×
20.07.2014
216.012.dfe0

Результат интеллектуальной деятельности: ТЕРМОКАМЕРА ДЛЯ ИСПЫТАНИЯ ЭЛЕКТРОННЫХ ИЗДЕЛИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам, используемым для климатических испытаний полупроводниковых приборов при одновременном измерении их электрических параметров. Изобретение обеспечивает получение нормированных условий климатических испытаний электронных изделий путем равномерной подачи рециркуляционного воздуха на все полки термокамеры, что обеспечивает необходимую надежность электрических испытаний электронных изделий. Термокамера для испытания электронных изделий содержит корпус с рабочей камерой, вентилятор, установленный в рабочей камере между вытяжным и нагнетательным патрубками, узел очистки рециркуляционного воздуха, установленный в нагнетательном патрубке и выполненный в виде соосно соединенных суживающегося диффузора с винтообразными канавками на внутренней поверхности и расширяющегося сопла, в котором размещено осушивающее устройство в виде емкости, предназначенной для заполнения адсорбирующим веществом. На внутренней поверхности расширяющегося сопла выполнены винтообразные канавки, касательная которых имеет направление против хода часовой стрелки, а касательная винтообразных канавок на внутренней поверхности суживающегося диффузора имеет направление по ходу часовой стрелки. В корпусе в угловых соединениях вертикальных и горизонтальных элементов воздухопровода расположены завихрители, причем каждый завихритель выполнен в виде лопасти, торцевые поверхности которых повернуты на 90° относительно друг друга. 6 ил.
Основные результаты: Термокамера для испытания электронных изделий, содержащая корпус, в котором размещена рабочая камера, вентилятор, установленный в рабочей камере между вытяжным и нагнетательным патрубками, узел очистки рециркуляционного воздуха, установленный в нагнетательном патрубке и выполненный в виде соосно соединенных суживающегося диффузора с винтообразными канавками на внутренней поверхности и расширяющегося сопла, в котором размещено осушивающее устройство в виде емкости, предназначенной для заполнения адсорбирующим веществом, вентилятор снабжен приводом с регулятором скорости вращения, соединенным с выходами регулятора температуры и регулятора давления, и датчиком температуры и датчиком давления, подсоединенными соответственно к регулятору температуры и регулятору давления, каждый из которых содержит блок сравнения и блок задания, при этом блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, причем выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на выходе подключен к регулятору скорости в виде блока порошковых электромагнитных муфт привода вентилятора, а узел очистки рециркуляционного воздуха снабжен сеткой, выполненной из биметалла и установленной после внутренней круговой канавки на входе в суживающийся диффузор и соединенной с накопителем загрязнений, при этом на внутренней поверхности расширяющегося сопла выполнены винтообразные канавки, касательная которых имеет направление против хода часовой стрелки, а касательная винтообразных канавок на внутренней поверхности суживающегося диффузора имеет направление по ходу часовой стрелки, отличающаяся тем что в корпусе в угловых соединениях вертикальных и горизонтальных элементов воздухопровода расположены завихрители, причем каждый завихритель выполнен в виде лопасти, торцевые поверхности которых повернуты на 90° относительно друг друга.

Изобретение относится к устройствам, используемым в полупроводниковом производстве, и может быть применено для климатических испытаний готовых полупроводниковых приборов при одновременном измерении их электрических параметров.

Известна полезная модель термокамеры для испытания электронных изделий (см. патент РФ на полезную модель №51 787, МПК H01L 21/66, 2006, Бюл. №6), содержащая кожух, в котором размещена рабочая камера, вентилятор, установленный в рабочей камере между вытяжным и нагнетательным патрубками, узел очистки рециркуляционного воздуха, установленный в нагнетательном патрубке и выполненный в виде соосно соединенных суживающегося диффузора с винтообразными канавками на внутренней поверхности и расширяющегося сопла, в котором размещено осушивающее устройство в виде емкости, предназначенной для заполнения адсорбирующим веществом, вентилятор снабжен приводом с регулятором скорости вращения, соединенным с выходами регулятора температуры и регулятора давления, и датчиком температуры и датчиком давления, подсоединенными соответственно к регулятору температуры и регулятору давления, каждый из которых содержит блок сравнения и блок задания, при этом блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, причем выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на выходе подключен к регулятору скорости в виде блока порошковых электромагнитных муфт привода вентилятора.

Недостатком данной термокамеры является снижение надежности результатов испытания электронных изделий из-за ухудшения качества очистки рециркуляционного воздуха при наличии в осевом потоке, проходящем через суживающийся диффузор, твердых частиц ржавчины и/или окалины, а также мелкодисперсной влаги, несобранных во внутренних канавках диффузора и, соответственно, оказывающих отрицательное воздействие на адсорбирующее вещество, заключающееся в засорении и растрескивании зерен адсорбента.

Известна термокамера для испытания электронных изделий (см. патент РФ №2413332, МПК H01L 21/66, Опубл. 27.02.2011), содержащая корпус, в котором размещена рабочая камера, вентилятор, установленный в рабочей камере между вытяжным и нагнетательным патрубками, узел очистки рециркуляционного воздуха, установленный в нагнетательном патрубке и выполненный в виде соосно соединенных суживающегося диффузора с винтообразными канавками на внутренней поверхности и расширяющегося сопла, в котором размещено осушивающее устройство в виде емкости, предназначенной для заполнения адсорбирующим веществом, вентилятор снабжен приводом с регулятором скорости вращения, соединенным с выходами регулятора температуры и регулятора давления, и датчиком температуры и датчиком давления, подсоединенными соответственно к регулятору температуры и регулятору давления, каждый из которых содержит блок сравнения и блок задания, при этом блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, причем выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на выходе подключен к регулятору скорости в виде блока порошковых электромагнитных муфт привода вентилятора, а узел очистки рециркуляционного воздуха снабжен сеткой, выполненной из биметалла и установленной после внутренней круговой канавки на входе в суживающийся диффузор и соединенной с накопителем загрязнений, при этом на внутренней поверхности расширяющегося сопла выполнены винтообразные канавки, касательная которых имеет направление против хода часовой стрелки, а касательная винтообразных канавок на внутренней поверхности суживающегося диффузора имеет направление по ходу часовой стрелки.

Недостатком технического решения является снижение надежности электронных изделий при электрических испытаниях из-за разнородности воздушных потоков, поступающих на полки термокамеры по ее высоте, обусловленной наличием «застойных зон» в местах перехода воздушного рециркуляционного потока из одного пространственного, например горизонтального, положения в другое - вертикальное и, наоборот, из вертикального в горизонтальное.

Технической задачей изобретения является повышение обеспечение нормированных условий климатических испытаний электронных изделий путем равномерной подачи рециркуляционного воздуха на все полки термокамеры, что обеспечивает необходимую надежность электрических испытаний электронных изделий.

Технический результат достигается тем, что при этом в корпусе в угловых соединениях, вертикальных и горизонтальных элементах, воздухопроводах расположены завихрители, причем каждый завихритель выполнен в виде лопастей, торцевые поверхности которых повернуты на 90° относительно друг друга.

На фиг.1 представлена принципиальная схема термокамеры для испытания электронных изделий с системой автоматизированного контроля температуры и давления рециркуляционного воздуха, на фиг.2 - узел очистки рециркуляционного воздуха с сеткой из биметалла и накопителем загрязнений, на фиг.3 - разрез сетки из биметалла, на фиг.4. - внутренняя поверхность расширяющегося сопла с винтообразными канавками, касательная которых имеет направление против хода часовой стрелки, на фиг.5 - внутренняя поверхность суживающегося диффузора с винтообразными канавками, касательная которых направлена по ходу часовой стрелки, на фиг.6 - завихритель, выполненный в виде лопасти.

Термокамера для испытания электронных изделий (фиг.1) состоит из кожуха 1, в котором размещена рабочая камера 2, вентилятора 3, установленного в рабочей камере 2 между вытяжным 4 и нагнетательным 5 патрубками, узла очистки рециркуляционного воздуха 6, установленного в нагнетательном патрубке 5 и выполненного в виде соосно соединенных суживающегося диффузора 7 с винтообразными канавками 8, расширяющегося сопла 9, осушивающего устройства 10, установленного в расширяющемся сопле 9, занимающего всю площадь выходного сечения и представляющего собой емкость, предназначенную для заполнения адсорбирующим веществом.

Вентилятор снабжен приводом 11 с регулятором скорости вращения 12 в виде блока порошковых электромагнитных муфт, а в рабочей камере 2 установлен датчик температуры 13, подключенный к регулятору температуры 14, который содержит блок сравнения 15 и блок задания 16, при этом блок сравнения 15 соединен с входом электронного усилителя 17, оборудованного блоком 18 нелинейной обратной связи, причем выход электронного усилителя 17 соединен с входом магнитного усилителя 19 с выпрямителем на выходе, подключенным к регулятору скорости вращения 12 в виде блока порошковых электромагнитных муфт.

В нагнетательном патрубке 5 перед выходным сечением осушивающего устройства 10 установлен датчик давления 20, подключенный к регулятору давления 21, который содержит блок сравнения 22 и блок задания 23, при этом блок сравнения 22 соединен с входом электронного усилителя 24, оборудованного блоком 25 нелинейной обратной связи, причем выход электронного усилителя 24 соединен с входом магнитного усилителя 26 с выпрямителем на выходе, подключенным к регулятору скорости вращения 12 в виде блока порошковых электромагнитных муфт.

Узел очистки рециркуляционного воздуха 6 (фиг.2) снабжен сеткой 27 (фиг.3), выполненной из биметалла и установленной после внутренней круговой канавки 28 на входе 29 в суживающийся диффузор 7 и соединенной с накопителем загрязнений 30. На внутренней поверхности 31 расширяющегося сопла 9 выполнены винтообразные канавки 32, касательная которых имеет направление против хода часовой стрелки, а касательная винтообразных канавок 8 на внутренней поверхности 33 суживающегося диффузора 7 имеет направление по ходу часовой стрелки. Лопасти 34, 35, 36 и 37 расположены в корпусе 1 в угловых соединениях вертикальных и горизонтальных воздуховодах термокамеры. При этом торцевая поверхность 38 каждой лопасти 34, 35, 36 и 37 повернута на 90° относительно торцевой поверхности 39.

Термокамера для испытания электронных изделий работает следующим образом.

При прохождении потоком рециркуляционного воздуха поворота в угловых соединениях корпуса 1 вертикальных и горизонтальных элементов воздуховода, образованного между корпусом 1 и рабочей камерой 2, образуемые «застойные зоны» (см., например, стр.29. Коваленко Л.М. Глушков А.Ф. Теплообменники с интенсификацией теплоотдачи. - М.: Энергоатомиздат, 1986. - 240 с.), в которых слои движущегося потока, описывающего дуги больших радиусов (у вогнутой стенки поворота корпуса 1 движутся медленнее, чем слои потока, описывающие дуги малых радиусов у выпуклой стенки поворота корпуса 1). Скорость движения обратно пропорциональна радиусу кривизны траектории частицы, что приводит к перераспределению рециркуляционного потока по полкам рабочей камеры 1 и, соответственно, к изменению климатических параметров воздействия на испытуемые электронные изделия. А это способствует увеличению выхода брака готовой продукции. Для устранения образования «застойных зон» в местах поворота движущегося потока рециркуляционного воздуха установлены завихрители 34, 35, 36 и 37. При этом поток рециркуляционного воздуха при своем движении в местах поворота (угловые соединения вертикальных и горизонтальных воздуховодов) перемещаясь от торцевой поверхности 38 к торцевой поверхности 39 каждой из лопастей 34, 35, 36 и 37 изменяет свое направление на 90°, разрушая «застойную зону» в местах поворота, осуществляя тем самым равномерное распределение потока рециркуляционного воздуха по полкам рабочей камеры. Кроме того удаление «застойных зон» способствует устранению дополнительного аэродинамического сопротивления движущемуся потоку рециркуляционного воздуха, и, как следствие этого, отсутствует необходимость увеличения мощности на привод вентилятора, т.е. обеспечивается энергосберегающий процесс климатических электрических испытаний электронных изделий.

Рециркуляционный воздух от испытуемых электронных изделий, расположенных на полках рабочей камеры 2, с загрязнениями в виде мелкодисперсной пыли, ржавчины и/или окалины и водомасляной эмульсии через вытяжной патрубок 4 поступает в вентилятор 3, и после закрутки воздушного потока направляется к узлу очистки 6 на вход 29 суживающегося диффузора 7.

Загрязненный рециркуляционный воздух контактирует с сеткой 27, где очищается от твердых частиц и мелкодисперсной влаги путем налипания загрязнений на ее поверхность. Так как сетка выполнена из биметалла и при постоянном перепаде температур на выходе из вентилятора 3 и в суживающемся диффузоре 7, равном 2-3°С, (эффект Джоуля - Томсона) между внешней и внутренней поверхностями сетки 27 по ходу движения потока образуется градиент температуры, обеспечивающий возникновение термовибрации (см., например, Дмитриев А.Н. и др. Биметаллы. - Пермь, 1991 - 415 с.). В результате с сетки из биметалла 27 непрерывно осуществляется стряхивание твердых частиц и мелкодисперсной влаги во внутреннюю круговую канавку 28, откуда под действием гравитационных сил они поступают в накопитель загрязнений 30 для последующего удаления вручную или автоматически.

Не задержанные ячейками сетки из биметалла 27 мелкодисперсные загрязнения поступают с потоком рециркуляционного воздуха в полость суживающегося диффузора 7 узла очистки 6, где завихряются, перемещаясь по винтообразным канавкам 8, и переходят в винтообразное движение пограничного слоя потока, движущегося по ходу часовой стрелки (см., например, М.Я.Выгодский. Справочник по высшей математике. - М.: Наука, 1965, стр.872). Взвешенные частицы загрязнений рециркуляционного воздуха центробежной силой отбрасываются к стенке диффузора 7 и перемещаются по внутренним винтообразным канавкам 8, где сталкиваются с другими частицами, укрупняются, становятся ядрами конденсации водомасляного пара. Образовавшаяся смесь загрязнений собирается во внутренней круговой канавке 28 и под действием гравитационных сил они поступают в накопитель загрязнений 30.

Частично очищенный от загрязнений рециркуляционный воздух поступает в расширяющееся сопло 9. В результате внезапного расширения рециркуляционного воздуха резко падает его скорость со снижением температуры, что приводит к дополнительной конденсации паров влаги из рециркуляционного воздуха. А при наличии в нем мелкодисперсных твердых и каплеобразных частиц, не отделившихся в суживающемся диффузоре 7, наблюдается коагуляция сконденсировавшейся парообразной влаги, и полученная смесь перемещается в полости расширяющегося сопла 9 и бомбардирует поверхность осушивающего устройства 10, снижая его очищающие характеристики.

Устранение данного явления наблюдается при выполнении на внутренней поверхности 31 расширяющегося сопла 9 винтообразных канавок 32, касательная которых имеет направление против хода часовой стрелки. Тогда взвешенные частицы загрязнений («витающие» в потоке рециркуляционного воздуха не отделившаяся в суживающемся диффузоре масса мелкодисперсных твердых и каплеобразных частиц и сконденсировавшаяся в полости расширяющегося сопла 9 парообразная влага) под действием центробежной силы отбрасываются к внутренней поверхности 31 и попадают в винтообразные канавки 32, завихряясь в пограничном слое в направлении против хода часовой стрелки. При этом скоагулированные загрязнения по мере укрупнения перемещаются по винтообразным канавкам 32 расширяющегося сопла 9 от осушивающего устройства 10 к суживающемуся диффузору 7.

В результате на месте соединения суживающегося диффузора 7 и расширяющегося сопла 9 встречаются закрученные в противоположных направлениях пограничные слои, что приводит при их контакте к микровзрывам (см., например, Меркулов В.П. Вихревой эффект и его применение в технике. -Куйбышев: Машиностроение. 1969-436 с., ил.), которые устраняют «витание» загрязнений, отбрасывая их к внутренней поверхности 33 суживающегося диффузора 7 в винтообразные канавки 8 с последующим перемещением в круговую канавку 28 для сбора в накопителе загрязнений 30 и последующего удаления, осуществляемого вручную и автоматически (на фиг.2 не показано).

А ламинарно движущийся поток, очищенный от мелкодисперсных твердых и каплеобразных частиц и насыщенный преимущественно парообразной влагой, контактирует с осушивающим устройством 10, выполненным в виде емкости определенной конфигурации и заполненной адсорбирующим веществом.

Процесс адсорбционного поглощения влаги сопровождается выделением определенного количества тепла, повышающего в конечном итоге температуру рециркуляционного воздуха. Возникающее отношение градиента давления к градиенту температуры в узле очистки рециркуляционного воздуха 6 приводит к появлению эффекта Джоуля-Томсона, что особенно явно выражается при увеличении подачи вентилятора 3, т.к. в этом случае возрастает скорость движения воздуха в узле его очистки 6.

Увеличение температуры рециркуляционного воздуха в рабочей камере 2 регулируется датчиком температуры 13. При этом сигнал, поступающий с датчика температуры 13, становится большим, чем сигнал блока задания 16, и на выходе блока сравнения 15 появится сигнал отрицательной полярности, который поступает на вход электронного усилителя 17 одновременно с сигналом отрицательной нелинейной обратной связи блока 18. За счет этого в электронном усилителе 17 компенсируется нелинейность характеристики привода 1 вентилятора 3. Сигнал с выхода электронного усилителя 17 поступает на вход магнитного усилителя 19, где усиливается по мощности, выпрямляется и поступает на регулятор скорости вращения 12 в виде блока порошковых электромагнитных муфт. Отрицательная полярность сигнала электронного усилителя 17 вызывает уменьшение тока возбудителя на выходе магнитного усилителя 19. В результате снижается момент от привода 11 вентилятора 3, передаваемый на регулятор скорости 12 в виде блока порошковых электромагнитных муфт, и подача рециркуляционного воздуха уменьшается, достигая значений, нормированно заданных для условий испытания электронных изделий.

По мере прохождения рециркуляционного воздуха, загрязненного парообразной влагой, через емкость осушивающего устройства 10 наблюдается насыщение адсорбирующего вещества влагой с последующим увеличением перепада давлений на входе и выходе узла очистки рециркуляционного воздуха 6 (см., например, Борисов Г.С.и др. Основные процессы и аппараты химической промышленности. Пособие по проектированию. - М.: Химия, 1991. - 496 с., ил.) и, соответственно падает давление в рабочей камере 2, что регистрируется датчиком давления 20. При этом сигнал блока задания 23 регулятора давления 21 превышает сигнал датчика давления 20 и на выходе блока сравнения 22 появится сигнал положительной полярности, который поступает на вход электронного усилителя 24. Сюда же поступает и сигнал с блока 25 нелинейной обратной связи, который вычитается из сигнала блока сравнения 22. За счет этого в электронном усилителе 24 компенсируется нелинейность характеристики вентилятора 3. сигнал с выхода электронного усилителя 24 поступает на вход магнитного усилителя 26, где он усиливается по мощности, выпрямляется и поступает на регулятор скорости 12 в виде блока порошковых электромагнитных муфт привода 11 вентилятора 3. Положительная полярность сигнала усилителя 24 вызывает увеличение тока возбуждения на выходе магнитного усилителя 26, тем самым увеличивается момент, передаваемый от привода 11 на регулятор скорости вращения 12 в виде блока порошковых электромагнитных муфт, за счет чего достигается увеличение подачи воздуха вентилятора 3 до тех пор, пока давление в рабочей камере 2 не станет равным заданной величине.

Дополнительное отделение твердых и каплеобразных частиц как на сетке 27 из биметалла, так и в полости расширяющегося сопла 9, способствует устранению загрязнений поверхности адсорбирующего вещества, а это, как известно, приводит к повышению качества осушки рециркуляционного воздуха. На выходе из осушивающего устройства 10 рециркуляционный воздух с заданными климатическими характеристиками по влажности, температуре и давлению поступает на полки рабочей камеры 2 для обеспечения нормированных условий испытаний готовых полупроводниковых приборов при одновременном измерении их электрических параметров.

Оригинальность предлагаемого изобретения заключается в том, что расположение завихрений, выполненных в виде лопасти, торцевые поверхности которой повернуты на 90° относительно друг друга, устраняет образование «застойных зон» в угловых соединениях вертикальных и горизонтальных воздуховодов для рециркуляционного воздуха, образованных между корпусом и рабочей камерой. В результате обеспечивается не только равномерное распределение потока рециркуляционного воздуха по полкам рабочей камеры, что поддерживает нормированные климатические условия для электрических испытаний электронных изделий, но и снижает аэродинамическое сопротивление движущемуся потоку на поворотах, а это приводит к уменьшению мощности на привод вентилятора. Следовательно, в конечном итоге наблюдается уменьшение выхода брака готовой продукции, т.е. снижение себестоимости производства электронных изделий.

Термокамера для испытания электронных изделий, содержащая корпус, в котором размещена рабочая камера, вентилятор, установленный в рабочей камере между вытяжным и нагнетательным патрубками, узел очистки рециркуляционного воздуха, установленный в нагнетательном патрубке и выполненный в виде соосно соединенных суживающегося диффузора с винтообразными канавками на внутренней поверхности и расширяющегося сопла, в котором размещено осушивающее устройство в виде емкости, предназначенной для заполнения адсорбирующим веществом, вентилятор снабжен приводом с регулятором скорости вращения, соединенным с выходами регулятора температуры и регулятора давления, и датчиком температуры и датчиком давления, подсоединенными соответственно к регулятору температуры и регулятору давления, каждый из которых содержит блок сравнения и блок задания, при этом блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, причем выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на выходе подключен к регулятору скорости в виде блока порошковых электромагнитных муфт привода вентилятора, а узел очистки рециркуляционного воздуха снабжен сеткой, выполненной из биметалла и установленной после внутренней круговой канавки на входе в суживающийся диффузор и соединенной с накопителем загрязнений, при этом на внутренней поверхности расширяющегося сопла выполнены винтообразные канавки, касательная которых имеет направление против хода часовой стрелки, а касательная винтообразных канавок на внутренней поверхности суживающегося диффузора имеет направление по ходу часовой стрелки, отличающаяся тем что в корпусе в угловых соединениях вертикальных и горизонтальных элементов воздухопровода расположены завихрители, причем каждый завихритель выполнен в виде лопасти, торцевые поверхности которых повернуты на 90° относительно друг друга.
ТЕРМОКАМЕРА ДЛЯ ИСПЫТАНИЯ ЭЛЕКТРОННЫХ ИЗДЕЛИЙ
ТЕРМОКАМЕРА ДЛЯ ИСПЫТАНИЯ ЭЛЕКТРОННЫХ ИЗДЕЛИЙ
ТЕРМОКАМЕРА ДЛЯ ИСПЫТАНИЯ ЭЛЕКТРОННЫХ ИЗДЕЛИЙ
ТЕРМОКАМЕРА ДЛЯ ИСПЫТАНИЯ ЭЛЕКТРОННЫХ ИЗДЕЛИЙ
ТЕРМОКАМЕРА ДЛЯ ИСПЫТАНИЯ ЭЛЕКТРОННЫХ ИЗДЕЛИЙ
ТЕРМОКАМЕРА ДЛЯ ИСПЫТАНИЯ ЭЛЕКТРОННЫХ ИЗДЕЛИЙ
Источник поступления информации: Роспатент

Показаны записи 121-130 из 148.
26.08.2017
№217.015.dcff

Устройство для пофасадного регулирования температуры воздуха в помещении

Изобретение относится к области автоматического регулирования и управления, в частности к устройствам для регулирования температуры воздуха в помещениях, отапливаемых от систем открытого теплоснабжения. Технической задачей предлагаемого изобретения является снижение энергоемкости поддержания...
Тип: Изобретение
Номер охранного документа: 0002624428
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.de44

Насадочный абсорбер осушки газа

Изобретение относится к осушке и/или очистке газов в химической, металлургической или других областях народного хозяйства. Насадочный абсорбер осушки газа содержит корпус с патрубками подвода газа, отвода осушенного газа, подвода и отвода абсорбента и расположенные в корпусе входную...
Тип: Изобретение
Номер охранного документа: 0002624701
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.eace

Аппарат для обработки газа

Изобретение относится к массообменным устройствам роторной конструкции и может быть использовано в химической, нефтехимической, газовой, газоперерабатывающей и других отраслях промышленности для обработки газа жидкостью. Аппарат для обработки газа содержит корпус со штуцерами входа и выхода...
Тип: Изобретение
Номер охранного документа: 0002627887
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.eb09

Аппарат для обработки газа

Изобретение относится к массообменным устройствам роторной конструкции и может быть использовано в химической, нефтехимической, газовой, газоперерабатывающей и других отраслях промышленности для обработки газа жидкостью. Аппарат для обработки газа содержит корпус со штуцерами входа и выхода...
Тип: Изобретение
Номер охранного документа: 0002627898
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.ebd5

Сорбент для очистки водных сред от ионов мышьяка и способ его получения

Изобретение относится к области сорбционной очистки вод. Предложен сорбент для очистки водных сред от мышьяка. Сорбент содержит 98-99 вес.% наночастиц железа и крахмал. Для получения сорбента сернокислое железо и крахмал растворяют в воде с образованием комплекса ионов железа с крахмалом, через...
Тип: Изобретение
Номер охранного документа: 0002628396
Дата охранного документа: 16.08.2017
26.08.2017
№217.015.ebf0

Биогазовая установка для переработки навоза

Изобретение относится к сельскому хозяйству, в частности к устройствам для переработки навоза. Биогазовая установка содержит биореактор с последовательно сообщающимися емкостями с переливными перегородками, снабженный трубопроводами для подачи навозного субстрата и отвода сброженной массы,...
Тип: Изобретение
Номер охранного документа: 0002628425
Дата охранного документа: 16.08.2017
26.08.2017
№217.015.ebf9

Способ извлечения пектиновых веществ из отходов свекловичного производства

Изобретение относится к переработке отходов свекловичного производства. Способ извлечения пектиновых веществ включает мойку сырья водой, измельчение, обработку ультразвуком, гидролиз и экстрагирование, осаждение пектиновых веществ и их очистку из пектинсодержащего экстракта этиловым спиртом....
Тип: Изобретение
Номер охранного документа: 0002628435
Дата охранного документа: 16.08.2017
19.01.2018
№218.015.ff58

Панель для дополнительной теплоизоляции стен

Изобретение относится к области разработки конструкций дополнительной теплоизоляции стен при строительстве и ремонте зданий, предназначенных для уменьшения поступления теплоты из помещения в толщу стены при установке теплоизоляционных панелей внутри помещения или для защиты стен от воздействия...
Тип: Изобретение
Номер охранного документа: 0002629503
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.0272

Компрессорная установка

Изобретение относится к управлению компрессорными установками, преимущественно для шахтных предприятий горной промышленности. Установка содержит компрессор, установленные на линии нагнетания теплообменник-утилизатор, концевой холодильник, воздухосборник, соединенные между собой основными и...
Тип: Изобретение
Номер охранного документа: 0002630283
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.03c7

Теплотрубная гелиотермоэлектростанция

Изобретение относится к теплоэлектроэнергетике и может быть использовано для прямой трансформации тепловой энергии в электрическую. Теплотрубная гелиотермоэлектростанция включает поддон с отверстием в днище, закрытый сверху крышкой, покрытой фотоэлементами, внутренняя сторона которой покрыта...
Тип: Изобретение
Номер охранного документа: 0002630363
Дата охранного документа: 07.09.2017
Показаны записи 121-130 из 146.
20.12.2015
№216.013.9b02

Способ экспериментального определения градиента изменения длительной прочности нагруженного и корродирующего бетона и устройство для его осуществления

Изобретение относится к области строительства, в частности к определению изменения длительной прочности бетона во времени эксплуатируемых под нагрузкой в условиях внешней агрессивной среды бетонных и железобетонных конструкций. Сущность: отслеживается разница между деформациями, получаемыми в...
Тип: Изобретение
Номер охранного документа: 0002571307
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9b04

Способ и устройство для определения абсолютной удельной активности содержимого контейнера с радиоактивными отходами и парциальных удельных активностей отдельных радионуклидов

Изобретение относится к технике измерения ионизирующих излучений и предназначено для определения радионуклидного состава и активности упакованных в контейнеры РАО. Способ определения абсолютной удельной активности содержимого контейнера и парциальных удельных активностей отдельных радионуклидов...
Тип: Изобретение
Номер охранного документа: 0002571309
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9b0f

Водоотвод для скатной крыши многоэтажного дома

Изобретение относится к области строительства, в частности к водоотводу для скатной крыши многоэтажного здания. Техническим результатом изобретения является ресурсосберегающая эксплуатация здания за счет использования для освещения в темное время суток подъездов и вспомогательных помещений...
Тип: Изобретение
Номер охранного документа: 0002571320
Дата охранного документа: 20.12.2015
10.03.2016
№216.014.bf61

Вентиляторная градирня

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержит вентилятор, на нижнюю и верхнюю поверхности каждой из лопастей вентилятора наносят наноматериал в виде стекловидной пленки, причем нанопокрытие выполнено...
Тип: Изобретение
Номер охранного документа: 0002576948
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.c8f1

Секционный конденсатор с капиллярной насадкой

Изобретение относится к области энергетики и может быть использовано для конденсации отработанного пара. Секционный конденсатор с капиллярной насадкой включает корпус с верхней и нижней крышками, снабженный патрубками входа отработанного пара и выхода конденсата, воздушным патрубком, внутри...
Тип: Изобретение
Номер охранного документа: 0002578773
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.cbab

Способ переработки прокорродировавших изделий из меди или ее сплава

Изобретение относится к переработке прокорродировавшей меди и бронзы в качестве вторичного сырья для получения химической продукции, а также к оценке устойчивости материалов при попадании в кислые среды и может быть использовано в различных областях практической деятельности, в аналитическом...
Тип: Изобретение
Номер охранного документа: 0002577878
Дата охранного документа: 20.03.2016
20.02.2016
№216.014.ce4b

Вентиляторная градирня

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержит вытяжную башню с воздуховодными окнами по периметру ее нижней части, воздухоуловитель, водораспределительную систему с суживающимися соплами и расположенную...
Тип: Изобретение
Номер охранного документа: 0002575244
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cedd

Универсальный термоэлектрический преобразователь

Изобретение относится к теплоэнергетике и может быть использовано для утилизации возобновляемых, вторичных тепловых энергоресурсов и низкопотенциальной тепловой энергии природных источников, а именно для трансформации тепловой энергии в электрическую. Технический результат: повышение...
Тип: Изобретение
Номер охранного документа: 0002575769
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cf46

Измеритель параметров многоэлементных пассивных двухполюсников

Изобретение относится к измерительной технике и, в частности, к технике измерения параметров объектов в виде пассивных двухполюсников, имеющих многоэлементную схему замещения. В устройство, которое содержит генератор прямоугольных импульсов напряжения, n последовательно включенных инвертирующих...
Тип: Изобретение
Номер охранного документа: 0002575765
Дата охранного документа: 20.02.2016
27.03.2016
№216.014.dc63

Аэротенк-вытеснитель

Изобретение относится к биологической очистке сточных вод и может быть использовано в промышленности и коммунальном хозяйстве. Аэротенк-вытеснитель включает корпус 1, разделенный перегородками на сообщающиеся последовательно коридоры 3, вводы воды и активного ила, выводы очищенной воды и ила,...
Тип: Изобретение
Номер охранного документа: 0002579134
Дата охранного документа: 27.03.2016
+ добавить свой РИД