×
20.07.2014
216.012.deda

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПЕРВИЧНЫХ ПАРАМЕТРОВ ОДНОРОДНОГО УЧАСТКА ТРЕХПРОВОДНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ

Вид РИД

Изобретение

Аннотация: Способ определения первичных параметров однородного участка трехпроводной линии электропередачи относится к области функционального контроля и диагностики трехфазных линий электропередачи трехпроводного исполнения на основе ее Г-образной схемы замещения полнофазного исполнения. Способ заключается в экспериментальном определении изображений действующих значений входных и выходных фазных напряжений и токов на комплексной плоскости и в последующем вычислении первичных параметров однородного участка трехпроводной линии электропередачи. Входные и выходные напряжения и токи определяются из серии экспериментов из четырех опытов и являются исходными данными для вычисления активных сопротивлений и индуктивностей линейных проводов, активных проводимостей и емкостей между проводами, а также между проводами и «землей». Технический результат заключается в повышении точности определения первичных параметров однородного участка трехпроводной линии электропередачи. 2 ил.
Основные результаты: Способ определения первичных параметров однородного участка трехпроводной линии электропередачи, заключающийся в косвенном измерении первичных параметров однородного участка линии электропередачи на основе Г-образной схемы замещения полнофазного исполнения, отличающийся тем, что выполняется серия экспериментов из четырех опытов, в результате которых определяются изображения на комплексной плоскости действующих значений входных и выходных фазных напряжений и токов, которые являются исходными данными для определения первичных параметров однородного участка трехпроводной линии электропередачи, вычислением на основании полученных таким образом экспериментальных данных активных сопротивлений и индуктивностей линейных проводов, активных проводимостей и емкостей между проводами, а также между проводами и «землей».

Изобретение относится к области систем обработки информации и может быть использовано при функциональном контроле и диагностировании трехфазных линий электропередачи (ЛЭП) трехпроводного исполнения на основе ее Г-образной схемы замещения полнофазного исполнения.

Известен способ определения текущих первичных и вторичных параметров линии электропередачи для построения ее прямой Г-образной адаптивной модели [I], выбранный в качестве прототипа, заключающийся в том, что проводят измерения мгновенных значений сигналов напряжений и токов. Эти массивы отсчетов мгновенных значений тока и напряжения в начале и в конце ЛЭП, полученные в один и те же моменты времени с определенным шагом дискретизации передают с конца линии в ее начало по каналу связи. Далее по измеренным массивам отсчетов тока и напряжения сохраняют пары цифровых отсчетов токов и напряжений. Затем определяют потери активной мощности на активном сопротивлении продольной ветви ЛЭП, одновременно определяя действующее значение сигнала тока в ней и потери реактивной мощности на реактивном сопротивлении этой ветви. Далее определяют значения активного и реактивного сопротивлений продольной ветви ЛЭП. Затем определяют потери активной мощности на активном сопротивлении поперечной ветви ЛЭП, одновременно определяя действующие значения сигнала тока в ней и потери реактивной мощности на реактивном сопротивлении этой ветви. Далее определяют величины активного и реактивного сопротивлений поперечной ветви ЛЭП. Затем определяют численные значения коэффициентов затухания тока и напряжения и численные значения коэффициента сдвига фазы тока и сдвига фазы напряжения. Далее определяют численные значения активных и реактивных сопротивлений продольных и поперечных ветвей ЛЭП, а также коэффициентов затухания и сдвига фаз напряжений и токов на единицу длины линии электропередачи.

Известен способ определения текущих параметров линии электропередачи для построения ее П-образной адаптивной модели (варианты) [2],заключающийся в измерении мгновенных значений сигналов тока и напряжения. Массивы отсчетов мгновенных значений тока и напряжения в начале и в конце линии электропередачи, полученные в один и те же моменты времени с определенным шагом дискретизации передают в начало линии по каналу связи. По измеренным массивам сохраняют пары цифровых отсчетов токов и напряжений как текущие, определяют разность фаз текущих цифровых отсчетов токов и напряжений, изменяют разности значений сигналов токов пропорционально коэффициенту k=0, 0,1; …, 1 для определения распределения значений токов в поперечных сопротивлениях одной и другой поперечных ветвей. Затем определяют ток в продольной ветви или как разность значений тока в начале линии и тока в одной поперечной ветви, или как сумму тока в конце линии и тока в другой поперечной ветви. Далее определяют значение потери активной мощности на активном сопротивлении двух поперечных ветвей ЛЭП, одновременно определяя действующее значение сигнала тока в ней и значение потери реактивной мощности на реактивном сопротивлении этой ветви. Затем определяют значения активного и реактивного сопротивлений поперечной ветви ЛЭП как область возможных решений в зависимости от k. Далее определяют значение активной мощности на активном сопротивлении продольной ветви ЛЭП, одновременно определяя действующее значение сигнала тока в ней и значение реактивной мощности на реактивном сопротивлении этой ветви. Затем определяют значения активного и реактивного сопротивлений продольной ветви ЛЭП как область возможных решений в зависимости от k. Далее по полученным значениям сопротивлений продольной и поперечной ветвей для режима нагрузки/холостого хода определяют значения сопротивлений продольной и поперечной ветвей П-образной адаптивной модели как равенство полных сопротивлений одной и другой поперечных ветвей. В способе определения текущих параметров по второму варианту определяют значения сопротивлений продольной и поперечной ветвей П-образной адаптивной модели или как равенство полного сопротивления первой поперечной ветви и полного сопротивления второй поперечной ветви первого и второго режимов, или как равенство полного сопротивления второй поперечной ветви м полного сопротивления первой поперечной ветви первого и второго режимов.

Достоверность полученных по обоим патентам результатов возможна лишь при абсолютной синхронизации измерений мгновенных значений напряжений и токов в начале и в конце линии. Технически это пока трудно осуществимо.

Кроме того, представленный в прототипе алгоритм пригоден лишь для определения параметров однопроводной ЛЭП или симметричной многопроводной. При нарушении симметрии ЛЭП ее работа может иллюстрироваться лишь полнофазной схемой замещения [3].

Известны математические формулировки для определения первичных параметров ЛЭП, сформулированные на основании теории электромагнитного поля, например [4]. Но это несколько формализованный подход к задаче оперативного и достоверного определения первичных параметров ЛЭП, не обеспечивающий учета в полном объеме всех факторов, оказывающих влияние на величины этих параметров, а именно: изменение химического состава материала линейных проводов, поверхностного эффекта, эффекта близости, климатических условий, рельефа местности, модификации опор и т.п.

Задачей изобретения является формирование простого, информативного и достоверного способа определения первичных параметров однородного участка трехпроводнои линии электропередачи, а именно: активных сопротивлений и индуктивностей линейных проводов, активных проводимостей и емкостей между проводами, а также между проводами и «землей».

Технический результат заключается в достоверном определении первичных параметров однородного участка трехпроводной линии электропередачи, а именно: активных сопротивлений и индуктивностей линейных проводов, активных проводимостей и емкостей между проводами, а также между проводами и «землей».

Технический результат достигается тем, что выполняется серия экспериментов из четырех опытов, в результате которых определяются изображения на комплексной плоскости действующих значений входных и выходных фазных напряжений и токов, которые являются исходными данными для определения первичных параметров однородного участка трехпроводной линии электропередачи, вычислением на основании полученных таким образом экспериментальных данных активных сопротивлений и индуктивностей линейных проводов, активных проводимостей и емкостей между проводами, а также между проводами и «землей».

Полученные таким образом численные значения первичных параметров однородного участка трехпроводной ЛЭП являются ожидаемыми результатами реализации этого изобретения.

Простота и достоверность предлагаемого способа достигается в результате непосредственного измерения электрических величин, позволяющих получить сведения об изображениях действующих значений входных и выходных напряжений и токов на комплексной плоскости, которые являются исходными данными для определения первичных параметров однородного участка трехпроводной ЛЭП.

Предлагаемый способ является информативным за счет того, что при необходимости позволяет определить первичные параметры однородного участка трехпроводной ЛЭП на единицу длины линии.

На рис. 1 представлена структурная схема алгоритма способа определения первичных параметров однородного участка трехпроводной ЛЭП.

На рис, 2 показана схема, по которой рекомендуется выполнять серию экспериментов по определению входных и выходных токов и напряжений, которые являются исходными данными для вычисления первичных параметров однородного участка трехпроводной ЛЭП.

В блоке 1 (рис. 1) выполняется выделение из реальной ЛЭП однородного участка протяженностью l, параметры которого неизменны на всем его протяжении.

В блоках 2, 3, 4 и 5 (рис. 1) выполняется серия экспериментов по определению исходных данных для вычисления первичных параметров однородного участка трехпроводной ЛЭП. Для этого необходимо выделенный в блоке 1 однородный участок трехпроводной ЛЭП представить полнофазной Г-образной схемой замещения, как показано на рис. 2. Здесь символами RA, RB и RC обозначены активные сопротивления линейных проводов, символами LA, LB и LC - индуктивности этих проводов. Символами GA, GB, GC и СA, СB, CC на рис. 2 обозначены активные проводимости и емкости между линейными проводами и «землей», а символами GAB, GBC и GCA, CAB, CBC, CCA - активные проводимости и емкости между проводами.

Для выполнения серии экспериментов по определению исходных данных для вычисления первичных параметров однородного участка трехпроводной ЛЭП во избежание аварийных ситуаций рекомендуется использовать автономный источник трехфазной ЭДС или три равных по величине однофазных синусоидальных ЭДС промышленной частоты, начальные фазы которых могут быть сдвинуты относительно друг друга на треть периода, пониженного напряжения. Кроме того, в экспериментах используются показанные на схеме, изображенной на рис. 2, шесть коммутирующих устройств, в качестве которых могут быть использованы обычные выключатели или рубильники. Ко входу и выходу анализируемого однородного участка трехпроводной ЛЭП необходимо подключить электроизмерительные приборы, например, вольтметры, амперметры и фазометры, которые обеспечат регистрацию изображений на комплексной плоскости действующих значений входных и выходных фазных напряжений и линейных токов.

Первый опыт, выполняемый в блоке 2 (рис.1), может быть реализован при полной или частичной нагрузке. Цель этого опыта состоит в формировании исходных данных для определения продольных параметров однородного участка ЛЭП. В этом опыте в качестве источника электрической энергии может быть использованы, как автономное генерирующее устройство, так и действующая электроэнергетическая система. Для проведения этого опыты должны быть замкнуты ключи S1, S2, S3 и разомкнуты ключи S4, S5, S6. Электроизмерительные приборы в этом случае должны обеспечить регистрацию изображений на комплексной плоскости входных фазных напряжений , , и линейных токов , , , а также выходных фазных напряжений , , .

В блоке 6 (рис. 1) по измеренным данным выполняется вычисление продольных параметров однородного участка трехпроводной ЛЭП, в состав которых входят активные сопротивления и индуктивности линейных проводов.

Полные сопротивления линейных проводов определяются по формулам:

;

;

.

Активные сопротивления линейных проводов определяются как вещественные части их полных сопротивлений:

; ;

Численные значения индуктивностей линейных проводов определяются мнимыми составляющими их полных сопротивлений:

; ;

Где f - частота изменения мгновенного напряжения во времени.

В величинах вычисленных таким образом индуктивностей учтены собственные и взаимные индуктивности линейных проводов.

Погонные продольные параметры анализируемого участка ЛЭП определятся так:

; ; ;

; ; .

Для вычисления численных значений поперечных параметров однородного участка трехпроводной ЛЭП необходимо предварительно определить численные значения токов через электромагнитные и электростатические связи , , и , , (рис. 2). Эти токи и полные проводимости, характеризующие электромагнитные связи между линейными проводами , и , а также между линейными проводами и «землей» , и , связаны равенствами:

Для определения численных значений токов по электромагнитным связям необходимо выполнить три опыта. Эти опыты выполняются на базе опыта холостого хода при отключенной нагрузке, то есть в процессе выполнения всех трех опытов ключи S1, S2 и S3 (рис. 2) должны быть разомкнуты.

Второй опыт выполняется в блоке 3 (рис. 1) при разомкнутом ключе 54 и замкнутых ключах S5 и S6 (рис. 2). В результате этого действия линейные провода В и С в конце анализируемого участка ЛЭП окажутся замкнуты на «землю». В таком случае напряжения , и токи , , , и принимают нулевые значения:

;

.

При таких условиях справедливы уравнения из первого закона Кирхгофа:

Из второго уравнения этой системы уравнений в блоке 7 (рис. 1) определится ток :

А из третьего уравнения в этом же блоке определится ток :

При известных токах и из первого уравнения системы уравнений (7) можно определить ток ;

Теперь в блоке 8 (рис.1) из уравнений (1), (3) и (4) появилась возможность определить полные проводимости:

; ; .

Для определения остальных полных проводимостей необходимо создание других дополнительных условий. Для этого необходимо выполнение дополнительных опытов.

Третий опыт выполняется в блоке 4 при разомкнутом ключе S5 и замкнутых ключах S4 и S6. Ключи S1, S2 и S3 сохраняются в разомкнутом состоянии. Вследствие этих действий в конце анализируемого участка ЛЭП линии А и С окажутся замкнутыми на «землю».

В таком случае ряд напряжений и токов, указанных на рис. 2, будут отсутствовать:

;

При таких условиях справедливы уравнения:

Из первого и третьего уравнений системы уравнений (8) в блоке 7 определяются токи и :

;

.

Затем из второго уравнения этой же системы уравнений определится ток :

Полные проводимости, соответствующие найденным токам, определяются из уравнений (2) и (5):

; .

Четвертый опыт выполняется в блоке 5 (рис. 1) при размыкании ключа S6 и замыкании ключей S4 и S5. Остальные коммутационные устройства должны остаться в прежнем состоянии. В результате этих действий линейные провода А и В окажутся замкнутыми на «землю», а напряжения , и токи , , и примут нулевые значения:

;

.

При таких условиях справедливы уравнения:

Из первого и второго уравнений системы уравнений (9) в блоке 7 (рис. 1) определяются токи и :

;

.

А из третьего уравнения этой же системы уравнений определяется ток :

Полная проводимость определится в блоке 8 из уравнения (6):

.

Описанные опыты, в принципе, можно выполнять и в иной последовательности.

По комплексным значениям полных проводимостей, характеризующих поперечные параметры анализируемого участка трехпроводной ЛЭП, в блоке 8 (рис.1) определяются активные проводимости между линейными проводами, а также между проводами и «землей»:

; ;

; ;

Мнимая часть полных проводимостей определяет емкостную проводимость между линейными проводами, а также между проводами и «землей». Поэтому величины соответствующих емкостей в блоке 8 (рис. 1) определяются по формулам:

; ; ;

; ; .

Величины погонных поперечных параметров однородного участка трехпроводной ЛЭП в виде погонных активных проводимостей и погонных емкостей между линейными проводами, а также между линейными проводами и «землей» определяются из равенств:

; ; ;

; ; ;

; ; ;

; ; ;

Таким образом можно определить первичные параметры однородного участка трехфазной ЛЭП трехпроводного исполнения.

Источники информации

1. Способ определения текущих первичных и вторичных параметров линии электропередачи для построения ее прямой Г-образной адаптивной модели. / Д.В.Джумик, Е.И.Гольдштейн. - Патент №2334990, Россия. МКИ G01R 25/00. - Томский политехнический университет. № 2007117275/28; 08.05.2007.

2. Способ определения текущих параметров линии электропередачи для построения ее прямой П-образной адаптивной модели (варианты). / Е.И.Гольдштейн, Д.В.Джумик. - Патент №2328004, Россия. МКИ G01R 25/00. - Томский политехнический университет. № 200710206/38; 19.02.2007.

3. Большанин, Г.А. Распределение электрической энергии по участкам электроэнергетических систем. В 2-х кн. / Г.А.Большанин. - Братск: БрГУ, 2006. - 807 с.

4. Электротехнический справочник: В 4-х т. Т.3. Производство, передача и распределение электрической энергии. / Под общ. ред. Профессоров МЭИ В.Г.Герасимов и др. (гл. ред. А.И.Попов). - 9-е изд. стер. - М.: Издательство МЭИ, 2004. - 964 с.

Способ определения первичных параметров однородного участка трехпроводной линии электропередачи, заключающийся в косвенном измерении первичных параметров однородного участка линии электропередачи на основе Г-образной схемы замещения полнофазного исполнения, отличающийся тем, что выполняется серия экспериментов из четырех опытов, в результате которых определяются изображения на комплексной плоскости действующих значений входных и выходных фазных напряжений и токов, которые являются исходными данными для определения первичных параметров однородного участка трехпроводной линии электропередачи, вычислением на основании полученных таким образом экспериментальных данных активных сопротивлений и индуктивностей линейных проводов, активных проводимостей и емкостей между проводами, а также между проводами и «землей».
СПОСОБ ОПРЕДЕЛЕНИЯ ПЕРВИЧНЫХ ПАРАМЕТРОВ ОДНОРОДНОГО УЧАСТКА ТРЕХПРОВОДНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПЕРВИЧНЫХ ПАРАМЕТРОВ ОДНОРОДНОГО УЧАСТКА ТРЕХПРОВОДНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
Источник поступления информации: Роспатент

Показаны записи 21-22 из 22.
12.01.2017
№217.015.5cdd

Способ определения укрупненных первичных параметров линии электропередачи методом четырехполюсника

Изобретение относится к области систем обработки информации и может быть использовано при функциональном контроле и диагностировании электропередачи (ЛЭП) на основании теории многополюсников. Способ заключается в замещении всей однопроводной линии электропередачи или одного линейного провода...
Тип: Изобретение
Номер охранного документа: 0002591031
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.76b3

Способ определения места несанкционированного подключения нагрузки к линии электической передачи

Изобретение относится к области электротехники и может быть использовано для определения места несанкционированного подключения нагрузки к линии электрической передачи. Предложено определение места несанкционированного подключения электрической нагрузки к линии электрической передачи при...
Тип: Изобретение
Номер охранного документа: 0002598684
Дата охранного документа: 27.09.2016
Показаны записи 131-140 из 154.
20.06.2015
№216.013.5694

Сырьевая смесь для изготовления стеновых керамических изделий

Изобретение предназначено для производства стеновых керамических изделий. Технический результат - повышение прочности. Сырьевая смесь включает, мас.%: пыль газоочистки производства ферросплавов с содержанием SiO2 [61,49-79,58] и MgO [1,58-3,57] 65-67; закарбонизованный суглинок 28-30; шлам...
Тип: Изобретение
Номер охранного документа: 0002553694
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.570f

Сырьевая смесь для приготовления золошлакового бетона

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления конструкций и изделий. Сырьевая смесь для приготовления золошлакового бетона, включающая вяжущее, состоящее из жидкого стекла, характеризующегося силикатным модулем n=1 и плотностью...
Тип: Изобретение
Номер охранного документа: 0002553817
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.5710

Сырьевая смесь для приготовления золощелочного бетона

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления конструкций и изделий. Технический результат - повышение прочности. Сырьевая смесь для приготовления золощелочного бетона, содержащая вяжущее, состоящее из жидкого стекла с силикатным...
Тип: Изобретение
Номер охранного документа: 0002553818
Дата охранного документа: 20.06.2015
10.07.2015
№216.013.5b81

Сырьевая смесь для приготовления золощелочного бетона

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления конструкций и изделий. Сырьевая смесь для приготовления золощелочного бетона, включающая вяжущее, состоящее из золы-уноса II поля с истинной плотностью ρ= 2590-2800 кг/м и потерями после...
Тип: Изобретение
Номер охранного документа: 0002554966
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5b82

Сырьевая смесь для приготовления коррозионностойкого золощелочного бетона

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении строительных изделий и конструкций. Технический результат - повышение коррозионной стойкости. Сырьевая смесь для приготовления коррозионностойкого золощелочного бетона, включающая...
Тип: Изобретение
Номер охранного документа: 0002554967
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.61dd

Вибрационный смеситель

Изобретение относится к устройствам для перемешивания бетонной смеси и может быть использовано для производства многокомпонентных смесей. Технический результат - качественная интенсификация процесса перемешивания компонентов в целом. Вибрационный смеситель содержит камеру смешивания с окнами...
Тип: Изобретение
Номер охранного документа: 0002556595
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.63a0

Насос трения для перекачки масел

Изобретение относится к гидравлической технике, в частности к роторным насосам, в которых вытеснение жидкости производится из перемещаемых рабочих камер в результате вращательного движения рабочих органов - вытеснителей и которые могут быть использованы для смазки подшипниковых узлов. Насос...
Тип: Изобретение
Номер охранного документа: 0002557051
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.65fe

Способ учета стрелы провеса линейных проводов трехфазной линии электропередачи при ее согласовании с электрической нагрузкой

Изобретение относится к электроэнергетике, а именно к повышению качества электрической энергии в линиях с распределенными параметрами среднего, высокого и сверхвысокого напряжения. Изменение первичных параметров линии электропередачи в процессе эксплуатации связано с изменением величины стрелы...
Тип: Изобретение
Номер охранного документа: 0002557663
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6684

Способ согласования протяженной четырехпроводной неоднородной несимметричной высоковольтной линии электропередачи со сверхпроводящей вставкой с электрической нагрузкой

Использование: в области электротехники. Технический результат - обеспечение условий согласования для всех линейных проводов, кроме сверхпроводников, и нейтрального провода с электрическими нагрузками. Согласно способу исходная информация о напряжениях, токах и их частоте в неоднородной линии...
Тип: Изобретение
Номер охранного документа: 0002557797
Дата охранного документа: 27.07.2015
20.08.2015
№216.013.6f03

Вибрационный смеситель

Изобретение относится к устройствам для перемешивания бетонной смеси и может быть использовано для производства многокомпонентных смесей. Технический результат - интенсификация процесса перемешивания компонентов за счет исключения в камере смешения «глухих» зон и дополнительных вибрационных...
Тип: Изобретение
Номер охранного документа: 0002559989
Дата охранного документа: 20.08.2015
+ добавить свой РИД