×
20.07.2014
216.012.de31

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕМЕНТНОГО СОСТАВА И ТОЛЩИНЫ ПОВЕРХНОСТНОЙ ПЛЕНКИ ТВЕРДОГО ТЕЛА ПРИ ВНЕШНЕМ ВОЗДЕЙСТВИИ НА ПОВЕРХНОСТЬ

Вид РИД

Изобретение

Аннотация: Использование: для определения элементного состава и толщины поверхностной пленки твердого тела. Сущность: заключается в том, что выполняют измерение энергетических спектров ионов, отраженных и выбитых из поверхности твердого тела, при этом измеряют энергетические спектры непосредственно в процессе внешнего воздействия на поверхность твердого тела или сразу после него путем поочередного облучения во времени поверхности твердого тела масс-сепарированными по отношению масс к заряду ионами водорода и ионами инертных газов путем подачи соответствующего ускоряющего напряжения на ионный источник, работающий на смеси инертных газов и водорода, при этом об элементном составе поверхностного слоя твердого тела судят по энергетическим спектрам отраженных ионов инертных газов, а о толщине пленки - по энергетическим спектрам отраженных ионов водорода. Технический результат: расширение функциональных возможностей определения элементного состава поверхностной пленки твердого тела. 2 з.п. ф-лы, 4 ил.

Изобретение относится к экспериментальной физике и методам контроля поверхности материалов при нанесении (образовании) или удалении с нее тонких слоев веществ, отличающихся по среднему атомному номеру от материала подложки, в том числе в условиях плазменного воздействия.

Для анализа состава поверхности и осажденных на ней слоев широко используются методы вторично эмиссионной спектроскопии с распылением поверхности зондирующим пучком. Однако при этом разрешение по глубине в этих методах ограничено и сопровождается разрушением образца [Woodruff DP., Delchar T.A. Modern techniques of durface science, Cambridge, Cambridge University Press, 1986]. Спектроскопия обратного резерфордовского рассеяния может быть использована как неразрушающий метод анализа, но требует применения дорогостоящих ускорителей [B. Breeger, E. Wendler, W. Trippensee, Ch. Schubert, W. Wesch; Nuclear instruments and methods in physics research; В174, 199-204; 2001].

Наиболее близким способом к предлагаемому изобретению и принятым в качестве прототипа является способ определения элементарного состава твердого тела [RU 2017143 С1], в котором, путем измерения масс-спектра вторичных частиц, получаемых из материала, и измерения энергетических распределений анализируемых частиц, находят искомую концентрацию каждого компонента.

Однако, данный способ, реализованный в макетном образце прибора [Гордеев Ю.С., Каблуков С.Б., Макаренко Б.Н., Попов А.Б., Шергин А.П. Определение компонентного состава ВТСП с помощью масс-спектрометрии вторичных атомов. Заводская лаборатория,, т.56, N 8, с.52-55, 1990], не позволяет определить толщину поверхностных слоев, а также из-за необходимости проведения анализа в высоком вакууме ~10-8 Торр не позволяет исследовать динамику изменения состояния поверхности непосредственно при его технологической обработке, например при плазменном воздействии или при травлении ионным пучком или при напылении с помощью ионных пучков.

Техническим результатом изобретения является расширение функциональных возможностей определения элементного состава поверхностной пленки твердого тела, а именно определение элементного состава и толщины поверхностного слоя твердого тела при внешнем воздействии на поверхность.

Технический результат достигается тем, что измерение энергетических спектров ионов водорода и ионов инертных газов отраженных и выбитых из поверхности твердого тела производят непосредственно в процессе внешнего воздействия на поверхность твердого тела или сразу после него путем поочередного облучения во времени поверхности твердого тела масс - сепарированными по отношению масс к заряду ионами водорода и ионами инертных газов с энергиями, при этом поочередное облучение ионами водорода и инертных газов осуществляют путем подачи соответствующего ускоряющего напряжения на ионный источник, работающего на смеси инертных газов и водорода, при этом об элементном составе поверхностного слоя твердого тела судят по энергетическим спектрам однократно отраженных ионов инертных газов и ионов отдачи, а о толщине поверхностного слоя твердого тела по энергетическим спектрам рассеянных ионов водорода. В качестве ионов инертных газов используют гелий, неон или аргон, а внешнее воздействие осуществляют путем травления ионным пучком, или напыления с помощью ионных пучков, или облучения плазмой или нагрева.

Ионные пучки водорода и инертных газов создают с помощью одного ионного источника, например дуоплазматрон, работающего на смеси инертных газов и водорода. Это позволяет получать одновременно ионы, обеспечивающие анализ атомов на поверхности, а также ионы, обеспечивающие измерение толщины слоя со средним атомным номером, отличающимся от среднего атомного номера подложки. Ионы инертных газов с высоким потенциалом ионизации, отраженные от поверхности твердого тела на фиксированный угол в пределах 5-30° потоках частиц формируют узкие пики однократно рассеянных ионов или выбитых ионов отдачи, энергия которых однозначно связана с массой атомов поверхности. Из законов сохранения энергии и импульса следует, что энергия иона после упругого рассеяния на атоме

где γ=m/M, m - масса налетающей частицы, М - масса атома, на котором рассеивается электрон. При этом атому поверхности передается энергия

где φ - угол между направлением импульса, переданного атому в результате рассеяния и направлением первоначальной траектории иона. Для анализа тонких приповерхностных слоев необходимы ионы водорода, которые из-за малого сечения упругого рассеяния (по сравнению с более тяжелыми ионами) глубоко проникают в поверхность и, отражаясь от атомов в глубине твердого тела и теряя по пути свою энергию за счет неупругих соударений, формируют широкие куполообразные энергетические распределения отраженных частиц, форма которых зависит от атомного номера частиц среды и толщины соответствующих слоев на поверхности мишени. Причем при использовании ионов (или атомов) водорода узкие пики однократного рассеяния практически не наблюдаются. Толщина поверхностного слоя определяется по формуле:

где E0 - энергия налетающих ионов, Em - наиболее вероятная энергия ионов после отражения от исследуемой поверхности, k - значение тормозной способности, рассчитывалось по формуле Линдхарда-Шаффра kLS=0.082eVl/2/A (можно использовать другие литературные данные [Готт Ю.В. Взаимодействие частиц с веществом в плазменных исследованиях. М.: Атомиздат, 1978, 270 с]).

Суть предлагаемого способа заключается в том, чтобы обеспечить поочередное облучение исследуемого образца теми и другими ионами. При этом вид и энергия ионов, используемых для определения элементного состава поверхностного слоя твердого тела, должны обеспечивать формирование компоненты однократно упруго отраженных ионов и выбитых ионов отдачи [Курнаев В.А., Машкова B.C., Молчанов В.А. // Отражение легких ионов от поверхности твердого тела // М. Энергоатомизат. 1985, 192 с], в то время как энергия ионов водорода, используемых для измерения толщины слоя на поверхности образца, должна быть достаточна для проникновения на всю глубину слоя, отражения от подложки и вылета обратно в вакуум [Курнаев В.А., Трифонов Н.Н., М.Н. Дроздов, Салашенко Н.Н. // Письма в ЖТФ, т.25 вып.11, 1999]. Данный способ исследования поверхностной пленки твердого тела обеспечивает монослойное разрешение анализируемой поверхности, а также позволяет исследовать пленки, состоящие из атомов, отличающихся по среднему атомному номеру от атомов подложки, например, поверхностный слой, состоящий из молекул воды и углеводородов на поверхности металлов. При этом данный способ позволяет не разрушать исследуемую поверхностную пленку твердого тела.

Данный способ был реализован с помощью экспериментальной установки «Большой Масс-Монохроматор МИФИ «Крокодил» [Курнаев В.А., Мамедов Н.В. Модернизированная установка для исследования взаимодействия с поверхностью ионов с энергия до 40 кэв. «Краткие сообщения по физике» №4, с.45, 2010].

На фиг.1 представлена схема одного из вариантов реализации данного способа, где 1 - ионный источник дуоплазматрон, 2 - сепарирующий электромагнит, 3 - мишень, 4 - плазменный источник для воздействия на поверхность образца, 5 - электростатический энергоанализатор, 6 - детектор ионов, 7 - нагреватель образца, α - угол падения первичного пучка, θ - угол регистрации рассеянных ионов.

Извлекаемый из источника ионов 1 пучок сепарируется по отношению массы к заряду, причем для ускоряющего ионы потенциала U0, массы М, заряда Z и величины сепарирующего поля В выполняется соотношение (U0M/Z)1/2/B=const. Изменяя ток в электромагните 2, выделяют нужную компоненту пучка U0M/Z=const и направляют на мишень 3, расположенную в камере столкновений. После чего отраженные частицы проходят электростатический энергоанализатор 5 и регистрируются с помощью детектора 6. При этом мишень может подвергаться плазменному воздействию 4 или нагреву 7.

Например, для того, чтобы осуществить одновременное определение состава и толщины слоя из легких атомов карбида бора на поверхности подложки из тяжелых атомов молибдена необходимо попеременно направлять на мишень ионы водорода и гелия, изменяя ускоряющее ионы напряжение на ионном источнике в соответствии с условием U0M/Z=const. При использовании для анализа однозарядных ионов гелия переход от облучения ионами к ионам 4He+ сводится к двукратному уменьшению величины ускоряющего потенциала. В рассмотренном случае слоя карбида бора на поверхности молибдена U0 должно попеременно составлять 5 и 2,5 кВ как показано на фиг.2 (где τанализ - время снятия энергоспектра), а масс-монохроматор настраивается на значение U0·M/Z=10 КэВ·а.е.м. При этом энергия ионов гелия обеспечивает формирование узких пиков однократно рассеянных ионов, а энергия ионов водорода наличие в энергетическом распределении отраженных частиц ионов, отраженных от слоя более тяжелых атомов подложки. При толщине слоя В4С порядка 4 нм и облучении ионами с начальной энергией 5,0 кэВ при регистрации под углом рассеяния 30° толщина слоя определяется с точностью ±0,03 нм На фиг.3 представлен характерный энергетический спектр ионов водорода отраженный от исследуемой поверхности (где 1 - энергетический спектр первичного пучка ионов водорода - дельта функция, 2 - энергетический спектр ионов водорода отраженных от исследуемой поверхности, 3 - положение наиболее вероятной энергии ионов после отражения от исследуемой поверхности). Ионы же гелия формируют спектр с узкими пиками, соответствующими частицам, однократно рассеянным от атомов бора и углерода, а также первично выбитым ионам отдачи тех же элементов. Поскольку атомы углерода обладают большим сродством к электрону, то для их детектирования измерялись энергетические спектры отрицательно заряженных атомов отдачи при облучении ионами 4He+. На фиг.4 представлен характерный энергетический спектр отрицательно заряженных ионов отдачи и ионов гелия выбитых и отраженных от исследуемой поверхности (где 1 - положение пика, соответствующего атомам отдачи кислорода, 2 - положение пика, соответствующего атомам отдачи углерода, 3 - куполообразная часть спектра соответствующая отрицательным ионам гелия, отраженным от поверхности) На фиг.4 четко видны два пика, которые соответствуют атомам отдачи углерода и кислорода (атомы кислорода являются остатками адсорбированных на поверхности молекул воды). Высокоэнергетическая часть этого спектра по форме полностью соответствует высокоэнергетической части спектра положительных ионов. Таким образом, куполообразная часть спектра соответствует отрицательным ионам гелия.

Для анализа на порядок более толстых слоев можно использовать смесь газов Ne и Н2. В этом случае масс-монохроматор настраивается, например, на соотношение U0·M/Z=40 КэВ·а.е.м. В этом случае при подаче на источник ускоряющего потенциала 40 кВ на мишень попадут ионы с энергией 20 кэВ, а при уменьшении U0 до 2 кВ - ионы Ne+ с энергией 2 кэВ. Протоны позволят измерить по энергетическому спектру толщину слоя, а ионы неона - его состав.

Резкое различие в энергиях первичных ионов позволяет проводить непрерывную регистрацию спектра рассеянных частиц. Если же характерные участки энергетических спектров для разных ионов совпадают, то, синхронизовав измерения спектров с изменением ускоряющего напряжения можно получать независимые спектры для разных ионов.

Степень одновременности измерения толщины и состава слоя на поверхности образца определяется частой изменения U0. Так, при частоте изменения U0 10 Гц анализ толщины и состава поверхности будет осуществляться с разницей во времени 0,1 с, при 100 Гц - с разницей в 10 мc.

Таким образом, из вышеуказанного следует, что предлагаемый способ позволяет определять элементный состав и толщину поверхностного слоя твердого тела, находящегося под плазменным облучением с целью изучения закономерностей и механизмов взаимодействия плазмы ТЯР с кандидатными материалами первой стенки УТС. А также улучшить контроль поверхности материалов при нанесении (образовании) или удалении с нее тонких слоев веществ применяемых в электронной промышленности.


СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕМЕНТНОГО СОСТАВА И ТОЛЩИНЫ ПОВЕРХНОСТНОЙ ПЛЕНКИ ТВЕРДОГО ТЕЛА ПРИ ВНЕШНЕМ ВОЗДЕЙСТВИИ НА ПОВЕРХНОСТЬ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕМЕНТНОГО СОСТАВА И ТОЛЩИНЫ ПОВЕРХНОСТНОЙ ПЛЕНКИ ТВЕРДОГО ТЕЛА ПРИ ВНЕШНЕМ ВОЗДЕЙСТВИИ НА ПОВЕРХНОСТЬ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕМЕНТНОГО СОСТАВА И ТОЛЩИНЫ ПОВЕРХНОСТНОЙ ПЛЕНКИ ТВЕРДОГО ТЕЛА ПРИ ВНЕШНЕМ ВОЗДЕЙСТВИИ НА ПОВЕРХНОСТЬ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕМЕНТНОГО СОСТАВА И ТОЛЩИНЫ ПОВЕРХНОСТНОЙ ПЛЕНКИ ТВЕРДОГО ТЕЛА ПРИ ВНЕШНЕМ ВОЗДЕЙСТВИИ НА ПОВЕРХНОСТЬ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 554.
20.07.2014
№216.012.ddf9

Светочувствительный взрывчатый состав

Изобретение относится к взрывчатым веществам, возбуждаемым когерентным и некогерентным импульсным световым излучением, и может быть использовано в средствах инициирования, в качестве генератора плоских ударных волн, а также в устройствах для обработки металлов энергией взрыва и оптических...
Тип: Изобретение
Номер охранного документа: 0002522611
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de0b

Способ приготовления многокомпонентных газовых смесей

Изобретение относится к приготовлению многокомпонентных газовых смесей и может быть использовано в лазерной технике, химической промышленности, в частности для приготовления смеси из перфторалкилиодида и буферных газов и последующего заполнения различных рабочих емкостей. Способ включает напуск...
Тип: Изобретение
Номер охранного документа: 0002522629
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de4a

Радиоприемное устройство с автокорреляционным разделением посылок частотно-манипулированного сигнала с непрерывной фазой

Изобретение относится к технике радиосвязи. Техническим результатом изобретения является упрощение радиоприемного устройства с автокорреляционным разделением посылок частотно-манипулированного сигнала с непрерывной фазой. В радиоприемное устройство, содержащее последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002522692
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de7a

Способ определения характеристик фугасности (варианты)

Группа изобретений относится к области испытаний боеприпасов. При испытании производят выстрел объекта испытания в виде фрагмента или уменьшенной модели боеприпаса из баллистической установки, подрывают в заданной точке его заряд, регистрируют характеристики проходящей воздушной ударной волны,...
Тип: Изобретение
Номер охранного документа: 0002522740
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de81

Поглощающий нейтроны материал на основе гафната диспрозия

Изобретение относится к поглощающему нейтроны материалу на основе гафната диспрозия, содержащему оксиды диспрозия и гафния. Материал дополнительно содержит триоксид молибдена, имеет следующие соотношение компонентов, мас.%: и его получают путем твердофазного синтеза при температуре 1500-1700°C...
Тип: Изобретение
Номер охранного документа: 0002522747
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de88

Способ определения влагоемкости твердых гигроскопичных объектов

Изобретение относится к области методов проведения оперативного контроля и регулирования влажности в герметичных контейнерах с электронными приборами для обеспечения надежности их функционирования. Способ определения влагоемкости твердых гигроскопичных объектов включает помещение анализируемых...
Тип: Изобретение
Номер охранного документа: 0002522754
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de8b

Способ определения коэффициента диффузии в порошковых материалах и способ определения толщины и показателя целостности покрытия на частицах порошковых материалов

Изобретения относятся к области определения значений параметров, характеризующих физико-химические свойства материалов, например коэффициентов диффузии, по величине электропроводности, и могут найти применение в порошковой металлургии, в изучении процессов самораспространяющегося...
Тип: Изобретение
Номер охранного документа: 0002522757
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb1

Способ определения концентрации изотопного состава молекулярного йода в газах

Изобретение относится к области измерительной техники и может быть использовано в атомной энергетике и для охраны окружающей среды. Осуществляют прокачку анализируемой смеси газов через исследуемую ячейку, возбуждают в ней флуоресцентное излучение перестраиваемыми полупроводниковыми лазерами с...
Тип: Изобретение
Номер охранного документа: 0002522795
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb3

Устройство для формирования ударно-волнового импульса

Изобретение относится к области испытательной техники, в частности испытаний объектов на воздействия воздушных ударных волн. Устройство содержит ударную трубу, источник ударной волны, размещенный на одном торце ударной трубы, и заглушку, размещенную на другом торце ударной трубы. Заглушка...
Тип: Изобретение
Номер охранного документа: 0002522797
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.def2

Устройство для одновременной трансляции сигналов в оптическом и радиочастотном диапазонах излучения

Изобретение относится к области измерений кинематических параметров движущейся поверхности в быстропротекающих процессах. Технический результат - обеспечение возможности производить измерения кинематических параметров фиксированного участка (точки) движущейся поверхности. Для этого устройство...
Тип: Изобретение
Номер охранного документа: 0002522860
Дата охранного документа: 20.07.2014
Показаны записи 91-100 из 407.
20.07.2014
№216.012.ddf9

Светочувствительный взрывчатый состав

Изобретение относится к взрывчатым веществам, возбуждаемым когерентным и некогерентным импульсным световым излучением, и может быть использовано в средствах инициирования, в качестве генератора плоских ударных волн, а также в устройствах для обработки металлов энергией взрыва и оптических...
Тип: Изобретение
Номер охранного документа: 0002522611
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de0b

Способ приготовления многокомпонентных газовых смесей

Изобретение относится к приготовлению многокомпонентных газовых смесей и может быть использовано в лазерной технике, химической промышленности, в частности для приготовления смеси из перфторалкилиодида и буферных газов и последующего заполнения различных рабочих емкостей. Способ включает напуск...
Тип: Изобретение
Номер охранного документа: 0002522629
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de4a

Радиоприемное устройство с автокорреляционным разделением посылок частотно-манипулированного сигнала с непрерывной фазой

Изобретение относится к технике радиосвязи. Техническим результатом изобретения является упрощение радиоприемного устройства с автокорреляционным разделением посылок частотно-манипулированного сигнала с непрерывной фазой. В радиоприемное устройство, содержащее последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002522692
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de7a

Способ определения характеристик фугасности (варианты)

Группа изобретений относится к области испытаний боеприпасов. При испытании производят выстрел объекта испытания в виде фрагмента или уменьшенной модели боеприпаса из баллистической установки, подрывают в заданной точке его заряд, регистрируют характеристики проходящей воздушной ударной волны,...
Тип: Изобретение
Номер охранного документа: 0002522740
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de81

Поглощающий нейтроны материал на основе гафната диспрозия

Изобретение относится к поглощающему нейтроны материалу на основе гафната диспрозия, содержащему оксиды диспрозия и гафния. Материал дополнительно содержит триоксид молибдена, имеет следующие соотношение компонентов, мас.%: и его получают путем твердофазного синтеза при температуре 1500-1700°C...
Тип: Изобретение
Номер охранного документа: 0002522747
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de88

Способ определения влагоемкости твердых гигроскопичных объектов

Изобретение относится к области методов проведения оперативного контроля и регулирования влажности в герметичных контейнерах с электронными приборами для обеспечения надежности их функционирования. Способ определения влагоемкости твердых гигроскопичных объектов включает помещение анализируемых...
Тип: Изобретение
Номер охранного документа: 0002522754
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de8b

Способ определения коэффициента диффузии в порошковых материалах и способ определения толщины и показателя целостности покрытия на частицах порошковых материалов

Изобретения относятся к области определения значений параметров, характеризующих физико-химические свойства материалов, например коэффициентов диффузии, по величине электропроводности, и могут найти применение в порошковой металлургии, в изучении процессов самораспространяющегося...
Тип: Изобретение
Номер охранного документа: 0002522757
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb1

Способ определения концентрации изотопного состава молекулярного йода в газах

Изобретение относится к области измерительной техники и может быть использовано в атомной энергетике и для охраны окружающей среды. Осуществляют прокачку анализируемой смеси газов через исследуемую ячейку, возбуждают в ней флуоресцентное излучение перестраиваемыми полупроводниковыми лазерами с...
Тип: Изобретение
Номер охранного документа: 0002522795
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb3

Устройство для формирования ударно-волнового импульса

Изобретение относится к области испытательной техники, в частности испытаний объектов на воздействия воздушных ударных волн. Устройство содержит ударную трубу, источник ударной волны, размещенный на одном торце ударной трубы, и заглушку, размещенную на другом торце ударной трубы. Заглушка...
Тип: Изобретение
Номер охранного документа: 0002522797
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.def2

Устройство для одновременной трансляции сигналов в оптическом и радиочастотном диапазонах излучения

Изобретение относится к области измерений кинематических параметров движущейся поверхности в быстропротекающих процессах. Технический результат - обеспечение возможности производить измерения кинематических параметров фиксированного участка (точки) движущейся поверхности. Для этого устройство...
Тип: Изобретение
Номер охранного документа: 0002522860
Дата охранного документа: 20.07.2014
+ добавить свой РИД