрицу

, (19)

обратную матрице , можно идентифицировать коэффициенты решений, получаемых в соответствии с уравнениями (17). В общем случае, если рассматривать несколько измерений при фиксированных расстояниях рамок и с несколькими сдвигами по глубине (кратными dz), систему уравнений можно составлять и решать, используя способы, хорошо известные в данной области техники.

Для согласования процесса удаления ложного сигнала с условиями работы приборов в режиме дальнего поля вихревых токов, имеющими отношение к минимальному разнесению L/(2a)≥2,5, максимальному разнесению, ограниченному отношением сигнала к шуму, выборочному интервалу или другим ограничениям, можно подыскивать другие компоновки прибора, характеризуемые (k1, k2).

Другое конкретное осуществление изобретения, которое удовлетворяет всем приведенным выше условиям, может быть при k1=5 и k2=6, при этом dz=6 дюймов (152,4 мм). В этом случае матрица и обратная матрица имеют формы

(20)

(21)

И снова было обнаружено, что возможны несколько решений и из них только одно имеет одинаковый вес применительно ко всем небольшим разнесениям и всем большим разнесениям. Комбинация является просто суммой всех измерений при небольших разнесениях за исключением всех измерений при больших разнесениях, которые выполняются примерно на одной глубине при интервале длины (k1+k2)·dz. В приведенном выше примере конкретное решение представляет собой шестую строку коэффициентов

. (22)

Эта схема обработки представляет собой усреднение при небольшом разнесении за вычетом среднего при большом разнесении, и этим объясняется, почему эта схема является робастной к гауссову шуму.

Как пояснялось ранее, прибор делают симметричным путем добавления симметрично располагаемых приемников, и алгоритм исключения ложных сигналов применяют относительно симметричных фазовых сдвигов (получая средний фазовый сдвиг при смене положений излучателя и приемников).

Предпочтительное осуществление этой симметричной компоновки прибора с использованием только двух пар симметричных расстояний излучатель-приемник показано на фиг.7. В этом случае k1=5 и k2=6, при этом dz=6 дюймов (152,4 мм). Это соответствует расчетным параметрам, приведенным выше. Пример результатов обработки с использованием решения уравнения (22) показан на фиг.8. Можно обобщить алгоритм на большее количество конфигураций разнесений. При использовании разнесений с отношением больших целых чисел возрастает усиление шума при обработке.

Раскрыты многочисленные осуществления и их варианты. Хотя приведенное выше раскрытие включает в себя считающийся по мнению авторов изобретения наилучший вариант осуществления изобретения, не все возможные варианты раскрыты. По этой причине объем и границы настоящего изобретения не ограничены приведенным выше раскрытием, а определяются и интерпретируются прилагаемой формулой изобретения.


СПОСОБ И УСТАНОВКА ДЛЯ УДАЛЕНИЯ ДВОЙНОЙ ИНДИКАЦИИ ДЕФЕКТОВ ПРИ КОНТРОЛЕ ТРУБ ПО ДАЛЬНЕМУ ПОЛЮ ВИХРЕВЫХ ТОКОВ
СПОСОБ И УСТАНОВКА ДЛЯ УДАЛЕНИЯ ДВОЙНОЙ ИНДИКАЦИИ ДЕФЕКТОВ ПРИ КОНТРОЛЕ ТРУБ ПО ДАЛЬНЕМУ ПОЛЮ ВИХРЕВЫХ ТОКОВ
СПОСОБ И УСТАНОВКА ДЛЯ УДАЛЕНИЯ ДВОЙНОЙ ИНДИКАЦИИ ДЕФЕКТОВ ПРИ КОНТРОЛЕ ТРУБ ПО ДАЛЬНЕМУ ПОЛЮ ВИХРЕВЫХ ТОКОВ
СПОСОБ И УСТАНОВКА ДЛЯ УДАЛЕНИЯ ДВОЙНОЙ ИНДИКАЦИИ ДЕФЕКТОВ ПРИ КОНТРОЛЕ ТРУБ ПО ДАЛЬНЕМУ ПОЛЮ ВИХРЕВЫХ ТОКОВ
СПОСОБ И УСТАНОВКА ДЛЯ УДАЛЕНИЯ ДВОЙНОЙ ИНДИКАЦИИ ДЕФЕКТОВ ПРИ КОНТРОЛЕ ТРУБ ПО ДАЛЬНЕМУ ПОЛЮ ВИХРЕВЫХ ТОКОВ
СПОСОБ И УСТАНОВКА ДЛЯ УДАЛЕНИЯ ДВОЙНОЙ ИНДИКАЦИИ ДЕФЕКТОВ ПРИ КОНТРОЛЕ ТРУБ ПО ДАЛЬНЕМУ ПОЛЮ ВИХРЕВЫХ ТОКОВ
СПОСОБ И УСТАНОВКА ДЛЯ УДАЛЕНИЯ ДВОЙНОЙ ИНДИКАЦИИ ДЕФЕКТОВ ПРИ КОНТРОЛЕ ТРУБ ПО ДАЛЬНЕМУ ПОЛЮ ВИХРЕВЫХ ТОКОВ
СПОСОБ И УСТАНОВКА ДЛЯ УДАЛЕНИЯ ДВОЙНОЙ ИНДИКАЦИИ ДЕФЕКТОВ ПРИ КОНТРОЛЕ ТРУБ ПО ДАЛЬНЕМУ ПОЛЮ ВИХРЕВЫХ ТОКОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 324.
10.01.2013
№216.012.193f

Тянущее устройство с гидравлическим приводом

Группа изобретений относится к области бурения, а именно к тянущим гибкую трубу устройствам. Устройство с гидравлическим приводом для непрерывного продвижения внутри скважины содержит поршень; первый корпус вокруг первой головки упомянутого поршня, первый якорь, присоединенный к упомянутому...
Тип: Изобретение
Номер охранного документа: 0002471955
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1945

Система единственного пакера для использования в стволе скважины

Группа изобретений относится к системам и способам отбора пластовых текучих сред из конкретной зоны ствола скважины, содержащим единственный пакер, к способам формирования пакера. Обеспечивает увеличенные степени расширения, более высокие перепады давления депрессии, лучшую поддержку пласта в...
Тип: Изобретение
Номер охранного документа: 0002471961
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1d01

Способ разрушения элемента в скважине и скважинное устройство (варианты)

Группа изобретений относится к разработке и эксплуатации нефтяных месторождений, в частности к разрушению инструментов и оборудования. Способ включает обеспечение инструмента для размещения в скважине для выполнения скважинной функции, требующей минимальной структурной целостности элемента...
Тип: Изобретение
Номер охранного документа: 0002472919
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d33

Поршневой насос прямого вытеснения, содержащий клапан с внешним приведением в действие

Устройство предназначено для использования на нефтяных месторождениях для применения при высоких давлениях, связанных с операциями извлечения углеводородов. Поршневой насос прямого вытеснения содержит клапан с направляющей для приведения его в действие. Клапан предназначен для регулирования...
Тип: Изобретение
Номер охранного документа: 0002472969
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d36

Электрический погружной насос

Электрический погружной насос для использования в скважине содержит секцию электродвигателя, включающую в себя ротор и статор, переходную секцию, присоединенную к верхней части секции электродвигателя, защитную секцию, соединенную с переходной секцией, и секцию насоса, присоединенную к верхней...
Тип: Изобретение
Номер охранного документа: 0002472972
Дата охранного документа: 20.01.2013
10.02.2013
№216.012.2480

Способ и устройство для многомерного анализа данных для идентификации неоднородности породы

Заявленная группа изобретений относится к улучшенной системе обработки данных и, в частности, к способу и устройству для анализа данных с площадки скважины. Заявленные способы, устройства и считываемый компьютером носитель, имеющий компьютерно-используемый программный код для идентификации...
Тип: Изобретение
Номер охранного документа: 0002474846
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2481

Применения широкополосных электромагнитных измерений для определения свойств пласта-коллектора

Изобретение относится к геофизике. Сущность: способ состоит из возбуждения пласта-коллектора электромагнитным возбуждающим полем, измерения электромагнитного сигнала, создаваемого электромагнитным возбуждающим полем в пласте-коллекторе, извлечения из измеренного электромагнитного сигнала...
Тип: Изобретение
Номер охранного документа: 0002474847
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.2777

Низкопроницаемые системы цемента для области применения нагнетания водяного пара

Предложенное изобретение может найти применение при цементировании скважин. Технический результат - улучшение эксплуатационных характеристик цемента по проницаемости. Способ закупоривания пористости цементной матрицы в скважине включает закачивание в скважину цементного раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002475623
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.2781

Способ и система для повышения добычи нефти (варианты)

Группа изобретений относится к добыче нефти из скважины и коллектора. Обеспечивает повышение эффективности способа добычи нефти и надежности работы системы для ее добычи. Сущность изобретений: способ и система содержат управление насосом в скважине для создания потока нефти из подземного...
Тип: Изобретение
Номер охранного документа: 0002475633
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.2817

Определение пористости из длины замедления тепловых нейтронов, сечения захвата тепловых нейтронов и объемной плотности пласта

Использование: для определения пористости пласта с использованием нейтронных измерений. Сущность: заключается в том, что для определения, по меньшей мере, одного свойства пласта, рассчитанного по нейтронным измерениям, полученным скважинным зондом, выполняют следующие операции: испускают...
Тип: Изобретение
Номер охранного документа: 0002475783
Дата охранного документа: 20.02.2013
Показаны записи 1-10 из 236.
10.01.2013
№216.012.193f

Тянущее устройство с гидравлическим приводом

Группа изобретений относится к области бурения, а именно к тянущим гибкую трубу устройствам. Устройство с гидравлическим приводом для непрерывного продвижения внутри скважины содержит поршень; первый корпус вокруг первой головки упомянутого поршня, первый якорь, присоединенный к упомянутому...
Тип: Изобретение
Номер охранного документа: 0002471955
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1945

Система единственного пакера для использования в стволе скважины

Группа изобретений относится к системам и способам отбора пластовых текучих сред из конкретной зоны ствола скважины, содержащим единственный пакер, к способам формирования пакера. Обеспечивает увеличенные степени расширения, более высокие перепады давления депрессии, лучшую поддержку пласта в...
Тип: Изобретение
Номер охранного документа: 0002471961
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1cff

Система компенсационного скользящего стыка

Группа изобретений относится к скважинным системам и способам для предотвращения спутывания множества линий связи, прокладываемых вдоль компенсационного скользящего стыка. Обеспечивает предотвращение спутывания и связывания множества линий связи, облегчение использования средств заканчивания...
Тип: Изобретение
Номер охранного документа: 0002472917
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d01

Способ разрушения элемента в скважине и скважинное устройство (варианты)

Группа изобретений относится к разработке и эксплуатации нефтяных месторождений, в частности к разрушению инструментов и оборудования. Способ включает обеспечение инструмента для размещения в скважине для выполнения скважинной функции, требующей минимальной структурной целостности элемента...
Тип: Изобретение
Номер охранного документа: 0002472919
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d33

Поршневой насос прямого вытеснения, содержащий клапан с внешним приведением в действие

Устройство предназначено для использования на нефтяных месторождениях для применения при высоких давлениях, связанных с операциями извлечения углеводородов. Поршневой насос прямого вытеснения содержит клапан с направляющей для приведения его в действие. Клапан предназначен для регулирования...
Тип: Изобретение
Номер охранного документа: 0002472969
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d36

Электрический погружной насос

Электрический погружной насос для использования в скважине содержит секцию электродвигателя, включающую в себя ротор и статор, переходную секцию, присоединенную к верхней части секции электродвигателя, защитную секцию, соединенную с переходной секцией, и секцию насоса, присоединенную к верхней...
Тип: Изобретение
Номер охранного документа: 0002472972
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1db6

Нейтронный защитный экран повышенной прочности

Изобретение относится в основном к устройствам радиационной защиты, в частности к радиационным защитным экранам для подземного оборудования. В составе защитного экрана для аппаратуры геофизических исследований в скважинах (каротажа) имеется внешний слой, в который включено армирующее волокно,...
Тип: Изобретение
Номер охранного документа: 0002473100
Дата охранного документа: 20.01.2013
10.02.2013
№216.012.23dc

Способ и система для интерпретации испытаний свабированием с использованием нелинейной регрессии

Группа изобретений относится к способам получения углеводородов из заданного месторождения. Способ увеличения добычи в пласте-коллекторе содержит выполнение испытания свабированием на глубине в трубе. При этом трубу располагают в стволе скважины. Часть ствола скважины располагают внутри...
Тип: Изобретение
Номер охранного документа: 0002474682
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2480

Способ и устройство для многомерного анализа данных для идентификации неоднородности породы

Заявленная группа изобретений относится к улучшенной системе обработки данных и, в частности, к способу и устройству для анализа данных с площадки скважины. Заявленные способы, устройства и считываемый компьютером носитель, имеющий компьютерно-используемый программный код для идентификации...
Тип: Изобретение
Номер охранного документа: 0002474846
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2481

Применения широкополосных электромагнитных измерений для определения свойств пласта-коллектора

Изобретение относится к геофизике. Сущность: способ состоит из возбуждения пласта-коллектора электромагнитным возбуждающим полем, измерения электромагнитного сигнала, создаваемого электромагнитным возбуждающим полем в пласте-коллекторе, извлечения из измеренного электромагнитного сигнала...
Тип: Изобретение
Номер охранного документа: 0002474847
Дата охранного документа: 10.02.2013
+ добавить свой РИД