×
10.07.2014
216.012.dd0b

Результат интеллектуальной деятельности: СПОСОБ ПРОГНОЗА РАЗРУШЕНИЯ УЧАСТКА МАССИВА ГОРНЫХ ПОРОД

Вид РИД

Изобретение

Аннотация: Изобретение относится к горному делу, используется для прогноза и контроля разрушения массивов горных пород при изменении их напряженно-деформированного состояния. Технический результат - получение дополнительной информации о состоянии участка массива и детализация процесса его разрушения во времени. Способ включает регистрацию во времени сигналов электромагнитного излучения (ЭМИ), измерение их спектральных амплитуд и построение по результатам измерений спектрально-временной матрицы этих амплитуд по мере роста частоты и времени, определение частотных поддиапазонов по мере роста частоты и выделение в каждом из них близких по значениям спектральных амплитуд. На матрице выделяют незамкнутыми линиями три группы увеличивающихся во времени близких по значениям спектральных амплитуд. Наблюдают на матрице в каждой группе расширение во времени поддиапазонов частот и площадей каждой группы, по которым судят о нарастании процесса разрушения участка массива горных пород. Одновременно с выделением групп на матрице последовательно регистрируют в каждый момент i времени разности между максимальной и минимальной величинами из близких по значениям спектральных амплитуд сигналов ЭМИ, соотношения этих разностей, разность этих соотношений и количество спектральных амплитуд в каждой группе в каждый момент времени. По уменьшению указанных соотношений и их разностей, последующей их стабилизации во времени и по увеличению количества этих амплитуд в третьей группе судят о начале интенсивного возникновения трещин. 2 ил.
Основные результаты: Способ прогноза разрушения участка массива горных пород, включающий регистрацию во времени сигналов электромагнитного излучения (ЭМИ), измерение их спектральных амплитуд и построение по результатам измерений спектрально-временной матрицы спектральных амплитуд сигналов ЭМИ по мере роста частоты и времени, определение частотных поддиапазонов по мере роста частот и выделение в каждом из них близких по значениям спектральных амплитуд сигналов ЭМИ, отличающийся тем, что при построении указанной матрицы с ростом нагрузки во времени выделяют на ней незамкнутыми линиями три группы увеличивающихся во времени близких по значениям спектральных амплитуд сигналов ЭМИ, наблюдая на матрице в каждой j-ой группе расширение во времени поддиапазонов Δf частот и соответственно расширение во времени площадей S каждой группы, ограниченных на матрице указанными незамкнутыми линиями, по которым судят о нарастании процесса разрушения участка массива горных пород, причем при построении матрицы одновременно с выделением на ней указанных групп, с первой до третьей, последовательно регистрируют разности для каждой j-ой группы, выделенной на матрице в данный момент i времени: ,где - максимальная величина из близких по значениям спектральных амплитуд сигналов ЭМИ в каждой j-ой группе, выделенной на матрице в данный момент i времени, - минимальная величина из близких по значениям спектральных амплитуд сигналов ЭМИ в каждой j-ой группе, выделенной на матрице в данный момент i времени,i - текущий момент времени,j=1-я, 2-я, 3-я - порядковый номер группы,при этом первой считают группу спектральных амплитуд сигналов ЭМИ от 700 до 799 Гц/сек, причем при выделении на матрице более одной группы регистрируют с этого момента i времени и в каждый последующий момент i времени также соотношения: где - разность между максимальной и минимальной величинами близких по значениям спектральных амплитуд сигналов ЭМИ в каждой группе (j-1), предыдущей для группы j, в каждый указанный момент i времени, - разность между максимальной и минимальной величинами близких по значениям спектральных амплитуд сигналов ЭМИ в каждой группе j, следующей за группой (j-1), в каждый указанный момент i времени,а после выделения на матрице трех групп регистрируют одновременно также разности между предыдущим соотношением 1 и последующим соотношением 2: и количество m спектральных амплитуд сигналов ЭМИ в каждой j-ой группе в каждый момент i времени и по уменьшению указанных соотношений указанных разностей соотношений последующей их стабилизации во времени и по увеличению количества m спектральных амплитуд сигналов ЭМИ в последней, третьей, группе в каждый момент i времени и стабилизации этого количества m во времени судят о начале интенсивного возникновения трещин, причем критическим соотношением критической разностью соотношений и критическим количеством m спектральных амплитуд сигналов ЭМИ в последней, третьей, группе, при которых происходит переход от процесса интенсивного возникновения и нарастания трещин к началу нарушения сплошности участка массива горных пород, считают:- устойчивые соотношения 1: - для 1-й и 2-й групп,и 2: - для 2-й и 3-й групп,- устойчивые разности соотношений 1 и 2: - для 1-й, 2-й, 3-й групп,- устойчивые количества m=12 в последней, третьей, группе,по которым прогнозируют нарушение сплошности участка массива горных пород и после достижения которых он уже не существует как единое целое.

Техническое решение относится к горному делу и может быть использовано для прогноза и контроля разрушения массивов горных пород при изменении их напряженно-деформированного состояния (НДС) при диагностике различного рода динамических проявлений в массивах, опасных для жизни горнорабочих.

Известен способ прогноза разрушения массива горных пород по авт.свид. СССР №1562449, кл. E21C 39/00, опубл. в БИ №17 за 1990 г., который включает регистрацию во времени эмиссионных импульсов в массиве, определение частоты их максимума спектральной плотности, одновременное измерение амплитуды максимальной спектральной составляющей, определение скорости изменения амплитуды по времени и по частоте и по одновременному уменьшению обеих скоростей определение начала разрушения массива, при этом в качестве эмиссионных импульсов регистрируют импульсы электромагнитного излучения (ЭМИ).

Недостатком этого способа является то, что количество регистрируемых импульсов ЭМИ и их длительностей, прежде всего, не являются определяющей характеристикой при прогнозировании динамических проявлений горного давления, т.к. в протяженных подземных горных выработках, особенно капитальных, находится большое количество силового оборудования, в т.ч. электроподстанции, излучающие электрические сигналы различной длительности, которые могут быть приняты и ложно интерпретированы в качестве сигналов, информирующих об изменении НДС массива. Поэтому известный способ не отличается достоверностью измерений.

Кроме того, количество регистрируемых импульсов ЭМИ и периодичность их появления могут быть связаны с профилактическими мероприятиями, например с разгрузкой напряженного участка массива, что, в свою очередь, не влечет за собой катастрофических последствий, а наоборот, является мероприятием для снятия повышенных напряжений в массиве и предотвращения различного рода динамических проявлений в нем, что также не способствует достоверности измерений.

Наиболее близким к предлагаемому способу по технической сущности и совокупности существенных признаков является способ прогноза разрушения массива горных пород по патенту РФ №2244126, кл. E21C 39/00, опубл. в БИ №1 за 2005 г., включающий регистрацию во времени сигналов ЭМИ, измерение их амплитуд и длительностей от начала нагружения, построение по результатам измерений спектрально-временной матрицы спектральных амплитуд сигналов ЭМИ по мере роста частоты и времени, выделение на указанной матрице частотных поддиапазонов по мере роста частот, в каждом из которых отмечают равные спектральные амплитуды сигналов ЭМИ, обводят замкнутой линией занимаемую ими площадь, определяют ее размеры и соотношение размеров площади Sn n-го частотного поддиапазона (n=2, 3, 4, …) к площади S1 первого частотного поддиапазона и по увеличению соотношений этих площадей судят о начале интенсивного возникновения трещин, причем критическим соотношением, при котором происходит переход от процесса интенсивного возникновения и нарастания трещин к началу разделения сплошности массива горных пород считают соотношение Sn=(2÷4)S1, по которому прогнозируют дробление площадей на указанной матрице в более высоких частотных поддиапазонах, характеризующее разрушение массива горных пород.

Недостаток этого способа следующий. В площади равных спектральных амплитуд сигналов ЭМИ, обведенные замкнутыми линиями на спектрально-временной матрице, включены не только равные спектральные амплитуды сигналов ЭМИ, полученные на стадиях предразрушения и нарушения сплошности горных пород, но и полученные на стадии их постразрушения, когда равные спектральные амплитуды сигналов ЭМИ уменьшаются во времени, т.к. процесс нарушения сплошности уже произошел. Поэтому прогноз по соотношениям площадей Sn=(2÷4)S1, как в прототипе, снижает его достоверность.

Еще одним недостатком является то, что и построение площадей равных спектральных амплитуд сигналов ЭМИ, и определение критических соотношений этих площадей производят по мере роста частот, и практически с самого начала нагружения контролируемого участка массива происходит как увеличение площадей, так и их дробление (см. чертеж прототипа). Из этого следует, что по соотношению площадей не всегда возможно определить момент приближения разрушения участка массива, что также снижает достоверность прогноза.

Техническая задача - повышение достоверности прогноза разрушения участка массива горных пород за счет получения дополнительной информации о состоянии участка массива горных пород и детализации процесса его разрушения во времени.

Поставленная задача решается тем, что в способе прогноза разрушения участка массива горных пород, включающем регистрацию во времени сигналов ЭМИ, измерение их амплитуд и построение по результатам измерений спектрально-временной матрицы спектральных амплитуд сигналов ЭМИ по мере роста частоты и времени, определение частотных поддиапазонов по мере роста частот и выделение в каждом из них близких по значениям спектральных амплитуд сигналов ЭМИ, согласно техническому решению при построении указанной матрицы с ростом нагрузки во времени выделяют на ней незамкнутыми линиями три группы увеличивающихся во времени близких по значениям спектральных амплитуд сигналов ЭМИ, наблюдая на матрице в каждой j-ой группе расширение во времени поддиапазонов Δfj частот и соответственно расширение во времени площадей Sj каждой группы, ограниченных на матрице указанными незамкнутыми линиями, по которым судят о нарастании процесса разрушения участка массива горных пород. При построении матрицы одновременно с выделением на ней указанных групп, с первой до третьей, последовательно регистрируют разности для каждой j-ой группы, выделенной на матрице в данный момент i времени:

где - максимальная величина из близких по значениям спектральных амплитуд сигналов ЭМИ в каждой j-ой группе, выделенной на матрице в данный момент i времени,

- минимальная величина из близких по значениям спектральных амплитуд сигналов ЭМИ в каждой j-ой группе, выделенной на матрице в данный момент i времени,

i - текущий момент времени,

j=1-ая, 2-ая, 3-ья - порядковый номер группы, при этом первой считают группу спектральных амплитуд сигналов ЭМИ с 700 до 799 Гц/с. При выделении на матрице более одной группы регистрируют с этого момента i времени и в каждый последующий момент i времени также соотношения:

где - разность между максимальной и минимальной величинами близких по значениям спектральных амплитуд сигналов ЭМИ в каждой группе (j-1), предыдущей для группы j, в каждый указанный момент i времени,

- разность между максимальной и минимальной величинами близких по значениям спектральных амплитуд сигналов ЭМИ в каждой группе j, следующей за группой (j-1), в каждый указанный момент i времени,

а после выделения на матрице трех групп регистрируют одновременно также разности между предыдущим соотношением 1 и последующим соотношением 2:

и количество m спектральных амплитуд сигналов ЭМИ в каждой j-ой группе в каждый момент i времени и по уменьшению указанных соотношений указанных разностей соотношений последующей их стабилизации во времени и по увеличению количества m спектральных амплитуд сигналов ЭМИ в последней, третьей, группе в каждый момент i времени и стабилизации этого количества m во времени судят о начале интенсивного возникновения трещин. Критическим соотношением критической разностью соотношений и критическим количеством m спектральных амплитуд сигналов ЭМИ в последней, третьей, группе, при которых происходит переход от процесса интенсивного возникновения и нарастания трещин к началу нарушения сплошности участка массива горных пород, считают:

- устойчивые соотношения 1: - для 1-ой и 2-ой групп,

и 2: - для 2-ой и 3-ей групп,

- устойчивые разности соотношений 1 и 2:

- для 1-ой, 2-ой, 3-ей групп,

- устойчивые количества m=12, в последней, третьей, группе, по которым прогнозируют нарушение сплошности участка массива горных пород и после достижения которых он уже не существует как единое целое.

Выделение на матрице с ростом нагрузки во времени незамкнутыми линиями трех групп увеличивающихся во времени близких по значениям спектральных амплитуд сигналов ЭМИ и наблюдение на ней в каждой j-ой группе расширения во времени поддиапазонов Δfj частот и соответственно расширения во времени площадей Sj каждой группы, ограниченных на матрице указанными незамкнутыми линиями, по которым судят о нарастании процесса разрушения участка массива горных пород, наряду с последовательной регистрацией указанных разностей для каждой j-ой группы, выделенной на матрице в данный момент i времени, позволяют проиллюстрировать начало физического процесса разрушения участка массива горных пород - проследить начало возникновения одиночных некоррелированно расположенных в пространстве массива трещин, последующий переход одиночных трещин в сливающиеся трещины, увеличение их количества и амплитудных значений сигналов ЭМИ в выделенных поддиапазонах частот, образование ветвящихся трещин из сливающихся и одновременное нарастание в этих поддиапазонах частот большего количества мелких трещин, что иллюстрируется на матрице смещением спектральных амплитуд сигналов ЭМИ с бóльшими значениями в высокочастотную часть частотного диапазона.

Одновременная регистрация при этом указанных соотношений при появлении на матрице более одной группы увеличивающихся во времени близких по значениям спектральных амплитуд сигналов ЭМИ, а также указанной разности между предыдущим соотношением 1 и последующим соотношением 2 и количества m спектральных амплитуд сигналов ЭМИ в последней, третьей, группе позволяет проследить образование ветвящихся трещин из сливающихся и одновременное нарастание в этих поддиапазонах частот большего количества мелких трещин, что иллюстрируется на матрице смещением спектральных амплитуд сигналов ЭМИ с бóльшими значениями в высокочастотную часть частотного диапазона, а также, наряду с возникновением новых ветвящихся трещин, быстрое увеличение их плотности, причем регистрация в каждый момент i времени как самих соотношений, так и разности этих соотношений иллюстрирует изменение самих амплитудных значений спектральных амплитуд сигналов ЭМИ с ростом нагрузки на исследуемый участок массива, и тем самым приближение его к пределу прочности (и образованию плоскости макротрещин), что, в свою очередь, позволяет детализировать процесс разрушения участка массива горных пород за довольно продолжительный срок от некоррелированного накопления единичных трещин по всему объему исследуемого участка до момента времени, характеризующего предкритическое состояние исследуемого участка массива, что характеризуется изменением как самих соотношений, так и разности этих соотношений, а регистрация также количества m спектральных амплитуд сигналов ЭМИ в последней, третьей, группе до начала интенсивного трещинообразования в наиболее ослабленных его частях позволяет дополнительно судить о начале интенсивного нарастания трещин по всему объему исследуемого участка массива.

Регистрация и наблюдение последующего уменьшения соотношений разностей соотношений последующей их стабилизации во времени и увеличения количества m спектральных амплитуд сигналов ЭМИ в последней, третьей, группе в каждый момент i времени и стабилизации этого количества m во времени позволяют судить о ветвлении трещин и формировании зоны магистральной трещины (или магистральных трещин) в объеме исследуемого участка массива горных пород.

Последующий переход от этапа формирования зоны магистральной трещины к ее развитию и моменту нарушения сплошности исследуемого участка массива горных пород наступает при выполнении:

- устойчивых соотношений 1: - для 1-ой и 2-ой групп,

и 2: - для 2-ой и 3-ей групп,

устойчивых разностей соотношений 1 и 2:

для 1-ой, 2-ой, 3-ей групп,

- устойчивого количества m=12 в последней, третьей, группе, которые принимают за критические и по которым прогнозируют нарушение сплошности участка массива горных пород и после достижения которых он уже не существует как единое целое.

Таким образом, совокупность указанных признаков позволяет проследить процесс разрушения участка массива горных пород от начала его разрушения - начало возникновения единичных трещин по всему объему исследуемого массива, некоррелированное их накопление, последующее слияние мелких трещин в более крупные, сливающиеся, их нарастание, возникновение ветвящихся трещин и последующее формирование и развитие зон магистральных трещин - то есть конкретизировать его этапы, что позволяет более достоверно прогнозировать приближение разрушения участка массива горных пород на фрагменты и этим решить поставленную задачу.

Сущность технического решения поясняется примером реализации способа и чертежами фиг.1, 2. На фиг.1 схематично представлена спектрально-временная матрица спектральных амплитуд сигналов ЭМИ с выделенными на ней незамкнутыми линиями тремя группами увеличивающихся во времени близких по значениям спектральных амплитуд сигналов ЭМИ с расширяющимися во времени поддиапазонами Δf′ частот и расширяющимися во времени площадями Sj. На фиг.2 изображена таблица изменений во времени указанных разностей для каждой j-ой группы, выделенной на матрице в данный момент i времени (обозначенных в таблице как Δ700 - для 1-ой группы, Δ800 - для 2-ой группы и Δ900 -для 3-ей группы), указанных соотношений 1 и 2 (обозначенных в таблице как Δ7/Δ8 - для 1-ой и 2-ой групп, Δ8/Δ9 - для 2-ой и 3-ей групп), указанных разностей соотношений 1 и 2 - обозначенных в таблице как Δ7/Δ8 - Δ8/Δ9, а также указанного количества m в каждой группе, обозначенной в таблице как 700 (1-ая группа), 800 (2-ая группа) и 900 (3-я группа).

Предлагаемый способ реализуют следующим образом. На исследуемом участке массива горных пород в конкретной выработке в течение некоторого времени, например, в течение одной недели, регистрируют сигналы ЭМИ, измеряют их амплитуды от начала нагружения, являющиеся электромагнитным отображением механического состояния массива.

Затем по результатам измерений с помощью анализатора спектра частот строят (см. фиг.1) с помощью процедуры быстрого преобразования Фурье спектрально-временную матрицу 1 (далее - матрица 1) спектральных амплитуд 2 сигналов ЭМИ по мере роста частоты f от 25 Гц до ≈2,5 кГц, выделяя на ней незамкнутыми линиями три группы 3 увеличивающихся во времени близких по значениям спектральных амплитуд 2 сигналов ЭМИ (далее - равные спектральные амплитуды 2). При этом наблюдают на матрице 1 в каждой j-ой группе расширение во времени поддиапазонов Δfj частот и соответственно расширение во времени площадей Sj каждой группы 3, ограниченных на матрице 1 указанными незамкнутыми линиями, по которым судят о нарастании процесса разрушения участка массива горных пород. При построении матрицы 1 одновременно с выделением на ней указанных групп 3, с первой до третьей, последовательно с помощью анализатора спектра частот и системы «Mathad» (автоматизированного компьютерного проектирования программного обеспечения) регистрируют разности между максимальной и минимальной величинами равных спектральных амплитуд 2 для каждой j-ой группы, выделенной на матрице 1 в данный момент i времени, при этом первой считают группу 3 равных спектральных амплитуд 2 от 700 до 799 Гц/с. Например, в момент времени i=l для первой группы 3 регистрируют минимальную величину Гц/с и максимальную величину Гц/с равных спектральных амплитуд 2 и их разность Гц/с.

В моменты времени i=2 и i=3 также продолжают регистрировать указанные разности: Гц/с, Гц/с и т.д.

При появлении на матрице 1 второй группы 3 равных спектральных амплитуд 2 (с величинами от 800 до 899 Гц/ сек), наряду с продолжением регистрации указанных разностей максимальной и минимальной величин равных спектральных амплитуд 2 для первой группы 3, аналогично регистрируют в каждый последующий момент i времени указанные разности для второй группы 3 и соотношения 1 указанных разностей для первой и второй групп 3. Например, в моменты времени i=7, 8, 9 эти разности будут составлять соответственно: для первой группы 3 Гц/с, Гц/с и Гц/с, для второй группы 3 в эти же моменты времени i=7, 8, 9: Гц/с; Гц/с, Гц/с соответственно, а соотношения 1 указанных разностей для первой и второй групп 3 в моменты времени i=7, 8, 9 составят

С появлением на матрице 1 третьей группы 3 равных спектральных амплитуд 2 (с величинами от 900 до 999 Гц/сек) аналогично одновременно регистрируют в каждый момент времени i разности между максимальными и минимальными величинами равных спектральных амплитуд 2 для каждой группы 3, соотношения 1 и 2 указанных разностей первой и второй групп 3 и указанных разностей второй и третьей групп 3 соответственно и указанные разности между предыдущим 1 и последующим 2 указанными соотношениями 1 и 2. Например, в момент времени i=23 на матрице 1 регистрируют указанные разности для трех групп: для первой группы 3-91 Гц/с, для второй группы 3-27 Гц/с и для третьей группы 3-33 Гц/с. В этот же момент времени i=23 соотношение 1 разностей для первой и второй групп составит 3,37 и соотношение 2 разностей для второй и третьей групп - 0,81, разность между предыдущим 1 и последующим 2 соотношениями составит 4,16, а количество m равных спектральных амплитуд 2 в каждой j группе составит соответственно: для первой группы - 6; для второй группы - 4 и для третьей группы - 6.

В последующие моменты времени, например, при i=28 на матрице 1 продолжают регистрировать указанные разности для трех групп: для первой группы 3-89 Гц/сек, для второй группы 3-90 Гц/сек и для третьей группы 3-55 Гц/сек. В этот же момент времени i=28 соотношение 1 разностей для первой и второй групп 3 составит 0,98 и соотношение 2 разностей для второй и третьей групп - 1,63. Разность между предыдущим 1 соотношением и последующим 2 соотношением составит 0,6, а количество m равных спектральных амплитуд 2 в каждой j-ой группе 3 составит соответственно: для первой группы - 5; для второй группы - 4 и для третьей группы - 9.

Такое изменение параметров позволяет проследить образование ветвящихся трещин из сливающихся и одновременное нарастание в этих поддиапазонах частот большего количества мелких трещин, что иллюстрируется на матрице 1 увеличением количества m равных спектральных амплитуд 2 с бóльшими значениями (уменьшение количества трещин, отображенных на матрице 1 в виде равных спектральных амплитуд 2 величиной 700 Гц/с и увеличение количества трещин в виде равных спектральных амплитуд 2 величиной 900 Гц/с).

При увеличении нагружения на исследуемый участок массива продолжают регистрировать на матрице 1 указанные параметры в последующие моменты i времени. Например, при i=35 регистрируют указанные разности для трех групп: для первой группы 3-58 Гц/с, для второй группы 3-92 Гц/с и для третьей группы 3-74 Гц/с. В этот же момент времени i=35 соотношение 1 разностей для первой и второй групп 3 составит 0,63 и соотношение 2 разностей для второй и третьей групп - 1,24. Разность между предыдущим 1 соотношением и последующим 2 соотношением составит 0,51, а количество m равных спектральных амплитуд 2 в каждой j-ой группе 3 составит соответственно: для первой группы 3-3; для второй группы 3-3 и для третьей группы 3-12.

Последующий переход от этапа формирования зоны магистральной трещины к ее развитию и моменту нарушения сплошности исследуемого участка массива горных пород наступает при существенном увеличении как самих величин равных спектральных амплитуд 2, так и их количества m с большими значениями в исследуемом объеме, т.к. широко известно, что при увеличении количества трещин в исследуемом объеме наступает критическое его состояние, при котором происходит нарушение сплошности исследуемого участка массива.

Критическое состояние исследуемого участка массива горных пород достигается выполнением:

- устойчивых соотношений 1: - для 1-ой и 2-ой групп,

и 2: - для 2-ой и 3-ей групп,

- устойчивых разностей соотношений 1 и 2:

- для 1-ой, 2-ой, 3-ей групп,

- устойчивого количества m=12 в последней, третьей, группе, по которым прогнозируют нарушение сплошности участка массива горных пород, и после достижения которых он уже не существует как единое целое (фиг.2).

Таким образом, совокупность указанных признаков позволяет проследить процесс разрушения участка массива горных пород - начало возникновения единичных трещин, некоррелированное их накопление по всему объему исследуемого участка массива, последующее слияние мелких трещин в более крупные, нарастание ветвящихся трещин и формирование зоны магистральной трещины (магистральных трещин) - то есть конкретизировать его этапы, при этом проводить анализ до этапа постразрушения, т.е. когда разрушение участка массива уже произошло, что позволяет более достоверно прогнозировать приближение разрушения участка массива горных пород на фрагменты и этим решить поставленную задачу.

Способ прогноза разрушения участка массива горных пород, включающий регистрацию во времени сигналов электромагнитного излучения (ЭМИ), измерение их спектральных амплитуд и построение по результатам измерений спектрально-временной матрицы спектральных амплитуд сигналов ЭМИ по мере роста частоты и времени, определение частотных поддиапазонов по мере роста частот и выделение в каждом из них близких по значениям спектральных амплитуд сигналов ЭМИ, отличающийся тем, что при построении указанной матрицы с ростом нагрузки во времени выделяют на ней незамкнутыми линиями три группы увеличивающихся во времени близких по значениям спектральных амплитуд сигналов ЭМИ, наблюдая на матрице в каждой j-ой группе расширение во времени поддиапазонов Δf частот и соответственно расширение во времени площадей S каждой группы, ограниченных на матрице указанными незамкнутыми линиями, по которым судят о нарастании процесса разрушения участка массива горных пород, причем при построении матрицы одновременно с выделением на ней указанных групп, с первой до третьей, последовательно регистрируют разности для каждой j-ой группы, выделенной на матрице в данный момент i времени: ,где - максимальная величина из близких по значениям спектральных амплитуд сигналов ЭМИ в каждой j-ой группе, выделенной на матрице в данный момент i времени, - минимальная величина из близких по значениям спектральных амплитуд сигналов ЭМИ в каждой j-ой группе, выделенной на матрице в данный момент i времени,i - текущий момент времени,j=1-я, 2-я, 3-я - порядковый номер группы,при этом первой считают группу спектральных амплитуд сигналов ЭМИ от 700 до 799 Гц/сек, причем при выделении на матрице более одной группы регистрируют с этого момента i времени и в каждый последующий момент i времени также соотношения: где - разность между максимальной и минимальной величинами близких по значениям спектральных амплитуд сигналов ЭМИ в каждой группе (j-1), предыдущей для группы j, в каждый указанный момент i времени, - разность между максимальной и минимальной величинами близких по значениям спектральных амплитуд сигналов ЭМИ в каждой группе j, следующей за группой (j-1), в каждый указанный момент i времени,а после выделения на матрице трех групп регистрируют одновременно также разности между предыдущим соотношением 1 и последующим соотношением 2: и количество m спектральных амплитуд сигналов ЭМИ в каждой j-ой группе в каждый момент i времени и по уменьшению указанных соотношений указанных разностей соотношений последующей их стабилизации во времени и по увеличению количества m спектральных амплитуд сигналов ЭМИ в последней, третьей, группе в каждый момент i времени и стабилизации этого количества m во времени судят о начале интенсивного возникновения трещин, причем критическим соотношением критической разностью соотношений и критическим количеством m спектральных амплитуд сигналов ЭМИ в последней, третьей, группе, при которых происходит переход от процесса интенсивного возникновения и нарастания трещин к началу нарушения сплошности участка массива горных пород, считают:- устойчивые соотношения 1: - для 1-й и 2-й групп,и 2: - для 2-й и 3-й групп,- устойчивые разности соотношений 1 и 2: - для 1-й, 2-й, 3-й групп,- устойчивые количества m=12 в последней, третьей, группе,по которым прогнозируют нарушение сплошности участка массива горных пород и после достижения которых он уже не существует как единое целое.
СПОСОБ ПРОГНОЗА РАЗРУШЕНИЯ УЧАСТКА МАССИВА ГОРНЫХ ПОРОД
СПОСОБ ПРОГНОЗА РАЗРУШЕНИЯ УЧАСТКА МАССИВА ГОРНЫХ ПОРОД
СПОСОБ ПРОГНОЗА РАЗРУШЕНИЯ УЧАСТКА МАССИВА ГОРНЫХ ПОРОД
СПОСОБ ПРОГНОЗА РАЗРУШЕНИЯ УЧАСТКА МАССИВА ГОРНЫХ ПОРОД
СПОСОБ ПРОГНОЗА РАЗРУШЕНИЯ УЧАСТКА МАССИВА ГОРНЫХ ПОРОД
СПОСОБ ПРОГНОЗА РАЗРУШЕНИЯ УЧАСТКА МАССИВА ГОРНЫХ ПОРОД
СПОСОБ ПРОГНОЗА РАЗРУШЕНИЯ УЧАСТКА МАССИВА ГОРНЫХ ПОРОД
СПОСОБ ПРОГНОЗА РАЗРУШЕНИЯ УЧАСТКА МАССИВА ГОРНЫХ ПОРОД
СПОСОБ ПРОГНОЗА РАЗРУШЕНИЯ УЧАСТКА МАССИВА ГОРНЫХ ПОРОД
СПОСОБ ПРОГНОЗА РАЗРУШЕНИЯ УЧАСТКА МАССИВА ГОРНЫХ ПОРОД
Источник поступления информации: Роспатент

Показаны записи 51-60 из 79.
10.05.2018
№218.016.3bdc

Погружной пневмоударник

Изобретение относится к горному делу и строительству - к буровой технике, применяется при бурении скважин ударно-вращательным способом. Погружной пневмоударник включает корпус, ударник, имеющий головку и хвостовик, соединенные шейкой, переднюю гильзу, охватывающую головку ударника и имеющую...
Тип: Изобретение
Номер охранного документа: 0002647716
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.3ee8

Способ оценки напряженного состояния горных пород

Изобретение относится к горному делу и может быть использовано для оценки напряженного состояния горных пород в породном массиве. Технический результат заключается в повышении эффективности способа оценки напряженного состояния горных пород за счет увеличения локального напряжения в горной...
Тип: Изобретение
Номер охранного документа: 0002648401
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.4143

Буровая коронка

Изобретение относится к горному делу и строительству – к буровым инструментам, предназначенным для бурения скважин ударно-вращательным способом. Технический результат заключается в повышении эксплуатационной надежности путем улучшения очистки и охлаждения забоя. Буровая коронка для...
Тип: Изобретение
Номер охранного документа: 0002649210
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.4d15

Погружной пневмоударник

Изобретение относится к горному делу и строительству, а именно к буровой технике, применяется при бурении скважин ударно-вращательным способом. Погружной пневмоударник содержит инструмент, установленный в корпусе с блокировочными каналами и радиальными выхлопными окнами, в котором расположены...
Тип: Изобретение
Номер охранного документа: 0002652516
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4d29

Устройство для гидроразрыва пород в скважине

Изобретение относится к горному делу - к приборам горной геофизики, используется для определения напряжений в породном массиве путем нагнетания жидкости под давлением в герметизированный участок скважины до разрушения ее стенок. Устройство включает цилиндрический корпус (далее - корпус) с...
Тип: Изобретение
Номер охранного документа: 0002652407
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4dbd

Гидравлическая ударная машина двухстороннего действия с управляемой камерой прямого хода

Изобретение относится к гидравлическим устройствам ударного действия, применяемым в горном деле и строительстве при бурении и ударном погружении в грунт стержневых элементов, при дроблении негабаритов и т.п. Машина содержит корпус с каналами для подвода и отвода рабочей жидкости,...
Тип: Изобретение
Номер охранного документа: 0002652405
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4df9

Пневматический ударный механизм

Изобретение относится к горному делу и строительству - к буровой технике, применяется при бурении скважин ударно-вращательным способом. Пневматический ударный механизм содержит корпус, в котором расположены поршень, образующий камеры рабочего и холостого хода, переходник с центральным и...
Тип: Изобретение
Номер охранного документа: 0002652518
Дата охранного документа: 26.04.2018
09.06.2018
№218.016.5a73

Скважинный многоканальный деформометр и автоматизированная система регистрации и обработки данных для определения напряженно-деформированного состояния массива горных пород с его использованием

Изобретения относятся к измерительной технике - к технике создания автоматизированных систем контроля напряженно-деформированного состояния массива горных пород, и могут быть использованы в горном деле для контроля деформационных процессов горных пород и закладочного массива. Технический...
Тип: Изобретение
Номер охранного документа: 0002655512
Дата охранного документа: 28.05.2018
04.07.2018
№218.016.6aa1

Скважинный сейсмоисточник

Изобретение относится к вибросейсмической технике - к погружным вибраторам для виброволнового воздействия на нефтесодержащие пласты породы для повышения притока нефти к скважинам. Скважинный сейсмоисточник содержит внешний корпус с размещенным внутри дебалансным силовым устройством, на буртиках...
Тип: Изобретение
Номер охранного документа: 0002659576
Дата охранного документа: 03.07.2018
14.07.2018
№218.016.712b

Пневмоударная машина двойного действия (варианты)

Группа изобретений относится к горной и строительной технике - к пневмоударным устройствам, используется для разрушения горных пород, забивания стержневых элементов в грунт, трамбования грунта и т.п. Машина включает корпус с патрубком, установленный в корпусе с возможностью перемещения ударник,...
Тип: Изобретение
Номер охранного документа: 0002661207
Дата охранного документа: 13.07.2018
Показаны записи 51-60 из 67.
13.01.2017
№217.015.65a4

Устройство для образования сферических расширений в скважинах

Изобретение относится к горному делу и может быть использовано для создания в породных массивах полостей, имеющих форму шара. Устройство для образования сферических расширений в скважинах включает корпус с узлом связи с приводом вращения корпуса вокруг его продольной оси, рабочие органы с...
Тип: Изобретение
Номер охранного документа: 0002592305
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.689a

Способ оценки напряженного состояния горных пород и устройство для его осуществления

Группа изобретений относится к горному делу и может быть использована для оценки напряженного состояния горных пород в породном массиве и различных сооружений, например плотин. Технический результат - контроль с одного места пространственного распределения напряжений, снижение трудоемкости...
Тип: Изобретение
Номер охранного документа: 0002591708
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.787e

Устройство для калибровки сейсмических датчиков

Изобретение относится к контрольно-измерительной технике и используется для калибровки сейсмических датчиков. Устройство включает неподвижное основание, на котором закреплен жесткий упор, и установленную на нем подвижную платформу, на ближней к упору стороне которой закреплен калибруемый...
Тип: Изобретение
Номер охранного документа: 0002599183
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.79ca

Пневматический вращатель

Изобретение относится к машиностроению - к механизированным устройствам вращательно-ударного действия и используется в горной промышленности в качестве импульсного вращателя бурильных машин. Пневматический вращатель содержит корпус с верхней и нижней торцовыми крышками, расположенные в нем...
Тип: Изобретение
Номер охранного документа: 0002599153
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.884d

Способ взрывной отбойки руд и пород

Изобретение относится к горному делу, применяется при взрывной отбойке руд и пород скважинными зарядами взрывчатых веществ (ВВ). Способ включает бурение взрывных скважин, их заряжание зарядами ВВ и взрывание этих зарядов ВВ. До бурения взрывных скважин бурят пилотные взрывные скважины,...
Тип: Изобретение
Номер охранного документа: 0002602567
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8931

Способ щелеобразования в скважинах и шпурах и щелеобразователь для его осуществления

Изобретения относятся к горному делу, а именно к бурению горных пород, и могут быть использованы для бурения скважин или шпуров (далее - скважин) путем нарезания инициирующей щели в горном массиве для последующего проведения гидроразрыва с целью его разупрочнения или дегазации. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002602634
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9973

Компрессионно-вакуумная ударная машина (варианты)

Изобретение относится к компрессионно-вакуумной ударной машине. Ударная машина содержит корпус, ударник, образующий с корпусом камеры прямого и обратного хода, и источник рабочей среды, электрически соединенный с первым входом блока управления. С камерой обратного хода связан электроклапан,...
Тип: Изобретение
Номер охранного документа: 0002609765
Дата охранного документа: 02.02.2017
25.08.2017
№217.015.b0dc

Способ гидроразрыва прочных горных пород и комбинированное устройство для бурения и гидроразрыва прочных горных пород

Изобретения относятся к горному делу - к разупрочнению прочных горных пород методом направленного гидроразрыва, используется для управления горным давлением или дегазации. Способ включает бурение скважины, последующее нарезание инициирующей щели на ее боковой поверхности, герметизацию области...
Тип: Изобретение
Номер охранного документа: 0002613394
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.c796

Устройство для отработки откосов уступов

Изобретение относится к горной промышленности - к горным машинам с исполнительным органом ударного действия, используется для непрерывного послойного разрушения горных пород различной крепости на откосах высоких уступов при открытой разработке месторождений полезных ископаемых. Устройство...
Тип: Изобретение
Номер охранного документа: 0002618806
Дата охранного документа: 11.05.2017
19.01.2018
№218.016.0592

Регулируемая компрессионно-вакуумная ударная машина двойного действия

Изобретение относится к горному делу и строительству - к машинам ударного действия, применяется при отбойке монолитов, в строительстве для разрушения устаревших фундаментов, при реконструкции зданий, при прокладке трубопроводов, а также в сейсморазведке как источник возбуждения сейсмических...
Тип: Изобретение
Номер охранного документа: 0002630931
Дата охранного документа: 14.09.2017
+ добавить свой РИД