×
20.07.2014
216.012.dfc4

Результат интеллектуальной деятельности: ТЕЧЕИСКАТЕЛЬ ДЛЯ РАБОТЫ МЕТОДОМ ЩУПА

Вид РИД

Изобретение

Правообладатели

№ охранного документа
0002523070
Дата охранного документа
20.07.2014
Аннотация: Изобретение относится к устройствам-течеискателям. Сущность: устройство содержит щуп (10), соединенный посредством шланга (11) через дроссель (D2) с вакуумным насосом (16), и датчик тестового газа (15). Выше по потоку от дросселя (D2) выполнена точка распределения (24). От точки распределения (24) к датчику (15) тестового газа ведет отвод (25). При этом дроссель (D2) выполнен в виде диафрагмы с круглым отверстием. Проводимость диафрагмы подобрана таким образом, что падение давления на диафрагме больше , где - промежуточное давление в точке распределения (24). Технический результат: создание течеискателя для работы методом щупа, на чувствительность обнаружения которого не оказывают влияние колебания скорости откачки вакуумного насоса. 4 з.п.ф-лы, 5 ил.

Изобретение относится к течеискателю для работы методом щупа со шлангом щупа, соединенным со шлангом щупа через дроссель вакуумным насосом, и датчиком тестового газа, при этом выше по потоку от дросселя выполнена точка распределения, от которой к датчику тестового газа ведет отвод

Течеискатель для работы методом щупа такого типа описан в DE 102006047856 A1 (INFICON GmbH). Он имеет шланг щупа, который на конце оснащен щупом. Прибор имеет на впуске дроссель для того, чтобы при снятии шланга щупа предотвращалась установка в точке распределения полного атмосферного давления. От точки распределения к входу вакуумного насоса отходит трубопровод, который содержит дроссель. Дроссель задает скорость отсасывания для нормального режима работы. Параллельно ему подсоединена обводная линия, имеющая вентиль. Датчик тестового газа представляет собой датчик парциального давления, описанный в DE 10031882 A1. Этот датчик парциального давления имеет камеру, закрытую селективно проницаемой для тестового газа (гелия) мембраной. Внутри камеры находится датчик давления Пеннинга или другой датчик давления, который вырабатывает электрический сигнал, показывающий величину давления. Из этого давления выводится сигнал, соответствующий обнаруженному количеству тестового газа.

Известны также течеискатели для работы методом щупа, которые в качестве датчика тестового газа содержат масс-спектрометр. Вследствие этого требуется дорогостоящий высоковакуумный насос. У обоих типов датчиков тестового газа чувствительность обнаружения зависит от промежуточного давления (суммарное давление) в зоне впуска датчика тестового газа. Поэтому предел обнаружения течеискателя для работы методом щупа ограничивается стабильностью суммарного давления в точке распределения или входе устройства для обнаружения.

У гелиевого течеискателя для работы методом щупа изменение суммарного давления сразу заметны, так как изменения измеренного сигнала вызываются уже базовым сигналом системы, обусловленным содержащимся в воздухе гелием. В случае течеискателей хладагентов, у которых в качестве тестового газа используется хладагент, влияние стабильности суммарного давления становится заметным лишь при измерении величины утечки, так как хладагенты в воздухе обычно отсутствуют.

Суммарное давление (промежуточное давление) в точке распределения задается потоком через питающий трубопровод и скоростью откачки вакуумного насоса. Суммарное давление, которое устанавливается при работе определенного вакуумного насоса, не может быть заранее точно задано и не является постоянным. Оно может скачкообразно меняться при работе вакуумного насоса. Прежде всего подобные изменения могут происходить при использовании в качестве вакуумного насоса мембранного насоса. Изменения суммарного давления оказывают влияние на чувствительность обнаружения течеискателя для работы методом щупа. При относительно высоком суммарном давлении парциальное давление тестового газа также высокое. Соответственно этому получается высокая чувствительность обнаружения. При низком суммарном давлении чувствительность обнаружения становится соответственно ниже.

В основу изобретения положена задача создания течеискателя для работы методом щупа, на чувствительность обнаружения которого не оказывают влияние колебания скорости откачки вакуумного насоса.

Течеискатель для работы методом щупа согласно изобретению определен посредством п.1 формулы изобретения. Он отличается тем, что предусмотренный между шлангом щупа и вакуумным насосом после точки распределения дроссель представляет собой диафрагму с круглым отверстием, пропускная способность которой подобрана таким образом, что падение давления на диафрагме с круглым отверстием больше чем Р2/2, при этом Р2 является промежуточным давлением в точке распределения.

Согласно изобретению поток газа по пути от шланга щупа к вакуумному насосу блокируется диафрагмой с круглым отверстием. При заблокированном течении поток не зависит от низкого давления со стороны выхода диафрагмы с круглым отверстием. Это означает, что при изменении давления на входе в вакуумный насос поток через диафрагму с круглым отверстием не будет изменяться. Поэтому и давление со стороны входа диафрагмы изменяться не будет. Это означает, что возникающие изменения давления перед вакуумным насосом не оказывают никакого действия на чувствительность, и стабильность сигнала, и чувствительность системы не зависят от давления перед вакуумным насосом.

Согласно изобретению дросселем является диафрагма с круглым отверстием, при этом длина L диафрагмы с круглым отверстием меньше диаметра D отверстия. В отличие от дросселя, имеющего капиллярный канал, диафрагме с круглым отверстием присущ эффект, который заключается в том, что поток не зависит от давления. Подобный эффект у других типов дросселей не наблюдается.

Данные измерений, согласно которым падение давления на диафрагме с круглым отверстием больше чем Р2/2, другими словами означает, что проводимость LB меньше скорости S откачки вакуумного насоса. Путем использования диафрагмы с круглым отверстием с высоким сопротивлением протеканию (=низкой проводимостью) на кривой, отображающей зависимость потока от давления насоса, появляется горизонтальный участок для низких давлений насоса. В области этого горизонтального участка работает течеискатель для работы методом щупа согласно изобретению.

Датчиком тестового газа может быть датчик парциального давления или масс-спектрометр. В случае датчика парциального давления, например в Wise-Technology фирмы Inficon GmbH, парциальное давление тестового газа может определяться без создания условий высокого вакуума. Альтернативно этому, в качестве датчика тестового газа может быть использован масс-спектрометр, у которого небольшая часть закачиваемого вакуумным насосом газа ответвляется и подводится к анализатору. И в этом случае благодаря диафрагме с круглым отверстием суммарное давление на входе в анализатор поддерживается постоянным.

Ниже со ссылками на чертежи более подробно описывается пример осуществления изобретения, где:

Фиг.1 - схематическое изображение течеискателя для работы методом щупа с датчиком парциального давления согласно изобретению,

Фиг.2 - схематическое изображение течеискателя для работы методом щупа с масс-спектрометром согласно изобретению,

Фиг.3 - схематическое изображение течеискателя для работы методом щупа с указанием параметров давления,

Фиг.4 - продольный разрез диафрагмы с круглым отверстием,

Фиг.5 - графическое изображение уменьшения потока с увеличением давления насоса на входе в вакуумный насос при промежуточном давлении Р2, равном 300 мбар.

К щупу 10 присоединен шланг 11 щупа, который выполнен в виде капиллярной трубки. На входе 12 щупа атмосферное давление составляет около 1000 мбар. Поток Q через шланг щупа составляет, например, 100 см3/мин в стандартных условиях. Шланг щупа ведет к датчику 15 тестового газа, который в данном случае выполнен в виде датчика парциального давления согласно DE 10031882 A1. Давление р на входе в датчик парциального давления составляет примерно 250 мбар. Между датчиком 15 тестового газа и вакуумным насосом 16 проходит подающий трубопровод 17, в котором находится дроссель D2. Сторона входа дросселя D2 связана с манометром 18. Вакуумный насос 30 представляет собой, например, двухступенчатый мембранный насос.

Форма дросселя D2 показана на Фиг. 4. Дроссель состоит из плоской перегородки в форме диафрагмы 20 с круглым отверстием, которая расположена поперек всасывающего трубопровода 17. Диафрагма 20 с круглым отверстием имеет отверстие 21, которое, например, имеет круглую форму. Длина диафрагмы с круглым отверстием в направлении потока, то есть толщина перегородки, меньше, чем диаметр D отверстия 21.

На Фиг. 2 показан течеискатель для работы методом щупа с масс-спектрометром. Щуп 10 соединен с корпусом 13 течеискателя для работы методом щупа, при этом предусмотрено штекерное соединение 14. В корпусе 13 находятся дроссель D1 в форме входной диафрагмы, который предотвращает при отсоединении штекерного соединения 14 повышение давления во всасывающей трубопроводе до атмосферного.

Впускной трубопровод ведет к точке 24 распределения. От нее линия 25 отвода, которая содержит дроссель, ведет к масс-спектрометру 26. Масс-спектрометру для работы требуется высокий вакуум. Этот вакуум создается турбомолекулярным насосом 27. У насоса имеется промежуточный ввод, который посредством трубопровода 28 с дросселем связан с точкой 24 распределения. Выпускной патрубок турбомолекулярного насоса 27 связан с форвакуумным насосом 30, который в данном случае имеет двухступенчатую конструкцию. Выпускной патрубок 31 ведет в атмосферу. Промежуточный выпускной патрубок 32 между двумя ступенями 30а и 30b форвакуумного насоса 30 связан с точкой 24 распределения в подающем трубопроводе 33. В этом примере выполнения масс-спектрометр 26 и турбомолекулярный насос 27 образуют датчик 15 тестового газа.

У точки 24 распределения давление равно промежуточному давлению Р2. У промежуточного ввода 32 вакуумного насоса 30 давление равно давлению Р3 насоса.

На Фиг. 3 в упрощенном виде показан прибор согласно Фиг. 1 и 2. За шлангом 11 щупа следует дроссель D1. К нему присоединен подающий трубопровод 33. В точке 24 распределения подающего трубопровода 33 отходит отвод 25 к датчику 15 тестового газа с прямым и обратным трубопроводами. Давление в точке 24 распределения является промежуточным давлением Р2 или суммарным давлением.

От точки 24 распределения подающий трубопровод 33 проходит через дроссель D2, а оттуда - к вакуумному насосу 16 или 30.

Цель изобретения заключается в том, чтобы поддерживать промежуточное давление Р2 в точке 24 распределения как можно более постоянным независимо от возможных колебаний давления Р3 насоса или скорости откачки вакуумного насоса. Это достигнуто посредством дросселя D2, который выполнен в виде диафрагмы 20 с круглым отверстием.

На Фиг. 5 показан поток Q, который образуется под воздействием диафрагмы с круглым отверстием в подающем трубопроводе, в зависимости от давления Р3 насоса. Видно, что в диапазоне блокировки В, который распространяется от давления РЗ насоса в 50 мбар до 150 мбар, поток Q и, тем самым, давление Р2 остается постоянным независимо от изменения давления Р3 насоса. При более высоком давлении насоса поток Q уменьшается согласно показанной кривой. Благодаря влиянию диафрагмы с круглым отверстием, падение давления на которой превышает P2/2, достигается работа исключительно в диапазоне блокировки В.


ТЕЧЕИСКАТЕЛЬ ДЛЯ РАБОТЫ МЕТОДОМ ЩУПА
ТЕЧЕИСКАТЕЛЬ ДЛЯ РАБОТЫ МЕТОДОМ ЩУПА
ТЕЧЕИСКАТЕЛЬ ДЛЯ РАБОТЫ МЕТОДОМ ЩУПА
ТЕЧЕИСКАТЕЛЬ ДЛЯ РАБОТЫ МЕТОДОМ ЩУПА
ТЕЧЕИСКАТЕЛЬ ДЛЯ РАБОТЫ МЕТОДОМ ЩУПА
ТЕЧЕИСКАТЕЛЬ ДЛЯ РАБОТЫ МЕТОДОМ ЩУПА
ТЕЧЕИСКАТЕЛЬ ДЛЯ РАБОТЫ МЕТОДОМ ЩУПА
Источник поступления информации: Роспатент

Показаны записи 11-20 из 22.
29.12.2017
№217.015.fe55

Устройство для питания напряжением катода масс-спектрометра

Устройство для питания напряжением катода масс-спектрометра имеет двухтактный измерительный преобразователь, причем, помимо обычных выпрямительных диодов (7, 9), имеется управляемый выпрямитель (8, 10). Затвор первого транзистора (8) соединен со вторым выходом (30), а затвор второго транзистора...
Тип: Изобретение
Номер охранного документа: 0002638303
Дата охранного документа: 13.12.2017
20.01.2018
№218.016.0fb5

Способ коррекции значений регулировки масс-спектрометра по молекулярной массе для масс-спектрометрического определения массового пика

Изобретение относится к области масс-спектрометрии. Способ коррекции значений регулировки масс-спектрометра по молекулярной массе для масс-спектрометрического определения массового пика включает задание для масс-спектрометра первого, соответствующего молекулярной массе значения (M1)...
Тип: Изобретение
Номер охранного документа: 0002633513
Дата охранного документа: 13.10.2017
10.05.2018
№218.016.4782

Способ проверки установки для контроля герметичности

Изобретение относится к области контроля герметичности и может быть использовано для проверки установки для контроля герметичности. Сущность: заполняют полое пространство (12) воздухом окружающей среды до внутреннего давления (Р1), которое соответствует атмосферному давлению окружающей среды....
Тип: Изобретение
Номер охранного документа: 0002650843
Дата охранного документа: 17.04.2018
08.07.2018
№218.016.6e81

Проверочное устройство с емкостью проверочного газа и способ проверки испытательного устройства для контроля протечек на функциональную пригодность

Изобретение относится к области исследования устройств на герметичность и может быть использовано для проверки на функциональную пригодность испытательного устройства для контроля протечек. Сущность: проверочное устройство (10) содержит емкость (12) проверочного газа, снабженную контрольной...
Тип: Изобретение
Номер охранного документа: 0002660340
Дата охранного документа: 05.07.2018
12.09.2019
№219.017.ca3f

Проверка герметичности с помощью газа-носителя в пленочной камере

Изобретение относится к способам исследования устройств на герметичность. Сущность: помещают испытуемый объект (16) в пленочную камеру (10), имеющую по меньшей мере одну гибкую стенную область (12, 14). Вакуумируют пленочную камеру (10) до давления, которое меньше, чем давление...
Тип: Изобретение
Номер охранного документа: 0002699960
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.ca90

Пленочная камера с измерительным объемом для обнаружения большой течи

Изобретение относится к области исследования устройств на герметичность. Сущность: пленочная камера для размещения испытуемого объекта (22) содержит окружающие ее объем (20) стенки, имеющие по меньшей мере одну гибкую область. К гибкой области стенки примыкает измерительный объем (34, 36),...
Тип: Изобретение
Номер охранного документа: 0002699927
Дата охранного документа: 11.09.2019
02.10.2019
№219.017.cf50

Способ калибрования пленочной камеры для обнаружения утечек

Изобретение относится к области исследования устройств на герметичность и может быть использовано для калибрования окружающей внутренний объем (20) испытательной камеры, которая выполнена в виде пленочной камеры (12) по меньшей мере с одной гибкой стеновой областью (14, 16) и газопроводящим...
Тип: Изобретение
Номер охранного документа: 0002700830
Дата охранного документа: 23.09.2019
04.10.2019
№219.017.d24b

Пленочная камера с удерживающим профилем

Изобретение относится к средствам для исследования устройств на герметичность. Сущность: пленочная камера (12) для размещения подлежащего тестированию на наличие течи испытуемого объекта (18) имеет по меньшей мере два пленочных слоя (14, 16) и по меньшей мере два рамочных элемента (24, 26)....
Тип: Изобретение
Номер охранного документа: 0002701878
Дата охранного документа: 02.10.2019
13.11.2019
№219.017.e0b5

Измерение разности давлений с помощью пленочной камеры

Изобретение относится к средствам для исследования устройств на герметичность. Сущность: установка включает проверочную камеру (10) с внутренним объемом (20) и эталонную камеру (26) с внутренним объемом (28). В одном газовом канале, соединяющем внутренние объемы (20, 28) упомянутых камер...
Тип: Изобретение
Номер охранного документа: 0002705752
Дата охранного документа: 11.11.2019
26.07.2020
№220.018.3836

Измерение большой утечки в несжимаемом испытуемом образце в пленочной камере

Способ измерения большой утечки в, по меньшей мере, частично несжимаемом испытуемом образце (18) в имеющей по меньшей мере один гибкий участок стенки пленочной камеры (12), которая газопроводящим образом соединена с датчиком (30) давления, вакуумным насосом (26) и через калибровочный клапан...
Тип: Изобретение
Номер охранного документа: 0002727851
Дата охранного документа: 24.07.2020
Показаны записи 11-12 из 12.
29.12.2017
№217.015.fe55

Устройство для питания напряжением катода масс-спектрометра

Устройство для питания напряжением катода масс-спектрометра имеет двухтактный измерительный преобразователь, причем, помимо обычных выпрямительных диодов (7, 9), имеется управляемый выпрямитель (8, 10). Затвор первого транзистора (8) соединен со вторым выходом (30), а затвор второго транзистора...
Тип: Изобретение
Номер охранного документа: 0002638303
Дата охранного документа: 13.12.2017
20.01.2018
№218.016.0fb5

Способ коррекции значений регулировки масс-спектрометра по молекулярной массе для масс-спектрометрического определения массового пика

Изобретение относится к области масс-спектрометрии. Способ коррекции значений регулировки масс-спектрометра по молекулярной массе для масс-спектрометрического определения массового пика включает задание для масс-спектрометра первого, соответствующего молекулярной массе значения (M1)...
Тип: Изобретение
Номер охранного документа: 0002633513
Дата охранного документа: 13.10.2017
+ добавить свой РИД