×
20.07.2014
216.012.e1a4

Результат интеллектуальной деятельности: КОМПОЗИТНЫЙ ЭЛЕКТРОДНЫЙ МАТЕРИАЛ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области катализа, а именно каталитическим активным пористым композитным материалам, которые могут быть использованы в качестве несущих электродов электрохимических устройств для получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных топливных элементов (ТОТЭ). Изобретение относится к композитному электродному материалу для электрохимических устройств, содержащему металлическую составляющую в виде двухкомпонентного сплава никеля с алюминием и керамическую оксидную составляющую, при этом в качестве двухкомпонентного сплава используют никель, плакированный алюминием, при содержании алюминия 3-15 мас.%, а в качестве оксидной составляющей - оксид алюминия, при этом состав материала характеризуется массовым отношением металлической составляющей к оксидной в соответствии с формулой yNiAl-(100-y)AlO, где x=85÷97; y=30÷60. Техническим результатом изобретения является получение пористого несущего электрода для электрохимических устройств с улучшенной термодинамической и механической стабильностью, каталитической активностью, высокими электрическими характеристиками. 2 ил., 1 табл.
Основные результаты: Композитный электродный материал для электрохимических устройств, содержащий металлическую составляющую в виде двухкомпонентного сплава никеля с алюминием и керамическую оксидную составляющую, отличающийся тем, что в качестве двухкомпонентного сплава используют никель, плакированный алюминием, при содержании алюминия 3-15 мас.%, а в качестве оксидной составляющей - оксид алюминия, при этом состав материала характеризуется массовым отношением металлической составляющей к оксидной в соответствии с формулой yNiAl-(100-y)AlO, где x=85÷97; y=30÷60.

Изобретение относится к области катализа, а именно каталитическим активным пористым композитным материалам, которые могут быть использованы в качестве несущих электродов электрохимических устройств для получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных топливных элементов (ТОТЭ).

Известно, что в качестве анодных материалов в ТОТЭ чаще всего используют никельсодержащие композиционные смеси. Дисперсный никель является сильным катализатором реакций разложения углеводородов. Кроме того, было доказано, что никель проявляет удовлетворительную электрохимическую активность в реакциях окисления как водорода, так и угарного газа. Однако металлический никель при высоких температурах обладает морфологической нестабильностью (ползучестью и укрупнением металлической составляющей во время эксплуатации) и несоответствием в значениях коэффициента термического расширения (КТР) с твердыми электролитами. Плохая адгезия никеля в аноде ТОТЭ приводит к агломерации частиц и снижению удельной поверхности границы раздела фаз. Поэтому большинство разработчиков сегодня используют Ni-YSZ кермет (где YSZ - иттрий-стабилизированный кубический ZrO2) [Т. Kawada and J. Mizusaki, Current electrolytes and catalysts, in: Handbook of Fuel Cells-Fundamentals, Technology and Application, Eds.: W. Vielstich et al., Vol.4: Fuel Cell Technology and Applications, Wiley and Sons, Chichester, England, 2003, p.987]. Композитный анод совместим по КТР с YSZ электролитом и электролитами на основе CeO2, LaGaO3 и BaCeO2, обладает хорошими электрокаталитическими свойствами.

Эффективность и долговечность анода существенно возрастают, если синтез анода проводить не напрямую из металлического никеля, а из смеси NiO+YSZ [S. Kim, H. Moon, S. Hyun, J. Moon, J. Kim, H. Lee. Ni-YSZ cermet anode fabricated from NiO-YSZ composite powder for high-performance and durability of solid oxide fuel cells // Solid State lonics 178 (2007), p.1304-1309]. В таком материале в процессе эксплуатации оксид никеля восстанавливается до металла, при этом подавляется спекаемость никелевых частиц, приводящая к морфологической нестабильности кермета, а термическое расширение анода становится близким таковому для электролита. Меньшие размеры никелевых и YSZ частиц в составе кермета позволяют создать стабильно работающий электрод.

Известен аналог пористого композитного материала анодной подложки для среднетемпературных твердооксидных топливных элементов [В.А. Садыков и др. Дизайн среднетемпературных твердооксидных топливных элементов на пористых подложках из деформационно упрочненного Ni-Al-сплава. Электрохимия, 2011, т.47, №4, с.517-523 - прототип]. На поверхность пеносплава методом детонационного напыления или из суспензий наносят тонкие (~1 мкм) слои композита NiO/YSZ (YSZ - (Y2O3)0.08(ZrO2)0.92) с последующей термообработкой в восстановительной атмосфере для увеличения прочности сцепления покрытия с носителем. Анодный композит готовят путем смешения и размола в энергонапряженной планетарной мельнице порошков NiO и YSZ. Из смеси оксидов прессуют таблетки и спекают на воздухе при 1200°C. Порошок анодного композита получают дроблением с последующим размолом на планетарной мельнице и далее разделяют его на фракции с использованием сит и седиментации из суспензий в изопропаноле. Слои NiO/YSZ наносят из суспензии, полученной ультразвуковым диспергированием в изопропаноле с добавлением поливинилбутираля. Подложка из данного анодного композита с градиентной пористостью на основе деформационно-упрочненного Ni-Al-пеносплава обладает высокой коррозионной устойчивостью и стабильностью в течение непродолжительных испытаний (~100 часов) в интервале температур 600-800°C. Электропроводность данного состава составляет 100-200 См/см2 после восстановления водородом в интервале температур 25-600°C.

Основным недостатком данного материала является технологическая сложность его получения, многоступенчатость, ограниченная применимость только для планарных конструкций.

В настоящее время за рубежом основное внимание уделяется тонкопленочным технологиям изготовления электрохимических устройств, позволяющим увеличить их мощность благодаря снижению омического сопротивления пленочного электролита. Метод изготовления пористых электродных подложек из Ni-кермета для подобных устройств выбирается в зависимости от их формы. Для использования в планарных конструкциях пористый электрод получают методом литья с последующим ламинированием слоем электролита и последующим обжигом при температуре 1350-1400°C. Получение электродов для трубчатых конструкций осуществляется методом экструзии с последующим утильным обжигом для удаления органических добавок и высокотемпературным обжигом. Задача получения пористого электрода произвольной формы может быть решена с использованием плазменного напыления, позволяющего получить пористую электродную подложку достаточно быстро (время изготовления от 50 секунд) и без применения высокотемпературных обжигов.

Задача настоящего изобретения состоит в разработке коммерчески доступного состава пористого каталитического композитного электродного материала с высокой термодинамической стабильностью, электропроводностью и механической прочностью, который может быть получен методом плазменного напыления, без применения высокотемпературных обжигов, для применения в электрохимических устройствах получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных топливных элементах.

Технический результат, достигаемый при реализации заявляемого изобретения, заключается в разработке композитного электродного материала, обладающего повышенной устойчивостью в восстановительной атмосфере при сохранении или повышении механической прочности и уровня общей электропроводности и меньшей стоимостью по сравнению с керметом на основе Ni-YSZ.

Для достижения указанного технического результата предложен композитный электродный материал (кермет) для электрохимических устройств, характеризующийся массовым отношением металлической фазы к оксидной фазе в соответствии с формулой yNixAl100-x-(100-y)YSZ и/или yNixAl100-x-(100-y)Al2O3, где х=85÷100; у=30÷60.

При этом в качестве металлической фазы используют порошок никеля, плакированного алюминием, при содержании Al 3-15(мас.%).

Это позволяет защитить Ni при напылении в окислительной атмосфере за счет образования тонкой окисной либо шпинельной пленки, которая в свою очередь в восстановительной атмосфере переходит в Al2O3. Причем частицы Al2O3 могут более эффективно подавлять ползучесть и укрупнение никеля во время службы, чем YSZ частицы. Данный состав кермета обладает большей термостабильностью, лучшим соответствием по КТР с материалами электролита.

Используемые в изобретении порошки металлического Ni и NiAl сплава, свойства которых описаны в работе [С.М. Пикалов, В.А. Полухин, И.А. Кузнецов. Корреляция электромагнитных и механических характеристик функциональных плазменных покрытий и критерий неразрушающего контроля их качества // М.: Известия Академии наук, Металлы №6, 1995. С.146-152], широко применяются в практике газоплазменного порошкового напыления особопрочных и термостойких покрытий с добавлением соответствующих оксидов, выпускаются отечественной промышленностью и относительно недороги. Образцы электродных композитных материалов №(Al)-Al2O3 и Ni(Al)-YSZ были получены плазменным напылением на воздухе на вращающуюся металлическую оправку с антиадгезионным покрытием из соответствующих комбинаций металлических и оксидных порошков, предварительно смешанных в необходимых пропорциях.

После напыления, а также после восстановления в аргоне и водороде при 1350°C в течение 2 часов (DMAX-2500 в CuKα излучении в интервале 10°≤2θ≤120°) проводили рентгенофазовый анализ полученных материалов. Обнаружено, что после напыления Ni присутствует в образцах в металлической фазе (Таблица 1).

Общую электропроводность образцов измеряли четырехзондовым методом в водороде в интервале температур 600-900°C. Установлено, что при массовом соотношении Ni/Al электропроводность композитного материала увеличивается в ряду Ni-Ni85Al15-Ni95Al5. В зависимости от оксидного компонента электропроводность увеличивается в ряду YSZ-Al2O3. По сравнению с электропроводностью аналога электропроводность материала увеличивается более чем в 6 раз (при 600°C 200 См/см2 (аналог) и 1364 См/см2 (Таблица 1, электропроводность Al2O3+Ni95Al2).

На Рис.1 представлены микрофотографии поверхности напыленных покрытий составов YSZ+Ni и Al2O3+Ni95Al2 (Auriga Crossbeam Workstation, Carl Zeiss). Установлено, что в керамической матрице Al2O3 металлический компонент более мелкодисперсный и распределен равномерно, что приводит к улучшению контакта между частицами и увеличению электропроводности.

Измерения термического расширения образцов проводили с помощью кварцевой дилатометрической ячейки и дилатометра Tesatronic TT60 в аргоне. На Рис.2 представлена зависимость относительного термического расширения от температуры составов YSZ+Ni и Al2O3+Ni95Al5. Из данных по температурному расширению был рассчитан КТР материала. Расширение Al2O3+Ni95Al5 в температурном интервале 25-900°C равномерное, и КТР составляет 10,6×10-6 К-1, что близко по значению к КТР материалов твердых электролитов (10-12×10-6 К-1). Расширение YSZ+Ni неравномерное, и КТР составляет соответственно 8,4×10-6 К-1 (25-630°C); 31,3×10-6 К-1 (630-730°C); 58,6×10-6 К-1 (730-900°C).

Таким образом, разработан композиционный материал, обладающий повышенной устойчивостью в восстановительной атмосфере, с высоким уровнем общей электропроводности и механической прочности, пригодный для использования в качестве несущих подложек для электрохимических устройств, в частности высоко- и среднетемпературных ТОТЭ, электролизерах и электрохимических преобразователях.

Таблица 1
Электрические и структурные свойства керметов, полученных методом плазменного напыления
Состав кермета Электропров-ть, См/см2 Фазовые изменения, вес.%
После напыления После отжига в аргоне при 1350°C После отжига в водороде при 1350°C
600°C 900°C
Al2O3+Ni85Al15 126 101 58,3 Ni; 0,7 NiO; 41,0 Al2O3 34,7 Ni; 16,7 NiAl2O4; 48,7 Al2O3 35,4 Ni; 40,7 Al2O3
Al2O3+Ni95Al5 1364 1134 56,5 Ni; 8,3 NiO; 35,1 Al2O3 39,7 Ni; 23,0 NiAl2O4; 37,3 Al2O3 46,2 Ni; 53,8 Al2O3
YSZ+Ni85Al15 119 104 43,1 Ni; 6,9 NiO; 29,6 YSZ; 20,4 Al2O3,2 61,7 Ni; 3,7 NiO; 34,5 YSZ 64,0 Ni; 3,5 NiO; 32,5 YSZ
YSZ+Ni95Al5 644 536 54,0 Ni; 5,6 NiO; 40,5 YSZ 57,3 Ni; 6,9 NiO; 35,8 YSZ 54,7 Ni; 45,3 YSZ
Al2O3+Ni 105 85 11,2 Ni; 0,5 NiO; 88,3 (Al2O3)1.333 28,9 Ni; 71,1 Al2O3 13,1 Ni; 86,9 Al2O3
YSZ+Ni 156 127 55,4 Ni; 1,9 NiO; 42,8 YSZ 45,8 Ni; 54,2 YSZ 43,4 Ni; 56,6 YSZ

Композитный электродный материал для электрохимических устройств, содержащий металлическую составляющую в виде двухкомпонентного сплава никеля с алюминием и керамическую оксидную составляющую, отличающийся тем, что в качестве двухкомпонентного сплава используют никель, плакированный алюминием, при содержании алюминия 3-15 мас.%, а в качестве оксидной составляющей - оксид алюминия, при этом состав материала характеризуется массовым отношением металлической составляющей к оксидной в соответствии с формулой yNiAl-(100-y)AlO, где x=85÷97; y=30÷60.
КОМПОЗИТНЫЙ ЭЛЕКТРОДНЫЙ МАТЕРИАЛ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
КОМПОЗИТНЫЙ ЭЛЕКТРОДНЫЙ МАТЕРИАЛ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
Источник поступления информации: Роспатент

Показаны записи 101-106 из 106.
20.05.2023
№223.018.6707

Электродный материал для электрохимических устройств

Изобретение относится к твердооксидным электродным материалам на основе никелита неодима, которые могут быть использованы в среднетемпературных электрохимических устройствах, таких как твердооксидные топливные элементы, электролизеры, сенсоры и др. Твердооксидный электродный материал содержит...
Тип: Изобретение
Номер охранного документа: 0002757926
Дата охранного документа: 25.10.2021
21.05.2023
№223.018.69c0

Комплексный сплав для микролегирования и раскисления стали на основе железа

Изобретение относится к области металлургии, в частности, к ферросплавному производству, и может быть использовано в сталеплавильном производстве для микролегирования стали ниобием и раскисления металлического железоуглеродистого расплава кремнием и титаном. Сплав содержит, мас.%: титан...
Тип: Изобретение
Номер охранного документа: 0002795068
Дата охранного документа: 28.04.2023
21.05.2023
№223.018.6a4d

Способ получения композитного сорбента

Изобретение относится к области извлечения веществ из растворов с использованием сорбентов, в частности извлечения токсичных соединений хрома (VI). Представлен способ получения композитного сорбента, включающий обработку монтмориллонита раствором поверхностно-активного вещества,...
Тип: Изобретение
Номер охранного документа: 0002795001
Дата охранного документа: 27.04.2023
21.05.2023
№223.018.6b16

Сенсор для измерения концентрации кислорода в газовой смеси

Изобретение относится к аналитической технике, в частности к сенсорам для анализа газовых сред и может быть использовано для измерения концентрации кислорода в газовых смесях в широком диапазоне. Сенсор содержит три диска, крайние из которых выполнены из кислородопроводящего твердого...
Тип: Изобретение
Номер охранного документа: 0002795670
Дата охранного документа: 05.05.2023
05.06.2023
№223.018.7744

Способ активации электродов электрохимических устройств на твердых электролитах

Изобретение относится к области электрохимической энергетики и может быть использовано в производстве высокотемпературных электрохимических устройств на основе твердых электролитов, таких, например, как топливные элементы, электролизеры, электрохимические насосы, сенсоры и т.п., работающие при...
Тип: Изобретение
Номер охранного документа: 0002760430
Дата охранного документа: 25.11.2021
19.06.2023
№223.018.81c7

Способ переработки бедных тантал-ниобиевых концентратов

Изобретение относится к области металлургии тугоплавких редких металлов, в частности, к переработке редкометального сырья с извлечением редких металлов, и может быть использовано при переработке бедных тантал-ниобиевых концентратов с получением Ta-Nb продуктов, пригодных для производства...
Тип: Изобретение
Номер охранного документа: 0002797102
Дата охранного документа: 31.05.2023
Показаны записи 111-117 из 117.
12.05.2023
№223.018.5464

Способ электроосаждения сплошных осадков кремния из расплавленных солей

Изобретение относится к получению сплошных осадков кремния для использования в качестве фоточувствительных материалов, устройств микроэлектроники и накопления энергии. Способ электроосаждения сплошных осадков кремния из расплавленных солей включает электролиз в инертной атмосфере галогенидного...
Тип: Изобретение
Номер охранного документа: 0002795477
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.590c

Способ электролитического получения кремния из расплавленных солей

Изобретение относится к металлургии полупроводниковых материалов, в частности, к электролитическому получению кремния из расплавленных солей. Способ включает электролиз расплавленного галогенидного электролита, в качестве которого используют смесь солей мас.% 10-60 KCl и 40-90 CsCl с добавкой...
Тип: Изобретение
Номер охранного документа: 0002760027
Дата охранного документа: 22.11.2021
15.05.2023
№223.018.590d

Способ электролитического получения кремния из расплавленных солей

Изобретение относится к металлургии полупроводниковых материалов, в частности, к электролитическому получению кремния из расплавленных солей. Способ включает электролиз расплавленного галогенидного электролита, в качестве которого используют смесь солей мас.% 10-60 KCl и 40-90 CsCl с добавкой...
Тип: Изобретение
Номер охранного документа: 0002760027
Дата охранного документа: 22.11.2021
16.05.2023
№223.018.5ee2

Способ и электрохимическая ячейка для синтеза электролита для получения рения

Изобретение относится к синтезу электролитов для получения покрытий и изделий из рения методом высокотемпературной гальванопластики в расплавах солей. Электрохимическая ячейка для проведения синтеза расплава CsCl-KCl-NaCl-CsReCl состоит из анодного и катодного узлов, которые разделены между...
Тип: Изобретение
Номер охранного документа: 0002756775
Дата охранного документа: 05.10.2021
16.05.2023
№223.018.5ee4

Способ и электрохимическая ячейка для синтеза электролита для получения рения

Изобретение относится к синтезу электролитов для получения покрытий и изделий из рения методом высокотемпературной гальванопластики в расплавах солей. Электрохимическая ячейка для проведения синтеза расплава CsCl-KCl-NaCl-CsReCl состоит из анодного и катодного узлов, которые разделены между...
Тип: Изобретение
Номер охранного документа: 0002756775
Дата охранного документа: 05.10.2021
23.05.2023
№223.018.6e10

Способ электролитического синтеза гексахлоррената цезия

Изобретение относится к электролитическому получению гексахлоррената цезия, который может быть использован для приготовления электролитов, пригодных для электроосаждения рения. Синтез гексахлоррената цезия осуществляется путем электрохимической реакции ионизации металлического рения в растворе...
Тип: Изобретение
Номер охранного документа: 0002758363
Дата охранного документа: 28.10.2021
16.06.2023
№223.018.7d6a

Способ определения содержания глинозема в криолит-глиноземном расплаве и электрохимическое устройство для его осуществления

Изобретение относится к способу и электрохимическому устройству для определения содержания глинозема в криолит-глиноземном расплаве при электролитическом производстве алюминия. Способ включает погружение электрохимического устройства в криолит-глиноземный расплав, поляризацию с использованием...
Тип: Изобретение
Номер охранного документа: 0002748146
Дата охранного документа: 19.05.2021
+ добавить свой РИД