×
20.07.2014
216.012.df97

Результат интеллектуальной деятельности: НАПОРНАЯ КАМЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплотехнике. Напорная камера (4) содержит цилиндрический корпус (3) с днищем (2), цилиндрическую обечайку (8) и решетку (6). Цилиндрическая обечайка (8) установлена коаксиально корпусу (3) и разделяет его полость на сообщенные между собой центральный отводящий (7) и боковой кольцевой подводящий (1) каналы. Решетка (6) размещена в центральном отводящем канале (7). Для напорной камеры (4) при коэффициенте пористости решетки (6) от 0,05 до 0,7 представлены соотношения, учитывающие, во-первых, взаимосвязь максимального радиуса перфорированной части решетки (6), высоты напорной камеры (4), наружного радиуса цилиндрической обечайки (8), высоты входа в напорную камеру (4) и внутреннего радиуса корпуса, во-вторых, взаимосвязь высоты напорной камеры, наружного радиуса цилиндрической обечайки и высоты входа в напорную камеру, в-третьих, взаимосвязь внутреннего радиуса корпуса (3), наружного и внутреннего радиусов цилиндрической обечайки (8) и высоты входа в напорную камеру (4), в-четвертых, взаимосвязь высоты напорной камеры (4) и высоты входа в нее, в-пятых, взаимосвязь максимального радиуса перфорированной части решетки (6) и высоты входа в напорную камеру (4). Дано соотношение по выбору размеров проточной части напорной камеры (4), учитывающее гидравлические характеристики потока рабочей среды. Технический результат состоит в обеспечении оптимальной гидродинамики потока на выходе из напорной камеры (4). 1 ил.
Основные результаты: Напорная камера, содержащая цилиндрический корпус с днищем, цилиндрическую обечайку, установленную коаксиально корпусу и разделяющую его полость на сообщенные между собой центральный отводящий и боковой кольцевой подводящий каналы, и решетку, размещенную в центральном отводящем канале, отличающаяся тем, что при коэффициенте пористости решетки, соответствующему диапазону от 0,02 до 0,7, и соотношениях размеров напорной камеры, соответствующих условиям: гдеr - максимальный радиус перфорированной части решетки, м;Н - высота напорной камеры, м;r - наружный радиус цилиндрической обечайки, м;h - высота входа в напорную камеру, м;r - внутренний радиус корпуса, м;r - внутренний радиус цилиндрической обечайки, м,размеры проточной части напорной камеры выбирают с учетом гидродинамических характеристик ее проточной части по следующему соотношению: гдеМ - массовый расход рабочей среды в отверстии решетки, кг/с; - средний массовый расход рабочей среды в отверстиях решетки, кг/с; - коэффициент гидравлического сопротивления решетки;ΔР - полные потери напора на прокачку рабочей среды через решетку, Па; - средняя плотность рабочей среды, кг/м; - средняя скорость рабочей среды в отверстиях решетки, м/с; - относительная площадь поперечного сечения струи;Н - высота напорной камеры, м;h - высота входной части напорной камеры, м;r - наружный радиус цилиндрической обечайки, м;n - число отверстий в решетке;r - радиус отверстия решетки, м;r - текущий радиус решетки, м;r - максимальный радиус перфорированной части решетки, м.

Изобретение относится к теплотехнике и может быть использовано в энергетической, химической и других областях промышленности.

Известна напорная камера, содержащая корпус, внутри которого с зазором установлена обечайка, цилиндрическую кольцевую вставку, верхний торец которой примыкает в нижнему торцу обечайки, а нижний торец установлен с зазором по отношению к днищу, коаксиальные боковой опускной и центральный отводящий каналы, сообщенные между собой напорной камерой, вытеснитель, выполненный в виде цилиндра с крышкой, верхняя часть которого выведена в полость кольцевой вставки, установлена с зазором по отношению к ней и расположена ниже верхней части кольцевой вставки [патент РФ на изобретение №2025799 «Ядерный реактор»; приоритет от 02.10.1990; зарегистрирован 30.12.1994].

Недостатками известного устройства являются то, что в нем не предусмотрена возможность получения заданного профиля расхода (скорости) на выходе из напорной камеры за счет обеспечения соответствующего соотношения размеров напорной камеры и учета гидравлического сопротивления ее выходной части.

Наиболее близким по технической сущности к заявляемому устройству является напорная камера, содержащая корпус, внутри которого с зазором установлена обечайка, коаксиальные боковой опускной и центральный отводящий каналы, сообщенные между собой напорной камерой. Для напорной камеры представлено соотношение по оценке неравномерности распределения скорости на выходе из нее, учитывающее соотношение размеров напорной камеры и гидравлическое сопротивление ее выходной части [Кириллов П.Л., Юрьев Ю.С., Бобков В.П. Справочник по теплогидравлическим расчетам (ядерные реакторы, теплообменники, парогенераторы). М.: Энергоатомиздат, 1990. Стр. 144-150].

Недостатком известного устройства являются то, что характерное для него соотношение, учитывающее взаимосвязь гидродинамических характеристик потока в проточной части напорной камеры и соотношения ее размеров, получено для конструкции напорной камеры, в которой имеет место движение потока рабочей среды в канале между днищем и решеткой с раздачей расхода по пути в направлении от периферии напорной камеры к ее центру, и, соответственно, не может быть использовано для напорных камер с обратным поворотом потока со струйной схемой течения рабочей среды.

Технический результат состоит в создании напорной камеры с заданной гидравлической неравномерностью на выходе из нее.

Для исключения указанного недостатка в напорной камере, содержащей цилиндрический корпус с днищем, цилиндрическую обечайку, установленную коаксиально корпусу и разделяющую его полость на сообщенные между собой центральный отводящий и боковой кольцевой подводящий каналы, и решетку, размещенную в центральном отводящем канале, предлагается при коэффициенте пористости решетки, соответствующем диапазону от 0,05 до 0,7, при соотношениях размеров напорной камеры, учитывающих, во-первых, взаимосвязь максимального радиуса перфорированной части решетки, высоты напорной камеры, наружного радиуса цилиндрической обечайки, высоты входа в напорную камеру и внутреннего радиуса корпуса, во-вторых, взаимосвязь высоты напорной камеры, наружного радиуса цилиндрической обечайки и высоты входа в напорную камеру, в-третьих, взаимосвязь внутреннего радиуса корпуса, наружного радиуса цилиндрической обечайки, внутреннего радиуса цилиндрической обечайки и высоты входа в напорную камеру, в-четвертых, взаимосвязь высоты напорной камеры и высоты входа в нее, в-пятых, взаимосвязь максимального радиуса перфорированной части решетки и высоты входа в напорную камеру, размеры проточной части напорной камеры выбирать с учетом гидродинамических характеристик ее проточной части по соотношению, учитывающему массовый расход рабочей среды в отверстии решетки, средний массовый расход рабочей среды в отверстиях решетки, полные потери напора на прокачку рабочей среды через решетку, среднюю плотность рабочей среды, среднюю скорость рабочей среды в отверстиях решетки, высоту напорной камеры, высоту ее входной части, наружный радиус цилиндрической обечайки, число отверстий в решетке, радиус отверстия решетки, текущий радиус решетки, максимальный радиус перфорированной части решетки.

Продольное осевое сечение одного из вариантов исполнения напорной камеры представлено на чертеже, на которой приняты следующие обозначения: 1 - боковой кольцевой подводящий канал; 2 - днище; 3 - корпус; 4 - напорная камера; 5 - отверстие решетки; 6 - решетка; 7 - центральный отводящий канал; 8 - цилиндрическая обечайка.

Напорная камера содержит цилиндрический корпус 3 с днищем 2, цилиндрическую обечайку 8 и решетку 6.

Цилиндрическая обечайка 8 установлена коаксиально корпусу 3 и разделяет его полость на сообщенные между собой центральный отводящий 7 и боковой кольцевой подводящий 1 каналы.

Решетка 6 размещена в центральном отводящем канале 7.

Коэффициент пористости решетки 6 соответствует диапазону от 0,05 до 0,7.

Соотношения размеров напорной камеры 4 соответствуют следующим условиям:

где r1 - максимальный радиус перфорированной части решетки 6, м; Н - высота напорной камеры 4, м; r3 - наружный радиус цилиндрической обечайки 8, м; h - высота входа в напорную камеру 4, м; r4 - внутренний радиус корпуса 3, м; r2 - внутренний радиус цилиндрической обечайки 8, м.

Размеры проточной части напорной камеры 4 выбирают с учетом гидродинамических характеристик ее проточной части по следующему соотношению

где М - массовый расход рабочей среды в отверстии решетки 6, кг/с; - средний массовый расход рабочей среды в отверстиях 5 решетки 6, кг/с; - коэффициент гидравлического сопротивления решетки 6; ΔР - полные потери напора на прокачку рабочей среды через решетку 6, Па; - средняя плотность рабочей среды, кг/м3; - средняя скорость рабочей среды в отверстиях 5 решетки 6, м/с; - относительная площадь поперечного сечения струи; Н - высота напорной камеры, м; h - высота входной части напорной камеры 4, м; r3 - наружный радиус цилиндрической обечайки 8, м; n - число отверстий 5 в решетке 6; r0 - радиус отверстия 5 решетки 6, м; r - текущий радиус решетки 6, м; r1 - максимальный радиус перфорированной части решетки 6, м.

Использованные в соотношениях (1÷6) обозначения конструктивных элементов напорной камеры 4 представлены на фигуре.

Соотношения по определению гидродинамических неравномерностей на выходе из осесимметричной напорной камеры 4 разработаны с учетом закона сохранения массы в предположении о постоянстве теплофизических свойств рабочей среды и струйном характере ее течения.

При выводе расчетных соотношений приняты следующие предположения.

Движущаяся вдоль днища 2 плоская полузатопленная струя после поворота в центре напорной камеры 4 преобразуется в круглую затопленную струю.

При движении плоской полузатопленной струи вдоль днища 2 после участка стабилизации кольцевой полузатопленной струи вдоль корпуса 3 и круглой затопленной струи в основном объеме напорной камеры 4 происходит увеличение площади их поперечного сечения, сопровождающееся уменьшением скорости рабочей среды в ней.

Угол одностороннего расширения полузатопленных струй составляет 12°.

При попадании струи на решетку 6 одна часть потока входит в отверстия 5 решетки 6, расположенные в месте встречи струи, другая растекается вдоль решетки 6 с изменением расхода по пути.

Соотношение (1) соответствует условию попадания внутренней боковой поверхности круглой затопленной струи на решетку 6, соотношение (2) - условию формирования падающей на решетку 6 круглой затопленной струи, а соотношение (5) - условию преобразования кольцевой полузатопленной струи в круглую затопленную струю в основном объеме напорной камеры 4 в результате обратного потока.

Течение рабочей среды в проточной части напорной камеры 4 осуществляется следующим образом.

Рабочая среда через боковой кольцевой подводящий канал 1 выходит в напорную камеру 4, изменяет в ней направление движения, попадает на решетку 6 и через ее отверстия 5 выходит в цилиндрический отводящий канал 7.

Пример конкретного выполнения напорной камеры

Напорная камера 4 имеет следующие соотношения размеров: r1/r4=0,87; r2/r4=0,95; r3/r4=0,97; H/r4=h/r4=0,15. Коэффициент пористости решетки 6 (ε) равен 0,10. При этом числа Рейнольдса в боковом кольцевом подводящем канале 1 и отверстии 5 решетки 6 равны соответственно 2,11·104 и 1,12·103, а коэффициент ξ=13,2. В результате сопоставления результатов расчета по соотношению (6) с опытными данными, полученными для напорной камеры 4, отвечающей условиям (1)÷(5), установлено, что отличие расходов М не превышает ± 10%.

Напорная камера, содержащая цилиндрический корпус с днищем, цилиндрическую обечайку, установленную коаксиально корпусу и разделяющую его полость на сообщенные между собой центральный отводящий и боковой кольцевой подводящий каналы, и решетку, размещенную в центральном отводящем канале, отличающаяся тем, что при коэффициенте пористости решетки, соответствующему диапазону от 0,02 до 0,7, и соотношениях размеров напорной камеры, соответствующих условиям: гдеr - максимальный радиус перфорированной части решетки, м;Н - высота напорной камеры, м;r - наружный радиус цилиндрической обечайки, м;h - высота входа в напорную камеру, м;r - внутренний радиус корпуса, м;r - внутренний радиус цилиндрической обечайки, м,размеры проточной части напорной камеры выбирают с учетом гидродинамических характеристик ее проточной части по следующему соотношению: гдеМ - массовый расход рабочей среды в отверстии решетки, кг/с; - средний массовый расход рабочей среды в отверстиях решетки, кг/с; - коэффициент гидравлического сопротивления решетки;ΔР - полные потери напора на прокачку рабочей среды через решетку, Па; - средняя плотность рабочей среды, кг/м; - средняя скорость рабочей среды в отверстиях решетки, м/с; - относительная площадь поперечного сечения струи;Н - высота напорной камеры, м;h - высота входной части напорной камеры, м;r - наружный радиус цилиндрической обечайки, м;n - число отверстий в решетке;r - радиус отверстия решетки, м;r - текущий радиус решетки, м;r - максимальный радиус перфорированной части решетки, м.
НАПОРНАЯ КАМЕРА
НАПОРНАЯ КАМЕРА
НАПОРНАЯ КАМЕРА
НАПОРНАЯ КАМЕРА
НАПОРНАЯ КАМЕРА
НАПОРНАЯ КАМЕРА
НАПОРНАЯ КАМЕРА
НАПОРНАЯ КАМЕРА
НАПОРНАЯ КАМЕРА
НАПОРНАЯ КАМЕРА
НАПОРНАЯ КАМЕРА
НАПОРНАЯ КАМЕРА
Источник поступления информации: Роспатент

Показаны записи 21-28 из 28.
20.09.2015
№216.013.7c87

Модуль сорбционной очистки жидкой среды

Изобретение относится к фильтровальной технике. Модуль сорбционной очистки содержит вертикальный корпус, состоящий из цилиндрической обечайки (17), днища (5) и крышки (11), верхний (1) и нижний (12) перфорированные насадки, поддерживающий слой (14), коллектор (10), фильтрующую загрузку....
Тип: Изобретение
Номер охранного документа: 0002563476
Дата охранного документа: 20.09.2015
20.12.2015
№216.013.9abe

Способ определения скорости коррозии стали в свинцовом теплоносителе

Изобретение относится к измерению физико-химических характеристик в системе теплоноситель - конструкционный материал. Способ включает определение скорости коррозии оксидированной стали для термодинамической активности кислорода в свинце в интервале 10÷1,0, температуры свинца в интервале 450°С...
Тип: Изобретение
Номер охранного документа: 0002571239
Дата охранного документа: 20.12.2015
25.08.2017
№217.015.b28e

Ядерная энергетическая установка с системой очистки теплоносителя

Изобретение относится к атомной технике. Ядерная энергетическая установка (ЯЭУ) содержит интегральный реактор с корпусом и крышкой, не менее трех контуров циркуляции теплоносителя, промежуточный (9) и технологический (14) теплообменник, трубопроводы подвода и отвода теплоносителя от...
Тип: Изобретение
Номер охранного документа: 0002614048
Дата охранного документа: 22.03.2017
29.03.2019
№219.016.f411

Способ изготовления изделий из оксидной керамики с повышенной теплопроводностью

Изобретение относится к технологии изготовления оксидных керамических изделий и может быть использовано в химической, атомной, электронной, электротехнической промышленности. Изготовление изделий из оксидной керамики включает операции приготовления кислотного раствора, содержащего один или...
Тип: Изобретение
Номер охранного документа: 0002323912
Дата охранного документа: 10.05.2008
09.06.2019
№219.017.7a4b

Способ определения относительного эффективного коэффициента межканального массопереноса в пучке стержней

Изобретение относится к способам контроля теплоносителя ядерного реактора. Через каналы пучков идентичных и различных стержней прокачивают воздушный поток. Впускают газообразный химический трассер в каналы пучков стержней. Отбирают пробы из потока воздуха отборным зондом в различных точках по...
Тип: Изобретение
Номер охранного документа: 0002381577
Дата охранного документа: 10.02.2010
09.06.2019
№219.017.7a69

Способ определения относительного коэффициента межканального массообмена в пучке стержней

Изобретение относится к измерительной технике. При определении относительного коэффициента межканального массообмена в пучке стержней выполняют следующие операции. Прокачивают воздушный поток через каналы пучка стержней. Впускают газообразный химический трассер в канал пучка стержней. Отбирают...
Тип: Изобретение
Номер охранного документа: 0002386180
Дата охранного документа: 10.04.2010
09.06.2019
№219.017.7b6a

Парогенератор натрий-вода-пар с потоками теплоносителя, физически разделенными двумя твердыми стенками (варианты)

Парогенератор натрий-вода-пар с потоками теплоносителей, физически разделенными двумя твердыми стенками, относится к теплообменному оборудованию. Парогенератор по первому варианту исполнения состоит из корпуса с укрепленными на нем входным и выходным патрубками по натрию, входным патрубком по...
Тип: Изобретение
Номер охранного документа: 0002379583
Дата охранного документа: 20.01.2010
10.07.2019
№219.017.ad85

Тепловыделяющий элемент ядерного реактора

Тепловыделяющий элемент предназначен для использования в активной зоне ядерных реакторов на быстрых нейтронах. Тепловыделяющий элемент содержит две соединенные между собой в осевом направлении части. Каждая из частей тепловыделяющего элемента включает оболочку (5) с топливом (7), торцевым...
Тип: Изобретение
Номер охранного документа: 0002358341
Дата охранного документа: 10.06.2009
Показаны записи 21-30 из 30.
20.09.2015
№216.013.7c87

Модуль сорбционной очистки жидкой среды

Изобретение относится к фильтровальной технике. Модуль сорбционной очистки содержит вертикальный корпус, состоящий из цилиндрической обечайки (17), днища (5) и крышки (11), верхний (1) и нижний (12) перфорированные насадки, поддерживающий слой (14), коллектор (10), фильтрующую загрузку....
Тип: Изобретение
Номер охранного документа: 0002563476
Дата охранного документа: 20.09.2015
20.12.2015
№216.013.9abe

Способ определения скорости коррозии стали в свинцовом теплоносителе

Изобретение относится к измерению физико-химических характеристик в системе теплоноситель - конструкционный материал. Способ включает определение скорости коррозии оксидированной стали для термодинамической активности кислорода в свинце в интервале 10÷1,0, температуры свинца в интервале 450°С...
Тип: Изобретение
Номер охранного документа: 0002571239
Дата охранного документа: 20.12.2015
25.08.2017
№217.015.b28e

Ядерная энергетическая установка с системой очистки теплоносителя

Изобретение относится к атомной технике. Ядерная энергетическая установка (ЯЭУ) содержит интегральный реактор с корпусом и крышкой, не менее трех контуров циркуляции теплоносителя, промежуточный (9) и технологический (14) теплообменник, трубопроводы подвода и отвода теплоносителя от...
Тип: Изобретение
Номер охранного документа: 0002614048
Дата охранного документа: 22.03.2017
09.06.2019
№219.017.7a4b

Способ определения относительного эффективного коэффициента межканального массопереноса в пучке стержней

Изобретение относится к способам контроля теплоносителя ядерного реактора. Через каналы пучков идентичных и различных стержней прокачивают воздушный поток. Впускают газообразный химический трассер в каналы пучков стержней. Отбирают пробы из потока воздуха отборным зондом в различных точках по...
Тип: Изобретение
Номер охранного документа: 0002381577
Дата охранного документа: 10.02.2010
09.06.2019
№219.017.7a4d

Фильтр-сорбер

Изобретение относится к сорбционным фильтрам для очистки технологических воздушных сред. Фильтр-сорбер состоит из цилиндрического корпуса, днища, крышки, нижней и верхней кассетных плит, входного и выходного патрубков. Фильтр-сорбер содержит, по меньшей мере, одну цилиндрическую обечайку,...
Тип: Изобретение
Номер охранного документа: 0002381054
Дата охранного документа: 10.02.2010
09.06.2019
№219.017.7a69

Способ определения относительного коэффициента межканального массообмена в пучке стержней

Изобретение относится к измерительной технике. При определении относительного коэффициента межканального массообмена в пучке стержней выполняют следующие операции. Прокачивают воздушный поток через каналы пучка стержней. Впускают газообразный химический трассер в канал пучка стержней. Отбирают...
Тип: Изобретение
Номер охранного документа: 0002386180
Дата охранного документа: 10.04.2010
09.06.2019
№219.017.7b55

Фильтр-сорбер

Изобретение относится к сорбционным фильтрам для очистки технологических воздушных сред. Фильтр-сорбер состоит из цилиндрического корпуса, днища, крышки, нижней и верхней кассетных плит, входного и выходного патрубков. Фильтр-сорбер содержит, по меньшей мере, одну цилиндрическую обечайку,...
Тип: Изобретение
Номер охранного документа: 0002372137
Дата охранного документа: 10.11.2009
09.06.2019
№219.017.7c26

Способ приближенного определения поля температуры рабочей среды в натурной установке

Изобретение относится к способам контроля теплоносителя ядерного реактора и используется для приближенного определения поля температуры рабочей среды в теплообменниках и реакторах. В предлагаемом способе определяют необходимые локальные массовые расходы трассера в рабочей среде через каждую...
Тип: Изобретение
Номер охранного документа: 0002369926
Дата охранного документа: 10.10.2009
09.06.2019
№219.017.7e64

Способ определения относительного коэффициента межканального массообмена в пучке круглых цилиндрических стержней

Изобретение относится к измерительной технике и может быть использовано при определении относительного коэффициента межканального массообмена в пучках круглых цилиндрических стержней с треугольной компоновкой. Способ включает определение относительного коэффициента межканального массообмена в...
Тип: Изобретение
Номер охранного документа: 0002400837
Дата охранного документа: 27.09.2010
09.06.2019
№219.017.7f1c

Мембранное устройство для очистки жидкости

Изобретение относится к энергетике, транспорту, нефтехимической и другим отраслям промышленности и касается мембранного устройства для очистки жидкости. Содержит корпус (5), фильтроэлементы, трубную доску, гидроаккумулятор, подводящий патрубок (11), нижний (10) и боковой (1) отводящие патрубки,...
Тип: Изобретение
Номер охранного документа: 0002443457
Дата охранного документа: 27.02.2012
+ добавить свой РИД