×
20.07.2014
216.012.e0be

Результат интеллектуальной деятельности: ПОЛИМЕРНЫЙ ПРОППАНТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002523320
Дата охранного документа
20.07.2014
Аннотация: Изобретение относится к нефте-, газодобычи с применением проппантов. Способ получения проппанта включает получение смеси олигоциклопентадиенов путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при данной температуре в течение 15-360 мин, охлаждение смеси до 20-50°С, последовательное введение в полученную смесь олигоциклопентадиенов следующих компонентов: по крайней мере одного из полимерных стабилизаторов, выбранных из указанной группы, по крайней мере одного из радикальных инициаторов, выбранных из указанных соединений, или их смеси, и катализатора - соединения приведенной формулы, при этом компоненты полимерной матрицы находятся в следующих количествах, масс.%: полимерные стабилизаторы 0,1-3; радикальные инициаторы 0,1-4; катализатор 0,001-0,02; смесь олигоциклопентадиенов - остальное, полученную полимерную матрицу выдерживают при температуре 20-50°С в течение 1-40 минут, после чего вводят в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду, содержащую ПАВ из указанной группы, где смесь воды с ПАВ имеет вязкость ниже вязкости полимерной матрицы, в процессе постоянного перемешивания воду нагревают до 50-100°С, продолжая перемешивать в течение 1-60 мин, образовавшиеся микросферы отделяют от воды, нагревают в среде инертного газа до температуры 150-340°С и выдерживают в указанной среде при данной температуре в течение 1-360 мин. Полимерный проппант получен указанным выше способом. Технический результат - повышение термопрочности. 2 н.п. ф-лы, 33 пр.

Изобретение относится к технологии нефте-, газодобычи с использованием материалов из высокомолекулярных соединений, а именно к проппантам из полимерных материалов с повышенными требованиями к физико-механическим свойствам, в качестве расклинивающих гранул, применяемых при добыче нефти и газа методом гидравлического разрыва пласта.

Гидравлический разрыв пласта (ГРП) заключается в закачивании под большим давлением жидкости в нефте- и газоносные пласты, в результате чего в пласте образуются трещины, через которые поступает нефть или газ. Для предотвращения смыкания трещин в закачиваемую жидкость добавляют твердые частицы, как правило, сферические гранулы, называемые проппантами, заполняющие вместе с несущей жидкостью образовавшиеся трещины. Проппанты должны выдерживать высокие пластовые давления, быть устойчивыми к агрессивным средам и сохранять физико-механические свойства при высоких температурах. При этом проппант должен иметь плотность, близкую к плотности к несущей жидкости, с тем, чтобы он находился в жидкости во взвешенном состоянии и был доставлен до самых отдаленных участков трещин. Учитывая, что наиболее широко в качестве жидкости для гидроразрыва применяется вода, то и плотность проппанта должна быть близка к плотности воды.

Для производства проппантов часто используют в качестве исходного материала минеральные материалы природного происхождения - бокситы, каолины, пески (Патенты США №4068718 и №4668645).

Известно использование различных материалов, таких как боросиликатное или кальцинированное стекло, черные и цветные металлы или их сплавы, оксиды металлов, оксиды, нитриды и карбиды кремния, для производства проппантов, имеющих форму полых гранул (Заявка США №2012/0145390).

Недостатком таких материалов является высокая технологическая сложность изготовления из них полых гранул, их недостаточная прочность на сжатие из-за полой структуры и хрупкости материала, высокая степень разрушения проппанта в трещинах и обратный вынос частиц и их осколков.

На устранение подобных недостатков направлены технические решения изготовления проппантов с полимерным покрытием. Оболочка служит компенсатором точечных напряжений, более равномерно распределяя давление по поверхности и объему проппанта и, кроме того, снижает среднюю плотность проппанта. Широко известно использование различных органических полимерных и неорганических покрытий проппантов в виде эпоксидных и фенольных смол (заявки США №№2012/0205101, 2012/247335).

Недостатком таких технических решений выступает сложность изготовления таких проппантов, недостаточная термостойкость покрытий, низкие показатели округлости и сферичности, обусловленные формой минерального ядра проппанта, высокий разброс показателей физико-механических характеристик.

Известно применение широкого спектра термореактивных полимеров с поперечными связями, таких как эпоксидные, виниловые и фенольные соединения, полиуретан, полиэстер, меламин и пр., в качестве материала для изготовления проппантов (Заявка США №2013/0045901).

Известно использование в качестве материала для проппанта полиамида (патент США №7931087).

Недостатком известных материалов является несоответствие физико-механических характеристик данных материалов одновременно всей совокупности требований к материалу для проппантов. В частности, это недостаточная стойкость к агрессивным средам, недостаточная термостойкость и термопрочность, степень набухания в среде жидких углеводородов, прочность на сжатие.

Наиболее близким техническим решением к предлагаемому является применение полидициклопентадиена как материала для проппанта (патент РФ №2386025).

Недостатком применения полидициклопентадиена является недостаточная температурная стойкость и прочность на сжатие.

Задачей данного изобретения является получение проппанта, обладающего комплексом свойств, предъявляемых к проппантам, работающим в тяжелых условиях.

Технический результат, достигаемый при реализации настоящего изобретения, заключается в повышении термопрочности проппанта, материал которого обеспечивает прочность на сжатие не менее 150 Мпа при температуре не ниже 100°С.

Технический результат достигается тем, что полимерный проппант представляет собой микросферы из метатезис-радикально сшитой смеси олигоциклопентадиенов и полученный способом, включающим получение смеси олигоциклопентадиенов путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при данной температуре в течение 15-360 мин, охлаждение смеси до 20-50°С, последовательное введение в полученную смесь олигоциклопентадиенов следующих компонентов: по крайней мере, одного из полимерных стабилизаторов, в качестве которых используют соединения: тетракис[метилен(3,5-ди-трет-бутил-4-гидроксигидроциннамат)]метан (1010), 2,6-ди-трет-бутил-4-(диметиламино)фенол (703), 1,3,5-триметил-2,4,6-трис(3,5-ди-трет-бутил-4-гидроксибензил)бензол (330), трис(4-трет-бутил-3 -гидрокси-2,6-диметилбензил)изоцианурат (14), 3,5-ди-трет-бутил-4-гидроксианизол (354), 4,4′-метиленбис(2,6-ди-трет-бутилфенол) (702), дифениламин (ДФА), пара-ди-трет-бутилфенилендиамин (5057), N,N′-дифенил-1,4-фенилендиамин (ДППД), трис(2,4-ди-трет-бутилфенил)фосфит (168), трис(нонилфенил)фосфит (ТНРР), бис(2,2,6,6-тетраметил-4-пиперидинил)себацинат (770), бис(1-октилокси-2,2,6,6-тетраметил-4-пиперидинил)себацинат (123), бис(1-метил-2,2,6,6-тетраметил-4-пиперидинил)себацинат (292), 2-трет-бутил-6-(5-хлор-2Н-бензотриазол-2-ил)-4-метилфенол (327), 2-(2Н-бензотриазол-2-ил)-4,6-бис(1-метил-1-фенил)фенол (234), по крайней мере одного из радикальных инициаторов, выбранных из группы: ди-трет-бутилпероксид (Б), дикумилпероксид (БЦ-ФФ), 2,3-диметил-2,3-дифенил-бутан (30), трифенилметан (ТФМ) и катализатор, в качестве которого используют соединение общей формулы:

где заместитель L выбран из группы:

полученную полимерную матрицу выдерживают при температуре 20-50°С в течение 1-40 минут, после чего вводят в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду, содержащую поверхностно-активное вещество, при постоянном перемешивании воды образовавшиеся микросферы отделяют от воды, нагревают в среде инертного газа до температуры 150-340°С и выдерживают в указанной среде при данной температуре в течение 1-360 мин. В качестве поверхностно-активного вещества используют цетилтриметиламмонийхлорид, или додецилсульфат натрия, или лаурилсульфат аммония, или лаурилсаркозинат натрия, или октенидина гидрохлорид, или бензалкония хлорид. Смесь воды с поверхностно-активными веществами имеет вязкость 0,5-0,8 спуаз, в зависимости от температуры, что ниже вязкости полимерной матрицы при той же температуре, которая может колебаться в широких пределах от 1 до 300 спуаз в зависимости от состава и температуры. Компоненты полимерной матрицы находятся в следующих количествах, масс.%:

- полимерные стабилизаторы 0,1-3;

- радикальные инициаторы 0,1-4;

- катализатор 0,001-0,02;

- смесь олигоциклопентадиенов - остальное.

Указанные отличительные признаки существенны.

Метатезис-радикально сшитая смесь олигоциклопентадиенов образует полимер, который содержит в своей цепи более объемные радикально сшитые полимерные звенья, чем только полидициклопентадиен, который имеет совершенно другую структуру. Это обеспечивает новому полимеру уникальный набор физико-механических свойств, отличающихся от полидициклопентадиена более высокими значениями температуры стеклования и прочности при сжатии, устойчивостью в нефтепродуктах. Внесение высокотемпературных инициаторов радикальной полимеризации в мономерную смесь для получения полиолигоциклопентадиена позволяет существенно повысить термомеханические показатели материалов и повысить химическую стойкость полимера. Метатезис-радикально сшитый полиолигоциклопентадиен, полученный с использованием одновременно катализаторов метатезиса и радикальных инициаторов, имеет существенно большую температуру стеклования, которая находится в интервале 190-320°С, лучшие механические характеристики по сравнению с полимером только из дициклопентадиена. Прочность при растяжении возрастает до 150-220 МПа и уменьшается значение коэффициента линейного термического расширения. Крайне важным свойством является стойкость к органическим растворителям. Процент набухания в толуоле не превышает 5% после выдержки в течение месяца. По сравнению с полидициклопентадиеном, метатезис-радикально сшитый полиолигоциклопентадиен обладает существенно большей прочностью при сжатии при температуре не ниже 100°С, что особенно важно для проппантов.

Полимерный проппант получают следующим образом.

Получают смесь олигоциклопентадиенов путем нагрева дициклопентадиена до температуры 150-220°С и выдержки его при данной температуре в течение 15-360 мин.

Смесь олигомеров охлаждают до 20-50°С и последовательно вводят в нее полимерные стабилизаторы, радикальные инициаторы и катализатор. Получают полимерную матрицу следующего состава, масс.%:

- полимерные стабилизаторы 0,1-3;

- радикальные инициаторы 0,1-4;

- катализатор 0,001-0,02;

- смесь олигоциклопентадиенов - остальное.

Полимерную матрицу выдерживают при температуре 0-50°С в течение 1-40 минут, после чего вводят в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду, содержащую поверхностно-активное вещество, при постоянном перемешивании воды. Смесь воды с поверхностно-активными веществами имеет вязкость ниже вязкости полимерной матрицы при той же температуре. Воду нагревают до 50-100°С, продолжая перемешивать в течение 1-60 минут. В процессе перемешивания происходит метатезисная полимеризация матрицы с образованием микросфер. Полимеризация олигомеров циклопентадиена проходит по следующей схеме:

Образовавшиеся микросферы отделяют от жидкости, нагревают до температуры 150-340°С в среде инертного газа и выдерживают в указанной среде при данной температуре в течение 1-360 мин. В процессе нагрева и выдержки при указанной температуре происходит радикальная сшивка полимера следующим образом:

Нагрев микросфер в среде инертного газа предотвращает их окисление и деструкцию. В качестве инертного газа предпочтительнее использовать азот или аргон.

Свойства материала проппанта классифицируются по следующим характеристикам:

Температура стеклования (Tg)

- А более 250°С

- Б от 201 до 250°С

- В от 170 до 200°С

- Г менее 170°С

Прочность при сжатии, МПа

- А более 220

- Б от 170 до 219

- В от 120 до 169

Целевая фракция (0,1-1,5 мм),%

- А более 77

- Б от 74 до 77

- В от 70 до 74

Набухание в нефти (100°С/1 неделя),%

- А менее 1

- Б от 1,1 до 3

- В от 3,1 до 5

Способ иллюстрируют следующие примеры.

Пример 1

Дициклопентадиен нагревают в автоклаве до 170°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигициклопентадиенов вносят полимерные стабилизаторы 1010 (0,30% масс.), 168 (0,40% масс.), 770 (0,40% масс.) и радикальные инициаторы Б (2,0% масс.), 30 (2,0% масс.). Катализатор N3a (0,0278% масс.) вносят при 25°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,1;

- радикальные инициаторы 4;

- катализатор 0,0278;

- смесь олигоциклопентадиенов 94,8722.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,2) содержащую поверхностно-активное вещество додецилсульфат натрия (0,2% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°С и выдерживают 10 минут. Микросферы отделяют от воды и нагревают до 260°С, выдерживают при данной температуре в атмосфере азота в течение 40 мин. Получают микросферы 97%, средний размер (Б) Tg (Б), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).

Пример 2

Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 330 (0,50% масс.), 168 (0,50% масс.) и радикальный инициатор Б (0,1% масс.). Катализатор N (0,0096% масс.) вносят при 35°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,0;

- радикальные инициаторы 0,1;

- катализатор 0,0096;

- смесь олигоциклопентадиенов 98,8904.

Полученную смесь перемешивают 40 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество лаурилсаркозинат натрия (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°С и выдерживают 1 минуту. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 94%, средний размер (А) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 3

Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,40% масс.), 168 (0,40% масс.), 770 (0,50% масс.) и радикальный инициатор БЦ-ФФ (1,5% масс.). Катализатор N7a (0,0072% масс.) вносят при 25°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,3;

- радикальные инициаторы 1,5;

- катализатор 0,0072;

- смесь олигоциклопентадиенов 97,1928.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,3), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,3% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 150°С, выдерживают при данной температуре в атмосфере азота в течение 20 мин. Получают микросферы 91%, средний размер (В) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 4

Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 702 (0,30% масс.), 168 (0,50% масс.) и радикальный инициатор Б (1,0% масс.). Катализатор N5a (0,0132% масс.) вносят при 10°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 0,8;

- радикальные инициаторы 1,0;

- катализатор 0,0132;

- смесь олигоциклопентадиенов 98,1868.

Полученную смесь перемешивают 2 минуты, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,05), содержащую поверхностно-активное вещество додецилсульфат натрия (0,1% масс.) при 55°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,512 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 60°С и выдерживают 45 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 89%, средний размер (A) Tg (А), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 5

Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 160 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,20% масс.), ТНРР (0,50% масс.), 292 (0,50% масс.) и радикальный инициатор Б (1,0% масс.). Катализатор N1 (0,0099% масс.) вносят при 50°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,2;

- радикальные инициаторы 1,0;

- катализатор 0,0099;

- смесь олигоциклопентадиенов 97,7901.

Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество бензалкония хлорид (0,1% масс.) при 30°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,805 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 50°С и выдерживают 10 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 360 мин. Получают микросферы 97%, средний размер (Б) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 6

Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь вносят полимерные стабилизаторы 330 (0,50% масс.), 168 (1,00% масс.) и радикальные инициаторы БЦ-ФФ (1,5% масс.), 30 (2,5% масс.). Катализатор N14a (0,0087% масс.) вносят при 25°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,5;

- радикальные инициаторы 4,0;

- катализатор 0,0087;

- смесь олигоциклопентадиенов 94,4913.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,15), содержащую поверхностно-активное вещество вещество октенидина гидрохлорид (0,1% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 250°С, выдерживают при данной температуре в атмосфере азота в течение 45 мин. Получают микросферы 97%, средний размер (A) Tg (А), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 7

Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь вносят полимерные стабилизаторы 1010 (0,40% масс.), 168 (0,80% масс.), 770 (0,40% масс.) и радикальные инициаторы Б (1,0% масс.), 30 (2,0% масс.). Катализатор N17a (0,0088% масс.) вносят при 20°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,6;

- радикальные инициаторы 3,0;

- катализатор 0,0088;

- смесь олигоциклопентадиенов 95,3912.

Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество вещество цетилтриметиламмонийхлорид (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 60°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 340°С, выдерживают при данной температуре в атмосфере азота в течение 10 мин. Получают микросферы 97%, средний размер (А) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 8

Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 702 (0,20% масс.), 168 (0,50% масс.), 123 (0,50% масс.) и радикальный инициатор Б (0,5% масс.). Катализатор N4 (0,0170% масс.) вносят при 25°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,2;

- радикальные инициаторы 0,5;

- катализатор 0,017;

- смесь олигоциклопентадиенов 98,283.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество лаурилсульфат аммония (0,25% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 75°С и выдерживают 30 минут. Микросферы отделяют от воды и нагревают до 150°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 95%, средний размер (Б) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 9

Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,20% масс.), 168 (0,75% масс.), 292 (0,45% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N5 (0,0126% масс.) вносят при 10°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,4;

- радикальные инициаторы 1,0;

- катализатор 0,0126;

- смесь олигоциклопентадиенов 97,5874.

Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,1% масс.) при 30°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,805 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (A) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 10

Дициклопентадиен нагревают в автоклаве до 180°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы ДФА (0,40% масс.), 168 (0,50% масс.), 234 (0,20% масс.) и радикальные инициаторы Б (1,0% масс.), 30 (3,0% масс.). Катализатор N19a (0,0247% масс.) вносят при 0°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,1;

- радикальные инициаторы 4,0;

- катализатор 0,0247;

- смесь олигоциклопентадиенов 94,8753.

Полученную смесь перемешивают 1 минуту, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,728 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 265°С, выдерживают при данной температуре в атмосфере азота в течение 60 мин. Получают микросферы 97%, средний размер (Б) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 11

Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 702 (0,50% масс.), 168 (0,50% масс.) и радикальный инициатор БЦ-ФФ (2,0% масс.). Катализатор N2a (0,0167% масс.) вносят при 30°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,0;

- радикальные инициаторы 2,0;

- катализатор 0,0167;

- смесь олигоциклопентадиенов 96,9833.

Полученную смесь перемешивают 20 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,1% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 250°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 98%, средний размер ((A) Tg (Б), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).

Пример 12

Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,20% масс.), 168 (0,50% масс.), 292 (0,50% масс.) и радикальные инициаторы БЦ-ФФ (0,1% масс.), 30 (1,5% масс.). Катализатор N1a (0,0033% масс.) вносят при 30°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,2;

- радикальные инициаторы 1,6;

- катализатор 0,0033;

- смесь олигоциклопентадиенов 97,1967.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 280°С, выдерживают при данной температуре в атмосфере азота в течение 1 мин. Получают микросферы 90%, средний размер (В) Tg (Б), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).

Пример 13

Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 280 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерный стабилизатор 702 (0,10% масс.) и радикальные инициаторы БЦ-ФФ (1,0% масс.), 30 (1,0% масс.). Катализатор N1c (0,0116% масс.) вносят при 20°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 0,1;

- радикальные инициаторы 2,0;

- катализатор 0,0116;

- смесь олигоциклопентадиенов 97,8884.

Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 30°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,805 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 50°С и выдерживают 40 минут. Микросферы отделяют от воды и нагревают до 310°С, выдерживают при данной температуре в атмосфере азота в течение 5 мин. Получают микросферы 93%, средний размер (Б) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 14

Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,37% масс.), 168 (0,10% масс.), 770 (0,47% масс.) и радикальные инициаторы Б (1,0% масс.), 30 (1,0% масс.). Катализатор N6a (0,0061% масс.) вносят при 25°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 0,94;

- радикальные инициаторы 2,0;

- катализатор 0,0061;

- смесь олигоциклопентадиенов 97,0539.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 300°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 93%, средний размер (В) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (A).

Пример 15

Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 702 (0,50% масс.), 168 (0,50% масс.) и радикальные инициаторы БЦ-ФФ (1,0% масс.), ТФМ 1,0% масс.). Катализатор N9a (0,0023% масс.) вносят при 15°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,0;

- радикальные инициаторы 2,0;

- катализатор 0,0023;

- смесь олигоциклопентадиенов 96,9977.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 270°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (Б) Tg (B), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 16

Дициклопентадиен нагревают в автоклаве до 170°С, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 5057 (0,20% масс.), 168 (0,40% масс.), 770 (0,40% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N2 (0,0124% масс.) вносят при 25°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,0;

- радикальные инициаторы 1,0;

- катализатор 0,0124;

- смесь олигоциклопентадиенов 97,9876.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,2% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°С и выдерживают 5 минут. Микросферы отделяют от воды и нагревают до 270°С, выдерживают при данной температуре в атмосфере азота в течение 45 мин. Получают микросферы 98%, средний размер (Б) Tg (В), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 17

Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 360 мин. и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,35% масс.), 327 (0,20% масс.), 770 (0,50% масс.) и радикальный инициатор БЦ-ФФ (0,5% масс.). Катализатор N10a (0,0072% масс.) вносят при 5°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,05;

- радикальные инициаторы 0,5;

- катализатор 0,0072;

- смесь олигоциклопентадиенов 98,4428.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 170°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 98%, средний размер (A) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 18

Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 160 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 330 (0,40% масс.), ТНРР (0,80% масс.) и радикальный инициатор БЦ-ФФ (0,5% масс.). Катализатор N11a (0,0102% масс.) вносят при 25°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,2;

- радикальные инициаторы 0,5;

- катализатор 0,0102;

- смесь олигоциклопентадиенов 98,2898.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 60 мин. Получают микросферы 99%, средний размер (А) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 19

Дициклопентадиен нагревают в автоклаве до 190°С, выдерживают при заданной температуре в течение 50 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 702 (0,45% масс.), 168 (0,45% масс.), 770 (0,40% масс.) и радикальные инициаторы БЦ-ФФ (0,5% масс.), 30 (2,0% масс.). Катализатор N3b (0,0072% масс.) вносят при 30°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,3;

- радикальные инициаторы 2,5;

- катализатор 0,0072;

- смесь олигоциклопентадиенов 96,1928.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 60°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 250°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (Б) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 20

Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 280 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 168 (0,45% масс.), 168 (0,45% масс.) и радикальные инициаторы БЦ-ФФ (1,0% масс.), 30 (1,5% масс.). Катализатор N5b (0,0131% масс.) вносят при 30°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 0,9;

- радикальные инициаторы 2,5;

- катализатор 0,0131;

- смесь олигоциклопентадиенов 96,5869.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 260°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (Б) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 21

Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,36% масс.), 168 (0,72% масс.), 123 (0,45% масс.) и радикальные инициаторы Б (0,1% масс.), 30 (2,0% масс.). Катализатор N12a (0,0085% масс.) вносят при 25°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,53;

- радикальные инициаторы 2,1;

- катализатор 0,0085;

- смесь олигоциклопентадиенов 96,3615.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°С и выдерживают 60 минут. Микросферы отделяют от воды и нагревают до 270°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (А) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 22

Дициклопентадиен нагревают в автоклаве до 160°С, выдерживают при заданной температуре в течение 120 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 703 (0,45% масс.), 770 (0,45% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N15a (0,0106% масс.) вносят при 25°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 0,9;

- радикальные инициаторы 1,0;

- катализатор 0,0106;

- смесь олигоциклопентадиенов 98,0894.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество октенидина гидрохлорид (0,1% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 170°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 96%, средний размер (Б) Tg (А), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 23

Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,02% масс.), 168 (0,04% масс.), 770 (0,04% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N4a (0,0130% масс.) вносят при 25°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 0,1;

- радикальные инициаторы 1,0;

- катализатор 0,013;

- смесь олигоциклопентадиенов 98,887.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 92%, средний размер (А) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 24

Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 14 (0,40% масс.), 168 (0,80% масс.) и радикальный инициатор Б (0,1% масс.). Катализатор N3 (0,0098% масс.) вносят при 25°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,2;

- радикальные инициаторы 0,1;

- катализатор 0,0098;

- смесь олигоциклопентадиенов 98,6902.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество бензалкония хлорид (0,1% масс.) при 30°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,805 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 180°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 98%, средний размер (A) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 25

Дициклопентадиен нагревают в автоклаве до 150°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,50% масс.), 168 (0,50% масс.), 770 (0,50% масс.) и радикальные инициаторы БЦ-ФФ (1,0% масс.), 30 (2,0% масс.). Катализатор N16a (0,0086% масс.) вносят при 30°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,5;

- радикальные инициаторы 3,0;

- катализатор 0,0086;

- смесь олигоциклопентадиенов 95,4914.

Полученную смесь перемешивают 1 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 75°С и выдерживают 20 минут. Микросферы отделяют от воды и нагревают до 260°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (A) Tg (А), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 26

Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 330 (0,45% масс.), ТНРР (0,45% масс.), 292 (0,45% масс.) и радикальные инициаторы БЦ-ФФ (1,0% масс.), 30 (1,0% масс.). Катализатор N20a (0,0053% масс.) вносят при 15°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,35;

- радикальные инициаторы 2,0;

- катализатор 0,0053;

- смесь олигоциклопентадиенов 96,6447.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,1% масс.) при 50°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,552 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 255°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 92%, средний размер (В) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 27

Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 702 (0,40% масс.), 327 (0,20% масс.) и радикальный инициатор Б (2,0% масс.). Катализатор N1b (0,0069% масс.) вносят при 30°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 0,6;

- радикальные инициаторы 2,0;

- катализатор 0,0069;

- смесь олигоциклопентадиенов 97,3931.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество бензалкония хлорид (0,2% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 75°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 120 мин. Получают микросферы 95%, средний размер (В) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 28

Дициклопентадиен нагревают в автоклаве до 175°С, выдерживают при заданной температуре в течение 180 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 330 (0,40% масс.), 168 (0,50% масс.), 770 (0,50% масс.) и радикальный инициатор Б (1,0% масс.). Катализатор N13a (0,0105% масс.) вносят при 25°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,4;

- радикальные инициаторы 1,0;

- катализатор 0,0105;

- смесь олигоциклопентадиенов 97,5895.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество октенидина гидрохлорид (0,1% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 220°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (A) Tg (Б), прочность при сжатии (А), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (Б).

Пример 29

Дициклопентадиен нагревают в автоклаве до 220°С, выдерживают при заданной температуре в течение 15 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (1,50% масс.), ТНРР (1,00% масс.), 123 (1,50% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N18a (0,0134% масс.) вносят при 10°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 4,0;

- радикальные инициаторы 1,0;

- катализатор 0,0134;

- смесь олигоциклопентадиенов 94,9866.

Полученную смесь перемешивают 5 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,2% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 96%, средний размер (А) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 30

Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 354 (1,00% масс.), 770 (0,50% масс.) и радикальные инициаторы БЦ-ФФ (1,0% масс.), 30 (1,0% масс.). Катализатор N2b (0,0070% масс.) вносят при 45°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,5;

- радикальные инициаторы 2,0;

- катализатор 0,007;

- смесь олигоциклопентадиенов 96,493.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,1% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 95°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 275°С, выдерживают при данной температуре в атмосфере азота в течение 30 мин. Получают микросферы 97%, средний размер (A) Tg (А), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (А).

Пример 31

Дициклопентадиен нагревают в автоклаве до 200°С, выдерживают при заданной температуре в течение 60 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 1010 (0,40% масс.), ТНРР (0,40% масс.), 770 (0,40% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N8a (0,0103% масс.) вносят при 25°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,2;

- радикальные инициаторы 1,0;

- катализатор 0,0103;

- смесь олигоциклопентадиенов 97,7897.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество цетилтриметиламмонийхлорид (0,2% масс.) при 35°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,729 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 70°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 170°С, выдерживают при данной температуре в атмосфере азота в течение 240 мин. Получают микросферы 98%, средний размер (Б) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Пример 32

Дициклопентадиен нагревают в автоклаве до 165°С, выдерживают при заданной температуре в течение 240 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы 702 (0,37% масс.), 168 (0,73% масс.), 770 (0,37% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N4b (0,0094% масс.) вносят при 30°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,47;

- радикальные инициаторы 1,0;

- катализатор 0,0094;

- смесь олигоциклопентадиенов 97,5206.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,5% масс.) при 40°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,657 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 80°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 200°С, выдерживают при данной температуре в атмосфере азота в течение 60 мин. Получают микросферы 96%, средний размер (В) Tg (В), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см, набухание (В).

Пример 33

Дициклопентадиен нагревают в автоклаве до 155°С, выдерживают при заданной температуре в течение 300 мин и охлаждают до комнатной температуры. В полученную смесь олигоциклопентадиенов вносят полимерные стабилизаторы ДППД (0,37% масс.), 168 (0,73% масс.), 770 (0,37% масс.) и радикальный инициатор БЦ-ФФ (1,0% масс.). Катализатор N1 (0,0095% масс.) вносят при 30°С.

Полученная полимерная матрица имеет следующий состав, масс.%:

- полимерные стабилизаторы 1,47;

- радикальные инициаторы 1,0;

- катализатор 0,0095;

- смесь олигоциклопентадиенов 97,5205.

Полученную смесь перемешивают 10 минут, после чего вводят в виде ламинарного потока в воду (полимерная смесь/вода вещество 0,1), содержащую поверхностно-активное вещество додецилсульфат натрия (0,4% масс.) при 45°С. Смесь воды с поверхностно-активными веществами имеет вязкость 0,602 спуаз, что ниже вязкости полимерной матрицы при той же температуре. При постоянном перемешивании воду нагревают до 100°С и выдерживают 15 минут. Микросферы отделяют от воды и нагревают до 270°С, выдерживают при данной температуре в атмосфере азота в течение 60 мин. Получают микросферы 96%, средний размер (В) Tg (Б), прочность при сжатии (Б), сферичность 0,9, объемная плотность 0,6 г/см3, набухание (В).

Источник поступления информации: Роспатент

Показаны записи 121-130 из 132.
25.08.2017
№217.015.bf28

Солнечный фотоэлектрический модуль со стационарным концентратором (варианты)

Изобретение относится к области солнечной фотоэнергетики, в частности к устройствам для прямого преобразования солнечной энергии в электрическую с использованием концентраторов солнечного излучения, и может быть использовано в солнечных энергоустановках для работы в условиях как высокой, так и...
Тип: Изобретение
Номер охранного документа: 0002617041
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.c072

Многофункциональная присадка к автомобильным бензинам

Изобретение относится к многофункциональной присадке к бензину, содержащей добавку к бензину с моющим действием, которая является производным ангидрида полиизобутенилянтарной кислоты, получаемого путем взаимодействия полиизобутенов или полиизобутенов с мол. массой, равной от 300 до 5000, с...
Тип: Изобретение
Номер охранного документа: 0002616624
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c07e

Катализатор гидрооблагораживания вакуумного газойля и способы его приготовления (варианты)

Изобретение относится к катализатору гидрооблагораживания вакуумного газойля. Катализатор содержит, мас.%: оксид никеля 5,0-9,0, оксид молибдена 18,0-24,0, оксид фосфора 1,0-3,0 и носитель, состоящий из оксида алюминия 62,2-70,5, вносимого из мезопористого алюмосиликата и гидроксида алюминия, и...
Тип: Изобретение
Номер охранного документа: 0002616601
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c0a6

Лиганд для получения комплекса переходного металла, способ его получения и способ получения комплекса переходного металла с использованием лиганда

Изобретение относится к лигандам для получения комплексов переходного металла, пригодным для использования в химической промышленности, общей формулы: выбранным из 4,5-бис(дифенилфосфино)-2Н-1,2,3-триазола, 4,5-бис(дифенилфосфино)-1-(гексил)-1Н-1,2,3-триазола,...
Тип: Изобретение
Номер охранного документа: 0002616628
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.cb2e

Катализатор гидроочистки дизельных фракций и способ его приготовления

Изобретение относится к каталитической химии, в частности к приготовлению катализаторов гидроочистки нефтяного сырья. Катализатор включает носитель из композиции оксидов алюминия и молибдена и содержит мас. %: оксид молибдена - 16,0-22,0; оксид никеля или кобальта - 5,0-7,0; оксид бора -...
Тип: Изобретение
Номер охранного документа: 0002620089
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cb9c

Катализатор гидрооблагораживания вакуумного газойля и способ его приготовления

Изобретение относится к катализатору гидрооблагораживания вакуумного газойля и способу его приготовления. Катализатор содержит, мас.%: оксид кобальта 5,0-9,0, оксид вольфрама 7,0-14,0, оксид молибдена 7,0-14,0, оксид алюминия в виде смеси, состоящей из 30-50 мас.% оксида алюминия в виде бемита...
Тип: Изобретение
Номер охранного документа: 0002620267
Дата охранного документа: 24.05.2017
26.08.2017
№217.015.d975

Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения

Изобретение относится к области катализа и нефтепереработки, в частности к катализатору, на основе алюмофосфатного цеолита АРО-11 или силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой. Готовый катализатор содержит, мас.%: 0,1-0,3 Pt, 0-0,2 Sn, 10,0-80,0 алюмофосфатного...
Тип: Изобретение
Номер охранного документа: 0002623434
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.dee2

Способ разработки низкопроницаемой залежи

Изобретение относится к нефтедобывающей промышленности и может быть применено для повышения эффективности разработки нефтяных низкопроницаемых залежей. Разработку нефтяных залежей ведут системой наклонно направленных нагнетательных и добывающих скважин с нагнетательной скважиной с ГРП в центре...
Тип: Изобретение
Номер охранного документа: 0002624944
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e5a2

Способ измерения петрофизических параметров низкопроницаемого керна

Изобретение относится к области нефтедобычи, в частности к способам определения проницаемости горных пород в лабораторных условиях, и предназначено для лабораторного определения коэффициента абсолютной газопроницаемости при стационарной фильтрации в образцах керна ультранизкопроницаемых горных...
Тип: Изобретение
Номер охранного документа: 0002626749
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e5e8

Тандемный металлооксидный солнечный элемент

Изобретение относится к области солнечной фотоэнергетики. Тандемный металлооксидный солнечный элемент содержит два расположенных один под другим по ходу светового потока металлооксидных солнечных элемента (МО СЭ) на основе мезоскопических слоев сенсибилизированного металлооксида, имеющих общий...
Тип: Изобретение
Номер охранного документа: 0002626752
Дата охранного документа: 31.07.2017
Показаны записи 121-130 из 155.
25.08.2017
№217.015.bf28

Солнечный фотоэлектрический модуль со стационарным концентратором (варианты)

Изобретение относится к области солнечной фотоэнергетики, в частности к устройствам для прямого преобразования солнечной энергии в электрическую с использованием концентраторов солнечного излучения, и может быть использовано в солнечных энергоустановках для работы в условиях как высокой, так и...
Тип: Изобретение
Номер охранного документа: 0002617041
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.c072

Многофункциональная присадка к автомобильным бензинам

Изобретение относится к многофункциональной присадке к бензину, содержащей добавку к бензину с моющим действием, которая является производным ангидрида полиизобутенилянтарной кислоты, получаемого путем взаимодействия полиизобутенов или полиизобутенов с мол. массой, равной от 300 до 5000, с...
Тип: Изобретение
Номер охранного документа: 0002616624
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c07e

Катализатор гидрооблагораживания вакуумного газойля и способы его приготовления (варианты)

Изобретение относится к катализатору гидрооблагораживания вакуумного газойля. Катализатор содержит, мас.%: оксид никеля 5,0-9,0, оксид молибдена 18,0-24,0, оксид фосфора 1,0-3,0 и носитель, состоящий из оксида алюминия 62,2-70,5, вносимого из мезопористого алюмосиликата и гидроксида алюминия, и...
Тип: Изобретение
Номер охранного документа: 0002616601
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c0a6

Лиганд для получения комплекса переходного металла, способ его получения и способ получения комплекса переходного металла с использованием лиганда

Изобретение относится к лигандам для получения комплексов переходного металла, пригодным для использования в химической промышленности, общей формулы: выбранным из 4,5-бис(дифенилфосфино)-2Н-1,2,3-триазола, 4,5-бис(дифенилфосфино)-1-(гексил)-1Н-1,2,3-триазола,...
Тип: Изобретение
Номер охранного документа: 0002616628
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.cb2e

Катализатор гидроочистки дизельных фракций и способ его приготовления

Изобретение относится к каталитической химии, в частности к приготовлению катализаторов гидроочистки нефтяного сырья. Катализатор включает носитель из композиции оксидов алюминия и молибдена и содержит мас. %: оксид молибдена - 16,0-22,0; оксид никеля или кобальта - 5,0-7,0; оксид бора -...
Тип: Изобретение
Номер охранного документа: 0002620089
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cb9c

Катализатор гидрооблагораживания вакуумного газойля и способ его приготовления

Изобретение относится к катализатору гидрооблагораживания вакуумного газойля и способу его приготовления. Катализатор содержит, мас.%: оксид кобальта 5,0-9,0, оксид вольфрама 7,0-14,0, оксид молибдена 7,0-14,0, оксид алюминия в виде смеси, состоящей из 30-50 мас.% оксида алюминия в виде бемита...
Тип: Изобретение
Номер охранного документа: 0002620267
Дата охранного документа: 24.05.2017
26.08.2017
№217.015.d975

Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения

Изобретение относится к области катализа и нефтепереработки, в частности к катализатору, на основе алюмофосфатного цеолита АРО-11 или силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой. Готовый катализатор содержит, мас.%: 0,1-0,3 Pt, 0-0,2 Sn, 10,0-80,0 алюмофосфатного...
Тип: Изобретение
Номер охранного документа: 0002623434
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.dee2

Способ разработки низкопроницаемой залежи

Изобретение относится к нефтедобывающей промышленности и может быть применено для повышения эффективности разработки нефтяных низкопроницаемых залежей. Разработку нефтяных залежей ведут системой наклонно направленных нагнетательных и добывающих скважин с нагнетательной скважиной с ГРП в центре...
Тип: Изобретение
Номер охранного документа: 0002624944
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e5a2

Способ измерения петрофизических параметров низкопроницаемого керна

Изобретение относится к области нефтедобычи, в частности к способам определения проницаемости горных пород в лабораторных условиях, и предназначено для лабораторного определения коэффициента абсолютной газопроницаемости при стационарной фильтрации в образцах керна ультранизкопроницаемых горных...
Тип: Изобретение
Номер охранного документа: 0002626749
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e5e8

Тандемный металлооксидный солнечный элемент

Изобретение относится к области солнечной фотоэнергетики. Тандемный металлооксидный солнечный элемент содержит два расположенных один под другим по ходу светового потока металлооксидных солнечных элемента (МО СЭ) на основе мезоскопических слоев сенсибилизированного металлооксида, имеющих общий...
Тип: Изобретение
Номер охранного документа: 0002626752
Дата охранного документа: 31.07.2017
+ добавить свой РИД