×
20.07.2014
216.012.df30

Результат интеллектуальной деятельности: СПОСОБ ВНУТРЕННЕГО АЗОТИРОВАНИЯ ФЕРРИТНОЙ КОРРОЗИОННО-СТОЙКОЙ СТАЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к химико-термической обработке, в частности к азотированию сталей в газовой среде, и может быть использовано для упрочнения стальных деталей, работающих при относительно высоких температурах 500-700С, в том числе в коррозионной среде. Высокотемпературному внутреннему азотированию подвергают изделия толщиной до 2 мм из ферритной стали, содержащей углерод до 0,2 вес.%, хром 12-25 вес.% и титан 0,5-3 вес.%. Азотирование проводят при температуре 1000-1200°С в среде чистого азота в течение 1-4 часов с последующим охлаждением на воздухе. Затем проводят отжиг при температуре 500-900°С в бескислородной среде в течение 1-5 часов с охлаждением с печью. Обеспечивается повышение прочности и жаропрочности сталей, работающих при температуре до 700°С, и упрощение процесса азотирования и термообработки. 1 пр., 1 табл.
Основные результаты: Способ высокотемпературного внутреннего азотирования изделий толщиной до 2 мм из ферритной стали, содержащей углерод в количестве до 0,2 вес.%, хром в количестве 12-25 вес.%, титан в количестве 0,5-3 вес.%, отличающийся тем, что азотирование ведут при температуре 1000-1200°С в среде чистого азота в течение 1-4 часов с последующим охлаждением на воздухе, далее проводят отжиг при температуре 500-900°С в бескислородной среде в течение 1-5 часов с охлаждением с печью.

Изобретение относится к области металлургии, а именно к химико-термической обработке, в частности к азотированию сталей в газовой среде, и может быть использовано для упрочнения стальных деталей, работающих при относительно высоких температурах (500-700°С), в том числе в коррозионной среде.

Известны способы низкотемпературного азотирования сталей, при которых процесс азотирования ведут при температурах Т=500-600°С. Однако такое азотирование в основном используется для повышения свойств поверхности деталей, поскольку в процессе его проведения на поверхности образуется слой соединений (нитридов), обладающий повышенными эксплуатационными характеристиками (Ю.М.Лахтин, Б.Н.Арзамасов. Химико-термическая обработка металлов, М.: Металлургия, 1985, с.141). При этом повышаются такие свойства поверхности как твердость и износостойкость, однако данные способы не позволяют получить эффект упрочнения по всему объему изделия.

Азотирование при высокой температуре позволяет существенно сократить время самого процесса азотирования, поскольку при более высокой температуре возрастает диффузионная подвижность элементов (Ю.М.Лахтин, Б.Н.Арзамасов. Химико-термическая обработка металлов, М.: Металлургия, 1985, с.141). Кроме этого, азотирование при высокой температуре (в том числе в комбинации с термической обработкой) позволяет получать не только слой с выделениями нитридов на поверхности, но и получать достаточно глубокие слои с выделениями нитридов. Для тонколистовых изделий такое азотирование по сути является сквозным. При этом кроме эффекта упрочнения поверхности достигается эффект повышения прочности и жаропрочности из-за присутствия стойких нитридов во всем объеме материала. В частности, такое азотирование используется для тугоплавких металлов и сплавов на их основе, хромоникелевых сплавов легированных титаном (Патент РФ №2148675). Такие материалы используются для изделий, работающих при высоких температурах (свыше 1000°С), а эффект повышения жаропрочности достигается формированием нитридов легирующих элементов, стойких к распаду при высокой температуре (как правило, нитридов титана). Недостатком данных методов азотирования является то, что в ряде случаев не удается достигать равномерной структуры нитридов по всему сечению, поскольку на поверхности остается слой с более грубыми выделениями нитридной фазы. Последующая термическая обработка может привести к растворению таких нитридов, но на их месте могут оставаться поры, которые понижают прочностные характеристики стали. Кроме этого, несмотря на то, что указанные материалы предназначены для работы при конкретных высоких температурах, они требуют присутствия легирующих элементов, что повышает стоимость данных материалов.

Наиболее близким к заявленному способу является принятый в качестве прототипа способ азотирования, описанный в патенте США №4464207, согласно которому азотированию в аммиаке подвергают тонколистовую сталь толщиной 0,25 мм ферритного класса, содержащую хром в количестве 10-30%, титан в количестве 0,5-2,25% и углерод в количестве 0,03%. При этом процесс азотирования ведут при температурах в диапазоне 830-950°C в течение 1 часа или менее, после чего проводят нагрев при температуре около 1000°C для растворения сформировавшихся при азотировании нитридов хрома и образования более стойких к высокой температуре нитридов титана. При этом добиваются, что структура стали состоит из частиц нитридов, расстояние между которыми составляет менее 2 мкм. При этом добиваются эффекта повышения предела текучести как минимум на 10000 psi (~70 МПа) по сравнению с исходным состоянием при комнатной температуре и температуре 540°C. Недостатками данного способа являются предпочтительное использование нестандартной марки стали (с пониженным содержанием углерода и повышенным содержанием титана), а также предпочтительное использование среды, содержащей водород для выдержки после азотирования, что приводит к удорожанию получаемого материала и процесса его получения. Кроме этого предлагаемая обработка, включающая азотирование и выдержку, после него позволяет добиться относительно не высокого увеличения прочности при комнатной и повышенной температурах (предел текучести возрастает на величину ~70 МПа).

Технической задачей, на решение которой направлено данное изобретение, является существенное повышение жаропрочности до температур ~700°C экономно-легированных ферритных сталей стандартных марок, содержащих углерод в количестве до 0,2% вес., хром в количестве 12-25% вес., титан в количестве 0,5-3% вес., упрощение процесса азотирования и термообработки.

Поставленная техническая задача решается тем, что процесс высокотемпературного внутреннего азотирования изделий толщиной до 2 мм из ферритной стали, содержащей углерод в количестве до 0,2 вес.%, хром в количестве 12-25 вес.%, титан в количестве 0,5-3 вес.%, ведут при температуре 1000-1200°C в среде чистого азота в течение 1-4 часов с последующим охлаждением на воздухе, далее проводят отжиг при температуре 500-900°C в бескислородной среде (в вакууме или в среде инертного газа) в течение 1-5 часов с охлаждением с печью, при этом образуется структура, содержащая мелкодисперсные нитриды хрома, стойкие вплоть до температуры 700°C, а также нитриды титана более крупного размера, стойкие до более высоких температур. Все нитриды распределены равномерно по всему сечению образца. При этом предел текучести и прочности возрастает на величину до 2 раз и более как при комнатной температуре, так и при температуре 700°C. Для азотирования используют стали, содержащие углерод в количестве до 0,5% вес., хром в количестве 12-25% вес., титан в количестве 0,5-3% вес., но преимущественно стали с высоким содержанием хрома (выше 20%), поскольку связывание хрома в нитриды приводит к понижению коррозионной стойкости стали.

Способ реализуется следующим образом.

Изделия с толщиной стенки до 2 мм обезжиривают и помещают в реактор (например, кварцевый сосуд), расположенный в печи, в который далее запускается газ - чистый азот. Азотирование ведут при температурах в диапазоне 1000-1200°C в течение 1-4 часов в среде азота, далее изделия вынимаются из реактора и охлаждаются на воздухе. После этого проводят отжиг при температурах 500-900°C в бескислородной среде в течение 1-5 часов с охлаждением с печью. Целью отжига после азотирования является избавление от мартенсита, образующегося в процессе охлаждения после азотирования, образование той части нитридов, которые не успели образоваться в процессе азотирования и охлаждения, а также гомогенизация с целью равномерного распределения выделений нитридов по всему сечению образца. В процессе азотирования и отжига образуются сквозная структура, состоящая из мелкодисперсных термодинамически стабильных нитридов хрома размером не более 500 нм и нитридов титана размером не более 1-3 мкм, равномерно распределенных в матрице по всему сечению без образования слоя грубых нитридов на поверхности. Нитриды стабилизируют структуру при повышенных температурах, обеспечивая эффективное дисперсионное упрочнение при температурах вплоть до 700°C. Таким образом в результате описанной обработки получается жаропрочный материал, способный работать при температурах до 700°C.

Пример 1. Полосы стали 08Х17Т в отожженном состоянии толщиной 0,5 мм обезжиривали ацетоном и спиртом и помещали в реактор (кварцевый сосуд), расположенный в печи типа СНОЛ, нагретой до температуры 1150°C, в который далее запускали газ азот частотой 99,999 со скоростью 0,2 л/мин. Азотирование проводили при температуре 1150°C в течение 3 часов, после чего полосы вынимали из реактора и охлаждали на воздухе. После этого проводили отжиг при температуре 600°C в вакууме в течение 3 часов с охлаждением с печью.

После азотирования проводили исследование микроструктуры и фазового состава методами оптической и просвечивающей электронной микроскопии, микрорентгеноспектрального анализа и метода рентгеновской дифракции. Микроструктура стали после такой обработки представляла собой выделения нитридов хрома толщиной 100-300 нм с расстоянием между ними 0,2-0,7 мкм, а также выделения нитридов титана толщиной до 3 мкм в матрице, содержащей азот в твердом растворе. Структура являлась полностью однородной по всему сечению образца, слоев с более грубыми выделениями нитридов у поверхностей материала не наблюдалось. Эффект упрочнения стали был достигнут за счет совместного действия азота в твердом растворе и образования выделений нитридов (дисперсионное упрочнение). Нитриды оказались стойкими к распаду вплоть до температур 700°C, что было подтверждено механическими испытаниями. Механические испытания проводили на плоских образцах, вырезанных из полос толщиной 0,5 мм по ГОСТ 1497-84 при температурах 20 и 700°C. Механические свойства образцов стали в исходном (до азотирования) состоянии и после азотирования и термической обработки представлены в таблице 1.

Таблица 1.
Механические свойства стали 08Х17Т до и после азотирования с термической обработкой
Состояние стали Температура испытаний 20°C Температура испытаний 700°C
Предел текучести σ0,2, МПа Предел прочности σв, МПа Относительное удлинение δ, % Предел текучести σ0,2, МПа Предел прочности σв, МПа Относительное удлинение δ, %
Исходное 310-330 440-460 26-32 70-90 80-100 75-80
После азотирования и т/о 570-590 980-1000 17-20 180-200 230-250 50-56

Из таблицы видно, что предлагаемое азотирование с термической обработкой приводит к увеличению предела текучести почти в 2 раза, а предела прочности несколько больше чем в 2 раза при комнатной температуре, примерно такие же соотношения сохраняются и при температуре испытаний 700°C, при которой в том числе сталь сохраняет очень высокую пластичность, превышающую 50%.

Измерение микротвердости до и после азотирования с термической обработкой показало, что в исходном состоянии микротвердость стали 08Х17Т находится на уровне 180-200 единиц HV, а после азотирования с термической обработкой она составила величину 430-450 единиц HV.

Способ высокотемпературного внутреннего азотирования изделий толщиной до 2 мм из ферритной стали, содержащей углерод в количестве до 0,2 вес.%, хром в количестве 12-25 вес.%, титан в количестве 0,5-3 вес.%, отличающийся тем, что азотирование ведут при температуре 1000-1200°С в среде чистого азота в течение 1-4 часов с последующим охлаждением на воздухе, далее проводят отжиг при температуре 500-900°С в бескислородной среде в течение 1-5 часов с охлаждением с печью.
Источник поступления информации: Роспатент

Показаны записи 221-230 из 230.
27.01.2016
№216.014.bc92

Способ выплавки стали в электрических печах

Изобретение относится к металлургии, в частности к способу выплавки стали в электрической печи. Способ включает загрузку в печь шихты, содержащей стальной лом, металлизованные окатыши, шлакообразующие материалы и металлургические брикеты со степенью металлизации 65-70%. Металлургические брикеты...
Тип: Изобретение
Номер охранного документа: 0002573847
Дата охранного документа: 27.01.2016
27.01.2016
№216.014.bd06

Способ получения ионно-плазменного вакуумного-дугового керамикометаллического покрытия tin-cu для твердосплавного режущего инструмента расширенной области применения

Изобретение относится к способу получения наноструктурного керамикометаллического покрытия TiN-Cu на твердосплавном режущем инструменте и может быть использовано в металлообработке. Проводят предварительную очистку поверхности инструмента и последующее вакуумно-дуговое осаждение покрытия...
Тип: Изобретение
Номер охранного документа: 0002573845
Дата охранного документа: 27.01.2016
27.02.2016
№216.014.be15

Устройство для загрузки металлизованных окатышей в дуговую печь

Изобретение относится к области металлургии, а именно к устройствам для загрузки металлизованных окатышей в дуговую печь. Устройство снабжено установленным на приемной воронке фотоэлементным датчиком фиксации верхнего уровня загрузки окатышей в ней, блоком автоматического включения и отключения...
Тип: Изобретение
Номер охранного документа: 0002576213
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c236

Композиционный материал с металлической матрицей и наноразмерными упрочняющими частицами и способ его изготовления

Изобретение относится к области нанотехнологии, а именно к композиционным материалам с металлической матрицей и наноразмерными упрочняющими частицами. Задачей изобретения является повышение прочностных характеристик композиционного материала при минимизации объемной доли упрочняющих частиц. Для...
Тип: Изобретение
Номер охранного документа: 0002574534
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.ca6c

Подложка для химического осаждения из паровой фазы (cvd) алмаза и способ его получения

Изобретение относится к подложке для алмазного покрытия, наносимого методом химического осаждения из паровой фазы (CVD), способу ее формирования и электродному стержню для формирования подложки упомянутым способом. Подложка содержит основу из карбидного твердого сплава или стали и слой, который...
Тип: Изобретение
Номер охранного документа: 0002577638
Дата охранного документа: 20.03.2016
13.01.2017
№217.015.7e29

Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом

Изобретение относится к порошковой металлургии, а именно к способам изготовления постоянных магнитов из магнитотвердых материалов, на основе соединений редкоземельных металлов и может быть использовано в электротехнической, автомобильной, приборостроительной и других областях промышленности. В...
Тип: Изобретение
Номер охранного документа: 0002601149
Дата охранного документа: 27.10.2016
25.08.2017
№217.015.9b9d

Способ обработки метастабильных аустенитных сталей методом интенсивной пластической деформации

Изобретение относится к области металлургии и может быть использовано, в частности, для изготовления изделий и конструкций для химической промышленности, в энергетике и т.д. Способ обработки аустенитных сталей в метастабильном состоянии включает ступенчатую интенсивную пластическую деформацию с...
Тип: Изобретение
Номер охранного документа: 0002610196
Дата охранного документа: 08.02.2017
19.01.2018
№218.016.0941

Способ термической обработки крупногабаритных литых деталей тележек грузовых вагонов

Изобретение относится к области металлургии, а именно к термической обработке литых боковых рам или надрессорных балок тележек грузовых вагонов из низкоуглеродистых сталей Для повышения усталостной прочности детали и сопротивления разрушению при циклическом нагружении деталь из стали 20ГЛ...
Тип: Изобретение
Номер охранного документа: 0002631781
Дата охранного документа: 26.09.2017
19.06.2019
№219.017.8ac8

Алмазный инструмент на гальванической связке

Изобретение относится к алмазным инструментам, изготавливаемым с использованием процессов закрепления алмазных зерен на корпусе инструмента электроосаждением металлической связки, - инструментам на гальванической связке. Такими инструментами могут быть отрезные круги, трубчатые сверла,...
Тип: Изобретение
Номер охранного документа: 0002437752
Дата охранного документа: 27.12.2011
14.07.2019
№219.017.b4e6

Способ нанесения комбинированных pvd/cvd/pvd покрытий на режущий твердосплавный инструмент

Изобретение относится к области упрочнения режущего твердосплавного инструмента и может быть использовано в машиностроении, в частности в технологии металлообработки. Первоначально поверхность упомянутого инструмента подвергают модифицированию ионами хрома и методом ионно-плазменного...
Тип: Изобретение
Номер охранного документа: 0002468124
Дата охранного документа: 27.11.2012
Показаны записи 231-231 из 231.
12.09.2019
№219.017.ca36

Способ получения композиционного материала на основе ванадиевого сплава и стали

Изобретение относится к области промышленных технологий получения композиционных материалов, а именно к деформационно-термической обработке композиционных материалов на основе металлов и сплавов. Способ получения композиционного материала, состоящего из внутреннего слоя из ванадиевого сплава V...
Тип: Изобретение
Номер охранного документа: 0002699879
Дата охранного документа: 11.09.2019
+ добавить свой РИД