×
20.07.2014
216.012.e1a2

Результат интеллектуальной деятельности: НАНОКОМПОЗИЦИОННЫЙ ПОЛИМЕРНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к композиционным полимерным материалам и способу их получения. Нанокомпозиционный полимерный материал получают путем совместной конденсации на подложке паров сульфидов металлов и дихлор-п-ксилилена, полученного пиролизом α,α'-дихлор-п-ксилола, в вакууме с образованием пленок полимерной пленки. Причем в качестве сульфидов металлов используют PbS, CdS, ZnS. После чего полимерную пленку дополнительно прогревают в вакууме или в протоке инертного газа до получения пленки сопряженного полимера полифениленвинилена, содержащего наночастицы PbS, CdS, ZnS. Материал на основе сопряженного полимера полифениленвинилена содержит 4,2-8 об.% наночастиц сульфидов металлов PbS, CdS, ZnS с размером 4,1-9,5 нм. Полученный материал обладает интенсивной электролюминесценцией с максимумом в интервале длин волн 480-520 нм, мощностью излучения 5-20 мВт и оптическим поглощением в видимой области свыше 90%. 2 н.п. ф-лы, 3 табл.

Изобретение относится к композиционным полимерным материалам и к способам получения пленочных материалов на основе сопряженных полимеров, содержащих частицы сульфидов металлов нанометрового размера

Сопряженные полимеры вызывают значительный интерес в связи с использованием их в электрических и фотоэлектронных приборах [L. Dai, J.S.M. - rev. macromol., chem. phys., с.39(2), p.273-287, 1999]. Они имеют ряд привлекательных свойств: варьирование ширины запрещенной зоны и потенциала ионизации, путем химической модификации полимерной цепи. Одним из таких полимеров является поли-п-фениленвинилен (PPV). Методы синтеза PPV представлены в [B.R. Cho, Prog. Polym. Sci. 27(2002) 307-355]. Однако эти методы сопровождаются побочными реакциями с растворителями и присутствующим в растворителях кислородом, что приводит к внедрению в полимерную цепь дефектов, влияющих на люминесцентные свойства PPV. Кроме того, в результате получаются нерастворимые и неплавящиеся полимеры, с которыми в дальнейшем трудно работать. Для возможности введения наночастиц в полимерную матрицу их необходимо модифицировать органическими веществами, что формирует неоптимальную межфазную границу. Одним из недостатков таких материалов является низкая эффективность преобразования падающих фотонов в носители зарядов. Для повышения эффективности преобразования фотонов, в сопряженные полимеры вводят неорганические наночастицы [Sariciftci N.S., Swilowitz L., Heeger A.J., Wudl F. // Science V.258, №5087, P.1474-1476, 1992]. Разделение зарядов эффективно происходит на межфазной границе сопряженный полимер - наночастица, которая обладает более сильным сродством к электрону, что делает энергетически выгодным перенос электрона от полимерной матрицы к наночастице.

Известен [US Patent Application №0100000607, 2010] способ получения сопряженных полимерных пленок толщиной несколько мк, в частности PPV, содержащих кластеры PbS, PbTe, PbSe диаметром 1-10 нм, методом соосаждения органических мономеров или олигомеров, органических ионов, инициирующих полимеризацию, и неорганических кластеров. Однако указанный способ требует сложного оборудования (источник органических ионов, источник неорганических кластеров), что ограничивает номенклатуру нанокомпозитов. Кроме того, присутствие органических ионов сопровождается побочными реакциями, что приводит к внедрению в полимерную цепь дефектов, влияющих на люминесцентные свойства нанокомпозитов.

Наиболее близким по технической сущности к предложенному является способ получения пленочных материалов, содержащих наночастицы сульфидов металлов [Морозов П.В. Структура и свойства нанокомпозитов на основе поли-п-ксилилена, поли-п-фениленвинилена, полученных полимеризацией из газовой фазы. Автореферат диссертации на соискание ученой степени кандидата физико-математических наук, Москва, 2010]. Пары сульфидов металлов и дихлор-п-ксилилена соконденсируют в вакууме на охлаждаемую до низких температур подложку. Пары дихлор-п-ксилилена получаются пиролизом α,α′-дихлор-п-ксилола, и образующуюся полимерную пленку дополнительно прогревают в вакууме при температуре 200-270˚С. Образующийся полимер ограничивает рост кластерных частиц, и согласно указанному способу получают пленочный сопряженный нанокомпозиционный полимерный материал, полифениленвинилен, содержащий частицы сульфидов металлов размерами несколько десятков ангстрем.

Высокая равномерность покрытия по толщине, в т.ч. на острых кромках и в узких (<1 мкм) зазорах, делает покрытие незаменимым для сложнопрофильных поверхностей [Broer D.J., Luijks W. Penetration of p-xylylene vapor into small channels prior to polymerization // Journal of applied polymer science. 1981, 26, №7, p.2415-2422].

Основным недостатком указанного способа является то, что для получения PPV нанокомпозитов необходимо использование прогрева прекурсора в вакууме. Особенности реакции дегидрохлорирования в вакууме (по-видимому, из-за сложности вывода продуктов реакции) не позволяют получить нанокомпозиты с большой длиной сопряжения PPV и, соответственно, материала, обладающего заданными электрофизическими свойствами.

Заявленный способ устраняет указанные недостатки.

Технической задачей, решаемой в настоящей заявке, является разработка способа получения нанокомпозиционных полифениленвиниленовых материалов, содержащих сульфиды металлов нанометрового размера, обладающих заданными электрофизическими свойствами.

Техническим результатом решения поставленной задачи является получение материала, обладающего более высокими электролюминесцентными и фотовольтаическими показателями по сравнению с ПВФ.

Для достижения указанного результата предложен способ получения нанокомпозиционного полимерного материала, путем совместной конденсации на подложке паров сульфидов металлов и дихлор-п-ксилилена в вакууме с образованием полимерной пленки и с последующим прогревом пленки при температуре в диапазоне 200-270°С, при этом в качестве сульфидов металлов используют Pb, CdS, ZnS, пары дихлор-п-ксилилена получают пиролизом α,α′-дихлор-п-ксилола, а прогрев ведут в потоке инертного газа до образования сопряженного полифениленвинилена.

Также предложен материал, полученный вышеуказанным способом, на основе сопряженного полимера полифениленвинилена, содержащий 4,2-8 об.% наночастиц сульфидов металлов PbS, CdS, ZnS, размером 4,1-9,5 нм, обладающий интенсивной электролюминесценцией с максимумом в интервале длин волн 480-520 нм, мощностью излучения 5-20 мВт, числом звеньев с сопряженными двойными связями 12,1-27,1.

Сущность изобретения состоит в следующем. Получение материала достигается тем, что проводится совместная конденсация паров дихлор-п-ксилилена, получающихся пиролизом α,α′-дихлор-п-ксилола и паров PbS, CdS, ZnS в вакууме на подложку при температуре подложки (-196)°C-(60)°C и дальнейшем прогреве в протоке инертного газа, выбранного из азота, аргона, гелия при температуре 200-270°C.

Отличие предложенного способа от прототипа состоит в том, что для получения пленки сопряженного нанокомпозиционного полимерного материала, на основе полифениленвинилена, содержащего наночастицы PbS, CdS, ZnS прогрев ведут в протоке инертного газа (азота, аргона, гелия). Варьируя скорость осаждения сульфида металла и α,α′-дихлор-п-ксилилена, можно получить материалы, содержащие наночастицы сульфидов металлов определенных размеров и определенное количество наночастиц.

Содержание сульфида металла может варьироваться от 0,1 до 50 об.%. В получаемом по предлагаемому способу материале отсутствуют внутренние напряжения, что позволяет получать полимерную пленку большой толщины (до 1 мм). Конденсацию паров мономера проводили при различной температуре подложек (196, 25, 50°С). Для получения ПФВ образцы отжигали в потоке инертного газа (азот, аргон, гелий) при 200-270°C в течение 0,5-1 ч. Происходит процесс дегидрохлорирования. Основным структурным признаком полученного материала является образованием в нем систем с полисопряженных пи-связей на существование которых однозначно указывает приобретаемую им флуоресценцию в видимой области. При увеличении длины сопряжения (числа бензольных фрагментов в цепочке двойных связей) происходит увеличение длины волны флуоресценции нанокомпозитов. Следует отметить, что в используемом способе изготовления нанокомпозитов на межфазной границе полимер - сульфид металла не находятся стабилизирующие наночастицы вещества. Электролюминесцентный свойства исследовались для нанокомпозитов, осажденных на прозрачный электрод ITO (indium tin oxide). Вторым электродом являлся алюминий. Электролюминесценция наблюдалась при напряжении 10 В. Электролюминесцентные и фотовольтаические свойства проявлялись при содержании сульфида металлов 2-14 об.%. При меньшем содержании сульфида не образуется ансамбля взаимодействующих наночастиц и указанные свойства не проявляются. При большем содержании сульфида достигается порог перколяции проводимости и наночастицы теряют свои уникальные свойства. Для осуществления способа используется стандартный реактор для получения матрично-изолированных соединений [Криохимия. Ред. М. Московиц, Г. Озин. М: Мир, 1979]. Реактор состоит из: 1) подложки различной природы, например кварц, ITO, на которой адсорбируют пары сульфида металла и мономера с одновременной полимеризацией, температура подложки может регулироваться; 2) камеры для контролируемого испарения металла (типа камеры Кнудсена); 3) камеры испарения и пиролиза α,α′-дихлор-п-ксилола, реактор вакуумировался до 10-6 Торр.

Примеры реализации изобретения

Пример 1

Пары дихлор-п-ксилилена получаются пиролизом α,α′-дихлор-п-ксилола, температура испарения 60°C, температура пиролиза 600°C. Пары PbS получаются испарением при температуре 950°C. Пары PbS и дихлор-п-ксилилена соконденсируют в вакууме на подложку при температуре 25°C. Получающийся полимерная пленка прогревается в атмосфере азота при температуре 250°C в течение 1 часа. В результате образуется полимерная пленка толщиной 3 мк полифениленвинилена, содержащая наночастицы PbS, размером 4,1 нм.

Содержание сульфида свинца 7,4 об.%. Полученный нанокомпозит обладает следующими оптическими свойствами: максимум поглощения 430 нм, максимум люминесценции 510 нм, длина сопряжения (число повторяющихся единиц фенилен винилена) 18,1, ширина запрещенной зоны 2,08 эВ. Электролюминесцентные свойства характеризуются максимумом излучения при 10 в 520 нм и мощностью излучения 20 мВт.

Таблица 1.
Условия получения нанокомпозитов
Нанокомпозит Тисп.
параксилола, °C
Тисп. сульфида, °C Тип подложки Тпод.,
°С
Тпиролиза, °С Тпрогрева, °С Время прогрева, ч Атмосфера прогрева
1 PbS-PPV 60 950 кварц 25 600 250 1 азот
2 PbS-PPV 90 990 кварц 50 750 270 0,5 аргон
3 CdS-PPV 60 1200 кварц 25 750 270 0,5 гелий
4 ZnS-PPV 40 900 ITO -196 750 200 1,0 азот

Таблица 2.
Структура и оптические свойства нанокомпозитов
Нанокомпозит Толщина, мк Содержание сульфида, об.% Размер наночастиц, нм Max поглощения, нм Max люминесценции, нм L длина сопряжения PPV E ширина запрещенной зоны, эВ
1 PbS-PPV 3 7,4 4.1 430 510 18,1 2,08
2 PbS-PPV 1 4,2 5,3 450 550 27,1 2,10
3 CdS-PPV 1 8 9,5 415 480 12,1 2,51
4 ZnS-PPV 4,0 5,5 3,5 435 515 15,2 2,55

Таблица 3.
Электролюминесцентные и фотовольтаические свойства нанокомпозитов
№ примера Табл.1 Нанокомпозит Max изл. при 10 В, нм Мощность излучения, мВт
1 PbS-PPV 520 20
3 CdS-PPV 480 15
4 ZnS-PPV 515 5

Источник поступления информации: Роспатент

Показаны записи 101-110 из 266.
20.04.2016
№216.015.3472

Способ изготовления сверхпроводящих многосекционных оптических детекторов

Использование: для изготовления сверхпроводниковых датчиков излучения. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих многосекционных оптических детекторов, включающий формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде...
Тип: Изобретение
Номер охранного документа: 0002581405
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3605

Структура полупроводник-на-изоляторе и способ ее получения

Изобретение относится к твердотельной электронике. Изобретение заключается в том, что на изоляторе формируют поверхностный слой полупроводника. В изоляторе на расстоянии от поверхностного слоя полупроводника, меньшем длины диффузии носителей заряда, возникающих при облучении внешним...
Тип: Изобретение
Номер охранного документа: 0002581443
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3891

Способ измерения профиля стационарных мегаваттных пучков ионов и атомов в инжекторах

Изобретение относится к диагностике профилей (распределения плотности тока по сечению пучка) пучков ионов и атомов в мегаваттных квазистационарных (десятки и сотни секунд) инжекторах, предназначенных для нагрева плазмы и поддержания тока в термоядерных установках типа токамак. Способ измерения...
Тип: Изобретение
Номер охранного документа: 0002582490
Дата охранного документа: 27.04.2016
27.08.2016
№216.015.506f

Способ изготовления и модификации электрохимических катализаторов на углеродном носителе

Изобретение относится к области электрохимии, а именно к способам модификации электрохимических катализаторов на углеродном носителе, применяемых для электролизеров или топливных элементов с твердым полимерным электролитом (ТПЭ). Техническим результатом заявленного изобретения является...
Тип: Изобретение
Номер охранного документа: 0002595900
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.508a

Полимеросодержащее лекарственное средство на основе противоопухолевого препарата этопозида

Изобретение относится к области фармакологии и медицины, а именно к новому поколению противоопухолевых препаратов на основе этопозида, и описывает полимерсодержащее лекарственное средство на основе противоопухолевого препарата этопозида, который включает биодеградируемый полимер в виде...
Тип: Изобретение
Номер охранного документа: 0002595859
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.5247

Способ получения радионуклида лютеций-177

Изобретение относится к технологии получения радионуклидов для ядерной медицины. Способ получения радионуклида Lu включает изготовление мишени, содержащей лютеций природного изотопного состава или обогащенный по изотопу Lu, облучение нейтронами мишени, с последующим выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002594020
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5862

Способ преобразования энергии

Изобретение относится к энергетике. В способе преобразования энергии в энергоустановку подают воздух, сжимаемый затем в компрессоре, а также газообразное топливо, продукты сгорания которого расширяют в газовой турбине, используемой в качестве привода компрессора и электрогенератора, а затем...
Тип: Изобретение
Номер охранного документа: 0002588313
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.62a8

Способ изготовления наноструктурированной мишени для производства радиоизотопов молибдена-99

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (Mo), являющегося основой для создания радиоизотопных генераторов технеция-99m (Tc). Способ изготовления мишени для производства радиоизотопа молибден-99 осуществляется посредством реакции Mo(n,γ)Mo, протекающей в...
Тип: Изобретение
Номер охранного документа: 0002588594
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6394

Способ регулирования параметров ядерного реактора

Изобретение относится к области ядерной техники и может быть использовано в системах управления ядерными реакторами. В способ регулирования параметров ядерного реактора путем перемещения регулятором органов изменения реактивности по сигналу отклонения измеренного параметра от заданного...
Тип: Изобретение
Номер охранного документа: 0002589038
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6c9a

Способ разработки залежи тяжелой нефти

Изобретение относится к способам разработки нефтяных месторождений, в частности к способам теплового воздействия на залежь, содержащую высоковязкую нефть. Технический результат - повышение коэффициента извлечения нефти, снижение расхода энергоресурсов, уменьшение затрат на прокачку и потери,...
Тип: Изобретение
Номер охранного документа: 0002597039
Дата охранного документа: 10.09.2016
Показаны записи 101-110 из 160.
20.04.2016
№216.015.3472

Способ изготовления сверхпроводящих многосекционных оптических детекторов

Использование: для изготовления сверхпроводниковых датчиков излучения. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих многосекционных оптических детекторов, включающий формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде...
Тип: Изобретение
Номер охранного документа: 0002581405
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3605

Структура полупроводник-на-изоляторе и способ ее получения

Изобретение относится к твердотельной электронике. Изобретение заключается в том, что на изоляторе формируют поверхностный слой полупроводника. В изоляторе на расстоянии от поверхностного слоя полупроводника, меньшем длины диффузии носителей заряда, возникающих при облучении внешним...
Тип: Изобретение
Номер охранного документа: 0002581443
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3891

Способ измерения профиля стационарных мегаваттных пучков ионов и атомов в инжекторах

Изобретение относится к диагностике профилей (распределения плотности тока по сечению пучка) пучков ионов и атомов в мегаваттных квазистационарных (десятки и сотни секунд) инжекторах, предназначенных для нагрева плазмы и поддержания тока в термоядерных установках типа токамак. Способ измерения...
Тип: Изобретение
Номер охранного документа: 0002582490
Дата охранного документа: 27.04.2016
27.08.2016
№216.015.506f

Способ изготовления и модификации электрохимических катализаторов на углеродном носителе

Изобретение относится к области электрохимии, а именно к способам модификации электрохимических катализаторов на углеродном носителе, применяемых для электролизеров или топливных элементов с твердым полимерным электролитом (ТПЭ). Техническим результатом заявленного изобретения является...
Тип: Изобретение
Номер охранного документа: 0002595900
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.508a

Полимеросодержащее лекарственное средство на основе противоопухолевого препарата этопозида

Изобретение относится к области фармакологии и медицины, а именно к новому поколению противоопухолевых препаратов на основе этопозида, и описывает полимерсодержащее лекарственное средство на основе противоопухолевого препарата этопозида, который включает биодеградируемый полимер в виде...
Тип: Изобретение
Номер охранного документа: 0002595859
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.5247

Способ получения радионуклида лютеций-177

Изобретение относится к технологии получения радионуклидов для ядерной медицины. Способ получения радионуклида Lu включает изготовление мишени, содержащей лютеций природного изотопного состава или обогащенный по изотопу Lu, облучение нейтронами мишени, с последующим выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002594020
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5862

Способ преобразования энергии

Изобретение относится к энергетике. В способе преобразования энергии в энергоустановку подают воздух, сжимаемый затем в компрессоре, а также газообразное топливо, продукты сгорания которого расширяют в газовой турбине, используемой в качестве привода компрессора и электрогенератора, а затем...
Тип: Изобретение
Номер охранного документа: 0002588313
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.62a8

Способ изготовления наноструктурированной мишени для производства радиоизотопов молибдена-99

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (Mo), являющегося основой для создания радиоизотопных генераторов технеция-99m (Tc). Способ изготовления мишени для производства радиоизотопа молибден-99 осуществляется посредством реакции Mo(n,γ)Mo, протекающей в...
Тип: Изобретение
Номер охранного документа: 0002588594
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6394

Способ регулирования параметров ядерного реактора

Изобретение относится к области ядерной техники и может быть использовано в системах управления ядерными реакторами. В способ регулирования параметров ядерного реактора путем перемещения регулятором органов изменения реактивности по сигналу отклонения измеренного параметра от заданного...
Тип: Изобретение
Номер охранного документа: 0002589038
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6c9a

Способ разработки залежи тяжелой нефти

Изобретение относится к способам разработки нефтяных месторождений, в частности к способам теплового воздействия на залежь, содержащую высоковязкую нефть. Технический результат - повышение коэффициента извлечения нефти, снижение расхода энергоресурсов, уменьшение затрат на прокачку и потери,...
Тип: Изобретение
Номер охранного документа: 0002597039
Дата охранного документа: 10.09.2016
+ добавить свой РИД