×
20.07.2014
216.012.ddae

Результат интеллектуальной деятельности: СПОСОБ ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетно-космической технике и может быть использовано для увода отделяющихся частей ступеней ракет космического назначения. Получают импульс путем выброса газифицированных жидких остатков невыработанных компонентов ракетного топлива (РТ), обеспечивают импульс за счет сгорания невыработанных компонентов РТ в камере газового ракетного двигателя, ограничивают объем невыработанных остатков РТ, разделяют секундный массовый расход теплоносителя (ТН) на 2 части (одну часть подают в объем, ограниченной сеткой, другую - во вторую часть топливного бака), определяют количество подаваемого ТН из условия испарения оставшихся капель компонентов РТ. Устройство для увода отделяющейся части ракеты-носителя содержит топливные баки окислителя и горючего, систему наддува баков, газовый ракетный двигатель с системами питания и газификации, магистрали с акустическими излучателями (рассчитанными из условия минимальных массовых затрат на газификацию заданными количеством топлива и давления), разделительную сетку (рассчитанную от значения силы поверхностного натяжения). Изобретение позволяет снизить энергетические затраты на газификацию заданного количества остатков компонентов РТ. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относятся к ракетно-космической технике, в частности к ракетам космического назначения (РКН) с маршевыми жидкостными ракетными двигателями (ЖРД), и могут быть использованы для разработки автономных бортовых систем спуска (АБСС) отделяющихся частей (04) ступеней РКН на основе газификации остатков невыработанных жидких компонентов ракетного топлива (КРТ).

Известен способ нейтрализации токсичных компонентов ракетного топлива на основе азотной кислоты и несимметричного диметилгидразина в отделяющейся части ракеты, защищенный патентом РФ №2028468.

Способ включает следующие операции: после останова ЖРД часть жидкого НДМГ подают в магистраль окислителя низкого давления, а газообразные продукты разложения окислителя при достижении предельно допустимого давления в баке окислителя направляют в бак с остатками НДМГ и осуществляют сброс газифицированных продуктов в окружающее пространство.

Устройство для осуществления данного способа содержит: шар-баллон с мембраной и автоматикой для подачи НДМГ, соединительную магистраль бака окислителя и бака горючего с клапанами.

Недостатком данного способа и устройства для его осуществления является невозможность использования газифицированных КРТ в газовом ракетном двигателе для АБСС.

Наиболее близким по технической сущности к предлагаемому способу и устройству для его осуществления является способ увода отделившейся части ракеты-носителя с орбиты полезной нагрузки и двигательная установка для его осуществления (патент РФ на изобретение №2406856 от 11.06.2008 г. Опуб. 20.12.2010. Бюл. №35).

Способ включает обеспечение вращения ОЧ ступени РКН вокруг продольной оси до достижения стабилизации ее углового положения в пространстве, газификацию жидких остатков невыработанных КРТ в баках окислителя и горючего, обеспечение тормозного импульса за счет их сгорания в камере газового ракетного двигателя (ГРД) и высокоскоростное истечение продуктов сгорания в космическое пространство.

Устройство для осуществления способа представляет собой двигательную установку (ДУ), включающую в свой состав топливные баки окислителя и горючего, систему наддува баков, ГРД с системой питания и системой газификации остатков КРТ. Система питания содержит устройства отбора газа, снабженные пиромембранами, которые подсоединены к коллектору ГРД.

Недостатком этого технического решения является повышенный расход теплоносителя (ТН), подаваемого в объем топливного бака, за счет неопределенности граничного положения остатков топлива в баках, значительные (до 50%) потери тепла, которые идут на нагрев стенок баков конструкции с последующим сбросом тепла в окружающее космическое пространство.

Заявляемое техническое решение направлено на снижение энергетических затрат на газификацию заданного количества остатков КРТ в условиях неопределенности граничного положения жидких остатков КРТ, обусловленных резким падением перегрузки после выключения маршевого ЖРД, упругой деформацией нижнего днища (возврат из положения прогиба за счет перегрузки и наличия давления столба жидкости в исходное состояние) и дальнейшим состоянием невесомости.

На фиг. 1 представлена общая схема расположения элементов системы газификации.

Указанный технический результат достигается за счет того, что в способе увода ОЧ ступени ракеты-носителя, основанном на вращении 04 ступени РКН вокруг продольной оси до достижения стабилизации ее углового положения в пространстве, газификации жидких остатков невыработанных КРТ в баках окислителя и горючего, обеспечении тормозного импульса за счет их сгорания в камере ГРД и высокоскоростного истечения продуктов сгорания в космическое пространство согласно заявленному изобретению в нижней части топливного бака (4) ограничивают объем, включающий в себя массу невыработанных остатков (1) КРТ в окрестности заборного устройства путем установки разделительной сетки (3), секундный массовый расход ТН, подаваемого в топливный бак через магистрали (5), разделяют на 2 части, одна часть ТН подается в объем, ограниченный сеткой, с обеспечением вихревой картины течения из условия создания максимальной теплоотдачи и максимального времени пребывания ТН в этом объеме, а вторая часть ТН подается во вторую часть топливного бака с обеспечением встречных потоков смеси, поступающей из объема ограниченного разделительной сеткой, количество подаваемого ТН в верхнюю часть топливного бака определяют из условия испарения всех оставшихся капель КРТ к моменту времени выхода газифицированных продуктов из топливного бака. ТН в выделенные области подают через магистрали, на конце которых установлены акустические излучатели (2), при этом количество и координаты точек ввода ТН, направление ввода, параметры акустических излучателей определяются из условия минимальных массовых затрат на газификацию заданного количества топлива при заданном давлении газифицированных продуктов в баке в течение всего процесса газификации, и по достижению заданного давления в топливном баке открывают клапан на магистрали подачи газифицированных продуктов, например в газовый ракетный двигатель.

Технический результат в части устройства достигается за счет того, что ДУ, включающая в свой состав топливные баки окислителя и горючего, систему наддува баков, ГРД с системой питания и системой газификации остатков компонентов ракетного топлива, согласно заявляемому изобретению дополнительно в нижней части топливного бака введена разделительная сетка с размерами ячейки в несколько десятков микрон, при этом соотношение объемов ограниченного сеткой нижней части бака с объемом всего бака находится в интервале 1:5.

Такое расположение разделительной сетки обусловлено массой невыработанных остатков КРТ, включающих в себя: гарантированные запасы КРТ, конструктивный незабор КРТ, рабочие запасы КРТ, заливку двигателя РКН, что составляет величину, превышающую минимально возможный объем остатков КРТ в 3 раза, плюс отклонение от максимально возможного объема остатков КРТ:

,

где Vc - объем, ограниченный сеткой, включающий в себя массу невыработанных остатков КРТ;

- минимально возможный объем остатков КРТ;

σ - среднеквадратичное отклонение от номинального значения остатков КРТ.

где σ - среднеквадратичное отклонение, σi - текущее отклонение, P - частота появления данного отклонения, m - количество текущих начений, n - общее количество отклонений.

Размер ячейки сетки определяется физическими параметрами топлива и ускорением, которому подвержена жидкость после разделение ступеней. На фиг. 2 представлена структура сетчатого фазоразделителя. Расчет размера ячейки сводится к расчету капиллярного эффекта:

Fa=FH

FH=σ·2πr·cosΘ

Fa=phr2α

где, r - радиус капиллярного отверстия в сетке, σ - сила поверхностного натяжения жидкости, Θ - угол смачивания жидкости, ρ - плотность жидкости, h - высота столба жидкости над сеткой, α - ускорение жидкости при движении по направлению к сетке, Fα - сила, с которой жидкость воздействует на элемент сетки, FH - сила поверхностного натяжения.

Реализация предложенного технического решения осуществляется следующим образом:

1) Установка разделительной сетки в нижней части бака позволяет сосредоточить остатки жидких КРТ в заданной области, в противном случае они бы заняли неопределенное положение, например газокапельная смесь в объеме бака, течения по стенке и ряд других граничных и фазовых состояний в объеме топливного бака после выключения маршевого ЖРД из-за резкого спада перегрузки до нулевых значений, упругих перемещений нижнего днища бака из нагруженного состояния в исходное.

2) Размер ячеек сетки определяется из условия протекания КРТ при действии перегрузки, давления наддува, при допустимом гидродинамическом сопротивлении, т.е. не оказывающим влияние на секундный расход КРТ на активном участке полета. После выключения маршевого ЖРД зеркало поверхности КРТ всегда ниже уровня сетки. При сбросе тяги маршевого ЖРД воздействия упругого днища остатки КРТ получают импульс, направленный на разрушение свободной поверхности жидкости с их перемещением к верхнему днищу. За счет наличия адгезионных сил между стенками сетки и жидкости, жидкость не проходит через сетку (в кн. Основы теории и расчета жидкостных ракетных двигателей. Учеб. Для авиац. Спец. Вузов/А.П. Васильев, В.М. Кудрявцев, В.А. Кузнецов и др. кн.2, стр.137-139, 275-284). В зависимости от величины импульса обратной перегрузки (он носит кратковременный характер и его величина незначительна) часть капель выдавливается через сетку.

В настоящее время эти сетки выпускаются российской промышленностью, в частности, используются для аналогичных целей в системе повторного запуска ЖРД второй ступени 11Д49 на РКН «Космос-3М» для фазового разделения.

Размер ячеек разделительной сетки выбирается в зависимости от типа жидких остатков КРТ (несимметричный диметилгидразин, керосин, азотная кислота и т.д.), что связано с коэффициентом поверхностного натяжения каждого из компонентов.

Подача ТН в объем бака, либо в область наиболее вероятного расположения максимального количества остатков КРТ приводит к большим потерям тепла на нагрев бака (до 50%) и его сбросу в космос.

3) Разделение общего потока ТН на 2 части позволяет решить ряд следующих задач:

1. В нижней части бака, ограниченной сеткой, возникает возможность обеспечить:

- условия для максимальной теплопередачи от ТН непосредственно к жидкости за счет создания вихревого течения (увеличение коэффициентов тепло и массообмена);

- увеличить в несколько раз время нахождения частиц ТН непосредственно в контакте с жидкостью;

- многократно сократить потери тепла на нагрев конструкции из-за сокращения поверхности взаимодействия со стенками бака.

2. В верхней части бака:

- поток ТН взаимодействует с жидкими остатками КРТ, масса которых во много раз меньше (жидкость на элементах конструкции, капли жидкости, выбрасываемыми через разделительную сетку из нижней части бака), поэтому количество тепла для газификации этой части жидкости требуется значительно меньше, чем в нижней части бака, соответственно, и потерь от подаваемого в эту часть объема бака тепла на нагрев стенок бака будет меньше;

- для предотвращения процесса конденсации газифицированного КРТ в этой части бака также требуются дополнительные затраты тепла. Газодинамическая картина течения теплоносителя через сетчатый фазоразделитель представлен на фиг. 3.

4) Установка акустических излучателей на магистралях подвода ТН в баки приводит к дополнительному полевому воздействию на процесс газификации, и в ряде случаев для многофазных сред коэффициенты тепло- и массообмена могут возрастать в несколько раз, однако эффективное использование этого дополнительного воздействия требует:

- выбора оптимальной интенсивности акустического излучения (частоты, интенсивность);

- оптимальной ориентации диаграммы акустического излучателя с учетом отраженного излучения от стенок конструкции. На фиг. 4 представлена зона действия акустического излучателя.

Имеется ряд работ, например B.C.Будник B.C., Ю.Ф.Даниев, Н.Ф.Свириденко «Обобщенный энергетический подход к организации тепломассообменных процессов в свободном газовом объеме топливных баков жидкостных ракет//Техническая механика №1998», в которых указывается на возможность возникновения синергетического эффекта в подобных системах за счет выбора оптимального сочетания воздействий массопритока и полевого воздействия.

5) Критерий определения параметров при заданном давлении.

Основная задача, решаемая в рассматриваемом способе, заключается в реализации процесса газификации жидкости с обеспечением заданной массовой скорости истечения газифицированных продуктов при поддержании постоянного давления не менее заданного в баке с открытым клапаном, так как эти газифицированные продукты поступают в газовый ракетный двигатель, при минимальных затратах ТН.

Например, при заданном времени газификации 50 сек и величине остатка КРТ 300 кг, начальном давлении 1 атм, заданном давлении 3 атм средняя скорость испарения КРТ 6 кг/сек, но в начале она будет меньше из-за начальной температуры, например, 40С°, поэтому требуется время на прогрев, а потом скорость испарения будет возрастать, однако при увеличении давления с 1 до 3 атм скорость будет падать.

Скорость подачи ТН можно снизить при дополнительном введении действий предлагаемого способа:

- параметры акустического воздействия;

- установки устройств ввода в бак в виде 4 магистралей и ориентацией диаграммы направленности ГСИ;

- установки разделительной сетки с ячейками.

6) В результате газификации жидких остатков КРТ в баках горючего и окислителя при соответствующих давлениях, необходимых для обеспечения стехиометрического соотношения, они подаются в газовый ракетный двигатель АБСС для отработки импульса, например на орбиту спуска.

Работа предлагаемого способа и устройства поясняется на чертежах.

Фиг.1 - Размещение в топливном баке элементов системы газификации.

Фиг.2 - Структура сетки.

Фиг.3 - Картина течения ТН в баке.

Фиг.4 - Зоны действия акустического излучателя.


СПОСОБ ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 151-160 из 161.
25.08.2017
№217.015.b626

Поршневой компрессор с активным охлаждением

Изобретение относится к области компрессоростроения и может быть использовано при создании поршневых компрессоров, к которым предъявляются высокие требования по ресурсу работы, надежности и экономичности. Компрессор содержит газовый цилиндр 1 с основным поршнем 4, размещенным в цилиндре 1 с...
Тип: Изобретение
Номер охранного документа: 0002614473
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b6c3

Транзисторный генератор

Изобретение относится к области преобразовательной техники и может быть использовано в различных технологических процессах, идущих с использованием ультразвуковых колебаний. Техническим результатом изобретения является повышение надежности работы транзисторного генератора на широкодиапазонную и...
Тип: Изобретение
Номер охранного документа: 0002614570
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.d04f

Способ получения металлического порошка механической обработкой цилиндрической заготовки

Изобретение относится к получению металлического порошка механической обработкой цилиндрической заготовки. Способ включает размещение заготовки соосно одной из абразивных головок, закрепленных в корпусе мелющего диска, приведение во вращение упомянутой заготовки и ее измельчение с получением...
Тип: Изобретение
Номер охранного документа: 0002621204
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d1d2

Способ спуска отделяющейся части ступени ракеты космического назначения и устройство для его осуществления

Группа изобретений относится к ракетно-космической технике. Способ спуска отработанной части (ОЧ) ступени РКН на жидких компонентах ракетного топлива в заданный район падения основан на стабилизации и ориентации ОЧ за счет энергетики невыработанных остатков жидких компонентов ракетного топлива...
Тип: Изобретение
Номер охранного документа: 0002621771
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.e604

Способ минимизации зон отчуждения отделяемых частей ракет-носителей

Изобретение относится к ракетно-космической технике. В способе минимизации зон отчуждения для отделяемых частей (ОЧ) ракеты-носителя (РН) на этапе предполетной подготовки РН производят расчет параметров движения ОЧ до момента падения их на землю. По результатам расчетов определяют участки на...
Тип: Изобретение
Номер охранного документа: 0002626797
Дата охранного документа: 01.08.2017
29.12.2017
№217.015.f570

Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива и устройство для его реализации

Группа изобретений относится к методам и средствам исследования процесса газификации ракетного топлива в баках изделия. Способ включает введение в экспериментальную установку (ЭУ) теплоносителя в диапазоне углов ввода, обеспечивающих заданные углы натекания теплоносителя на стенки ЭУ и...
Тип: Изобретение
Номер охранного документа: 0002637140
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.fc2e

Способ моделирования процессов тепло- и массообмена с окружающей средой элемента конструкции летательного аппарата и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ моделирования процесса тепло- и массообмена элемента конструкции летательного аппарата (ЭКЛА) с окружающей средой в условиях снижения абсолютного давления основан на введении в экспериментальную модельную установку (ЭМУ) потока газа,...
Тип: Изобретение
Номер охранного документа: 0002638141
Дата охранного документа: 11.12.2017
13.02.2018
№218.016.1fec

Способ моделирования процесса газификации жидкого ракетного топлива в баке ракеты-носителя и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ моделирования процесса газификации жидкого компонента ракетного топлива в баке ступени ракеты-носителя, основанный на подводе в экспериментальную модельную установку (ЭМУ) теплоты, проведении измерений температуры, давления в различных...
Тип: Изобретение
Номер охранного документа: 0002641424
Дата охранного документа: 17.01.2018
17.02.2018
№218.016.2a00

Способ спуска отделяющейся части ракеты-носителя

Изобретение относится к ракетно-космической технике и касается отделяющихся частей (ОЧ) ступеней ракет-носителей (РН) при их движении по траектории спуска. Спуск ОЧ РН на жидких компонентах топлива в заданный район падения основан на стабилизации ОЧ, ориентации и управляемом движении ОЧ за счет...
Тип: Изобретение
Номер охранного документа: 0002643073
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2a78

Способ проведения лётно-конструкторских испытаний автономного стыковочного модуля для очистки орбит от космического мусора

Изобретение относится к ракетно-космической технике. Способ проведения летно-конструкторских испытаний (ЛКИ) автономного стыковочного модуля (АСМ) для очистки орбит от крупногабаритного космического мусора основан на выборе мишени из имеющихся на орбитах для их увода на орбиты утилизации,...
Тип: Изобретение
Номер охранного документа: 0002643020
Дата охранного документа: 29.01.2018
Показаны записи 151-160 из 181.
25.08.2017
№217.015.b563

Способ работы поршневой вертикальной гибридной машины объемного действия и устройство для его осуществления

Изобретение относится к области энергетических машин объемного действия и может быть использовано при создании гибридов типа «поршневой насос-компрессор». Поршневая машина содержит цилиндр 1, разделенный поршнем 2 на газовую 3 и жидкостную 4 камеры. Они соединены с источником и потребителем...
Тип: Изобретение
Номер охранного документа: 0002614317
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b626

Поршневой компрессор с активным охлаждением

Изобретение относится к области компрессоростроения и может быть использовано при создании поршневых компрессоров, к которым предъявляются высокие требования по ресурсу работы, надежности и экономичности. Компрессор содержит газовый цилиндр 1 с основным поршнем 4, размещенным в цилиндре 1 с...
Тип: Изобретение
Номер охранного документа: 0002614473
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b6c3

Транзисторный генератор

Изобретение относится к области преобразовательной техники и может быть использовано в различных технологических процессах, идущих с использованием ультразвуковых колебаний. Техническим результатом изобретения является повышение надежности работы транзисторного генератора на широкодиапазонную и...
Тип: Изобретение
Номер охранного документа: 0002614570
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.d04f

Способ получения металлического порошка механической обработкой цилиндрической заготовки

Изобретение относится к получению металлического порошка механической обработкой цилиндрической заготовки. Способ включает размещение заготовки соосно одной из абразивных головок, закрепленных в корпусе мелющего диска, приведение во вращение упомянутой заготовки и ее измельчение с получением...
Тип: Изобретение
Номер охранного документа: 0002621204
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d1d2

Способ спуска отделяющейся части ступени ракеты космического назначения и устройство для его осуществления

Группа изобретений относится к ракетно-космической технике. Способ спуска отработанной части (ОЧ) ступени РКН на жидких компонентах ракетного топлива в заданный район падения основан на стабилизации и ориентации ОЧ за счет энергетики невыработанных остатков жидких компонентов ракетного топлива...
Тип: Изобретение
Номер охранного документа: 0002621771
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.e604

Способ минимизации зон отчуждения отделяемых частей ракет-носителей

Изобретение относится к ракетно-космической технике. В способе минимизации зон отчуждения для отделяемых частей (ОЧ) ракеты-носителя (РН) на этапе предполетной подготовки РН производят расчет параметров движения ОЧ до момента падения их на землю. По результатам расчетов определяют участки на...
Тип: Изобретение
Номер охранного документа: 0002626797
Дата охранного документа: 01.08.2017
29.12.2017
№217.015.f570

Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива и устройство для его реализации

Группа изобретений относится к методам и средствам исследования процесса газификации ракетного топлива в баках изделия. Способ включает введение в экспериментальную установку (ЭУ) теплоносителя в диапазоне углов ввода, обеспечивающих заданные углы натекания теплоносителя на стенки ЭУ и...
Тип: Изобретение
Номер охранного документа: 0002637140
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.fc2e

Способ моделирования процессов тепло- и массообмена с окружающей средой элемента конструкции летательного аппарата и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ моделирования процесса тепло- и массообмена элемента конструкции летательного аппарата (ЭКЛА) с окружающей средой в условиях снижения абсолютного давления основан на введении в экспериментальную модельную установку (ЭМУ) потока газа,...
Тип: Изобретение
Номер охранного документа: 0002638141
Дата охранного документа: 11.12.2017
13.02.2018
№218.016.1fec

Способ моделирования процесса газификации жидкого ракетного топлива в баке ракеты-носителя и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ моделирования процесса газификации жидкого компонента ракетного топлива в баке ступени ракеты-носителя, основанный на подводе в экспериментальную модельную установку (ЭМУ) теплоты, проведении измерений температуры, давления в различных...
Тип: Изобретение
Номер охранного документа: 0002641424
Дата охранного документа: 17.01.2018
17.02.2018
№218.016.2a00

Способ спуска отделяющейся части ракеты-носителя

Изобретение относится к ракетно-космической технике и касается отделяющихся частей (ОЧ) ступеней ракет-носителей (РН) при их движении по траектории спуска. Спуск ОЧ РН на жидких компонентах топлива в заданный район падения основан на стабилизации ОЧ, ориентации и управляемом движении ОЧ за счет...
Тип: Изобретение
Номер охранного документа: 0002643073
Дата охранного документа: 30.01.2018
+ добавить свой РИД