×
20.07.2014
216.012.df32

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ СИГНАЛОВ ДЛЯ ОБНАРУЖЕНИЯ ПРЯМОЛИНЕЙНЫХ ГРАНИЦ ОБЪЕКТОВ, НАБЛЮДАЕМЫХ НА ИЗОБРАЖЕНИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к средствам цифровой обработки изображений. Техническим результатом является повышение точности обнаружения прямолинейных границ объектов на изображении за счет получения локальных максимумов. В способе на основе градиентного поля проводится формирование трех изображений, которые затем подвергаются преобразованию Радона и объединяются в одно изображение посредством поточечного взвешенного суммирования трех преобразований Радона от изображений.
Основные результаты: Способ обработки сигналов для обнаружения прямолинейных границ объектов, наблюдаемых на изображении, включающий в себя оценку градиентного поля исходного изображения, его обработку посредством преобразования Радона и поиск локальных максимумов в полученном параметрическом пространстве, отличающийся тем, что на основе градиентного поля проводится формирование трех изображений, которые затем подвергаются преобразованию Радона и объединяются в одно изображение посредством поточечного взвешенного суммирования трех преобразований Радона от изображений.

Изобретение относится к области цифровой обработки изображений и может быть использовано в охранных системах, системах мониторинга, оптоэлектронных системах сопровождения объектов, контрольно-измерительных системах, медицине и др.

Известен способ применения модифицированного преобразования Хафа для обнаружения штриховых кодов и текстовых областей [Визильтер Ю.В., Желтов С.Ю., Бондаренко А.В. и др. Методы анализа свидетельств // Обработка и анализ изображений в задачах машинного зрения. Курс лекций и практических занятий. - М.: Физматкнига, 2010. С.341-343. ISBN 978-5-89155-201-2], в котором для повышения точности и надежности обнаружения полос выполняется оценка градиентного поля исходного изображения. Все точки, имеющие модуль градиента выше порогового значения, участвуют в голосовании, по результатам которого в каждой ячейке аккумулятора хранится количество лежащих на соответствующей прямой точек, со значительным уровнем градиента и направлением градиента, отличающимся от перпендикулярного этой прямой не более чем на заданное пороговое значение. Далее над аккумулятором выполняются специфические для задач поиска кодосодержащих полос операции.

К недостаткам данного способа можно отнести крайнюю ограниченность областей использования алгоритма и неприменимость в нем быстрого преобразования Фурье (БПФ) для ускорения вычислений. Следует отметить тот факт, что узкий диапазон значений углов голосования снижает робастность результата к слабокоррелированному шуму.

Наиболее близким к заявляемому способу, но имеющим более широкую область применения, является подход, основанный на преобразовании Радона или обычном преобразовании Хафа. Преобразование Хафа во многом схоже с преобразованием Радона, но позволяет выполнять лишь частичное преобразование изображения, в отличие от тотального преобразования Радона. Однако в качестве прототипа был выбран подход, основанный именно на преобразовании Радона, т.к. оно может быть выполнено через БПФ, что дает значительный прирост производительности в сравнении с преобразованием Хафа всего изображения.

Недостатком прототипа является использование скалярного двумерного поля, получаемого в результате обработки исходного изображения каким-либо выделителем границ. Таким образом, направление вектора градиента исключалось из внимания при поиске прямолинейных границ. Этот недостаток был частично решен в работе [Визильтер Ю.В., Желтов С.Ю., Бондаренко А.В. и др. Методы анализа свидетельств // Обработка и анализ изображений в задачах машинного зрения. Курс лекций и практических занятий. - М.: Физматкнига, 2010. С.341-343. ISBN 978-5-89155-201-2], однако описанный в ней подход был разработан для решения узкоспециализированных задач.

Технический результат, на достижение которого направлено заявляемое изобретение, состоит в повышении точности обнаружения прямолинейных границ объектов на изображении посредством получения более ярко выраженных локальных максимумов, соответствующих прямолинейным границам при значительном уровне некоррелированного или слабокоррелированного аддитивного или мультипликативного шума.

Технический результат достигается тем, что заявляемый способ обработки сигналов для обнаружения прямолинейных границ объектов на дискретном изображении выполняется с учетом направления вектора перепада уровня яркости изображения.

Предлагаемый способ состоит из четырех этапов.

1) Вычисление поля градиентов. Для каждого пикселя l(i, j) исходного изображения L вычисляется значение вектора градиента

оператором Собеля.

2) Вычисление трех обычных преобразований Радона от изображений, полученных на основе градиентного поля по выражениям:

g1(i,j)=gx(i,j)2,(i,j)∈L

g2(i,j)=gx(i,j)·gy(i,j),(i,j)∈L

g3(i,j)=gy(i,j)2,(i,j)∈L

r1=R[g1];

r2=R[g2];

r3=R[g3],

где g1, g2 и g3 - промежуточные изображения;

R[] - оператор преобразования Радона;

r1, r2 и r3 - результаты преобразований Радона от g1, g2 и g3 соответственно (имеют размеры Nρ×Nθ).

r1, r2 и r3 - представляют собой дискретные изображения с координатами пикселей (s, α), где , . Каждой точке (s, α) соответствует прямая с параметрами (ρ(s)θ(α)), где ρ(s) - расстояние от начала координат до ближайшей к нему точки на прямой, θ(α) - угол поворота нормали к прямой относительно абсциссы (оси х) против часовой стрелки.

3) Вычисление вектора весов w1, w2 и w3 для всех значений , которые были использованы в преобразованиях r1, r2 и r3:

;

;

.

4) Вычисление модифицированного преобразования Радона путем взвешенного суммирования трех обычных преобразований по выражению:

r'(s,α)=r1(s,α)·w1(α)+r2(s,α)·w2(α)+r3(s,α)·w3(α),

, .

После получения изображения модифицированного преобразования Радона производится поиск локальных максимумов, соответствующих прямым на исходном изображении, на которых предположительно лежат прямолинейные границы объектов [Д.Б.Волегов, В.В.Гусев, Д.В.Юрин. "Обнаружение прямых линий на изображениях на основе преобразования Хартли. Быстрое преобразование Хафа" // в: 16-я международная конференция по компьютерной графике и ее приложениям ГрафиКон2006. Россия, Новосибирск, Академгородок, 2006, с.182-191].

Эксперименты показывают, что использование модифицированного преобразования Радона вместо обычного позволяет на 40% увеличить эффективность работы алгоритмов сопровождения объектов с прямолинейными границами на видеоизображении.

Предлагаемый способ обработки сигналов для обнаружения прямолинейных границ объектов может быть реализован на базе персональной электронной вычислительной машины (ПЭВМ) общего назначения.

В случаях, когда использование ПЭВМ общего назначения невозможно (например, в бортовых системах обработки изображений), предлагаемый способ обработки сигналов может быть реализован на базе программируемых логических интегральных схем (ПЛИС) либо совместного использования ПЛИС и специализированных цифровых процессоров обработки сигналов.

При использовании предлагаемого способа в системах обработки видеоизображений реального времени рекомендуется использовать преобразование Радона, реализованное с помощью БПФ или преобразования Хартли [Д.Б.Волегов, В.В.Гусев, Д.В.Юрин. "Обнаружение прямых линий на изображениях на основе преобразования Хартли. Быстрое преобразование Хафа" // в: 16-я международная конференция по компьютерной графике и ее приложениям ГрафиКон2006. Россия, Новосибирск, Академгородок, 2006, с.182-191]. Это позволит снизить требования, предъявляемые к аппаратному обеспечению.

Заявляемый способ отличается невысокой вычислительной сложностью и может быть реализован на существующей и перспективной элементной базе.

Способ обработки сигналов для обнаружения прямолинейных границ объектов, наблюдаемых на изображении, включающий в себя оценку градиентного поля исходного изображения, его обработку посредством преобразования Радона и поиск локальных максимумов в полученном параметрическом пространстве, отличающийся тем, что на основе градиентного поля проводится формирование трех изображений, которые затем подвергаются преобразованию Радона и объединяются в одно изображение посредством поточечного взвешенного суммирования трех преобразований Радона от изображений.
Источник поступления информации: Роспатент

Показаны записи 91-91 из 91.
19.01.2018
№218.016.010f

Двухколлекторный металлополупроводниковый прибор

Изобретение относится к области магнитоэлектроники, а именно к преобразователям магнитного поля в электрический сигнал, и может быть использовано в различных электронных устройствах, предназначенных для усиления и генерации электрических сигналов, защиты входных цепей радиоэлектронной...
Тип: Изобретение
Номер охранного документа: 0002629712
Дата охранного документа: 31.08.2017
Показаны записи 91-97 из 97.
25.08.2017
№217.015.ba8b

Сканирующий зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в атомно-силовой микроскопии. Сущность изобретения заключается в том, что магнитопрозрачный кантилевер соединен с электропроводящей магнитопрозрачной зондирующей иглой, вершина которой соединена с магнитопрозрачной...
Тип: Изобретение
Номер охранного документа: 0002615708
Дата охранного документа: 07.04.2017
25.08.2017
№217.015.c554

Способ времяпролетного масс-разделения ионов в радиочастотном линейном электрическом поле и устройство для его осуществления

Изобретение относится к области масс-спектрометрии и направлено на совершенствование методов и устройств масс-разделения по времени пролета в линейных высокочастотных полях. Технический результат - повышение разрешающей способности и решение проблемы конструктивного совмещения устройств ввода и...
Тип: Изобретение
Номер охранного документа: 0002618212
Дата охранного документа: 03.05.2017
26.08.2017
№217.015.de06

Способ обработки последовательности изображений для автоматического обнаружения танкера и оценивания его траекторных параметров при дозаправке в воздухе на фоне звездного неба

Изобретение относится к области цифровой обработки изображений и может быть использовано в бортовых системах технического зрения, предназначенных для дозаправки в воздухе летательных аппаратов, в том числе и беспилотных, методом штанга-конус на фоне звездного неба. Технический результат –...
Тип: Изобретение
Номер охранного документа: 0002624828
Дата охранного документа: 07.07.2017
29.12.2017
№217.015.f05b

Способ увеличения чувствительности магнитоуправляемых коммутаторов

Изобретение относится к области коммутаторов электрического тока, управляемых внешним магнитным полем: магнитоуправлемых контактов (герконов), микроэлектромеханических (МЭМС) коммутаторов и переключателей, и может быть использовано для улучшения эксплуатационных и потребительских свойств данных...
Тип: Изобретение
Номер охранного документа: 0002629002
Дата охранного документа: 24.08.2017
19.01.2018
№218.016.010f

Двухколлекторный металлополупроводниковый прибор

Изобретение относится к области магнитоэлектроники, а именно к преобразователям магнитного поля в электрический сигнал, и может быть использовано в различных электронных устройствах, предназначенных для усиления и генерации электрических сигналов, защиты входных цепей радиоэлектронной...
Тип: Изобретение
Номер охранного документа: 0002629712
Дата охранного документа: 31.08.2017
10.05.2018
№218.016.490c

Способ обработки сигналов для обнаружения и определения толщины прямых линий на изображении

Изобретение относится к области цифровой обработки изображений. Технический результат – обеспечение обнаружения и оценка толщины прямолинейных протяженных объектов на изображении. Способ обработки сигналов включает: вычисление градиентного поля изображения; задание шага изменения по смещению и...
Тип: Изобретение
Номер охранного документа: 0002651176
Дата охранного документа: 18.04.2018
19.08.2018
№218.016.7d26

Способ обработки последовательности изображений для распознавания воздушных объектов

Изобретение относится к области цифровой обработки изображений. Технический результат заключается в повышении точности определения класса наблюдаемого воздушного объекта. Способ заключается: в генерации на основе 3D-моделей эталонных бинарных изображений воздушных объектов, в формировании...
Тип: Изобретение
Номер охранного документа: 0002664411
Дата охранного документа: 17.08.2018
+ добавить свой РИД