×
10.07.2014
216.012.dcfa

Результат интеллектуальной деятельности: ВОДНАЯ ДИСПЕРСИЯ СИЛАНИРОВАННОГО ДИОКСИДА КРЕМНИЯ

Вид РИД

Изобретение

№ охранного документа
0002522348
Дата охранного документа
10.07.2014
Аннотация: Изобретение может быть использовано в лакокрасочной промышленности. Для получения водной дисперсии силанированных коллоидных частиц диоксида кремния в водной среде смешивают а) по меньшей мере одно силановое соединение с эпоксифункциональностью, b) по меньшей мере одно силановое соединение без эпоксифункциональности, способное модифицировать коллоидные частицы диоксида кремния, и с) коллоидные частицы диоксида кремния с образованием водной дисперсии силанированных коллоидных частиц диоксида кремния, включающей силановые соединения из а) и b). При этом весовое соотношение а) и b) к диоксиду кремния составляет от около 0,01 до около 1,5. Изобретение позволяет повысить устойчивость дисперсий коллоидного диоксида кремния, водостойкость и твердость лаковых покрытий. 4 н. и 9 з.п. ф-лы, 15 табл.

Изобретение относится к способу получения водной дисперсии, содержащей силанированные коллоидные частицы диоксида кремния, в которых силановые группы происходят от a) по меньшей мере одного силанового соединения с эпоксифункциональностью, b) по меньшей мере одного силанового соединения без эпоксифункциональности, способного модифицировать коллоидные частицы диоксида кремния, которая может быть получена смешением в каком-либо порядке силановых соединений, содержащих предшественники силановых групп a) и b), и коллоидных частиц диоксида кремния для образования водной дисперсии силанированных коллоидных частиц диоксида кремния. Изобретение также относится к использованию дисперсии силанированного коллоидного диоксида кремния.

Уровень техники изобретения

Коллоидные дисперсии диоксида кремния раньше использовались среди прочего в качестве кроющего материала для улучшения адгезионных свойств и увеличения износостойкости и водостойкости различных материалов. Однако такие составы, особенно высококонцентрированные составы коллоидного диоксида кремния, могут быть склонны к гелеобразованию или выпадению в осадок, что значительно сокращает время их хранения.

Европейский патент ЕР 1554221 раскрывает способ получения дисперсии модифицированного силаном диоксида кремния. Однако устойчивость такой дисперсии не всегда может обеспечивать достаточную устойчивость, твердость и/или водостойкость. Желательно предложить дисперсию силанированного силиказоля, улучшенную в отношении вышеупомянутых недостатков предшествующего уровня техники. Также желательно получить высококонцентрированную дисперсию коллоидного диоксида кремния для применения, в частности, в покрытиях, которую легко хранить и транспортировать, без какого-либо начинающегося осаждения. Дополнительной задачей является получение дисперсии, придающей высокую водостойкость и/или твердость, в частности начальную твердость, лакирующим составам. Также желательно предложить удобный и недорогой способ производства такой дисперсии.

Дополнительная задача состоит в том, чтобы получить дисперсию, подходящую для лаков по дереву, которая не обесцвечивает дерево, например дуб. Еще одной задачей изобретения является обеспечение улучшенной водостойкости лакирующих составов для дерева.

Описание изобретения

Настоящее изобретение относится к способу получения водной дисперсии силанированных коллоидных частиц диоксида кремния, заключающемуся в том, что в водной среде смешивают в каком-либо порядке a) по меньшей мере одно силановое соединение с эпоксифункциональностью, b) по меньшей мере одно силановое соединение без эпоксифункциональности, способное модифицировать коллоидные частицы диоксида кремния, и с) коллоидные частицы диоксида кремния для образования водной дисперсии силанированных коллоидных частиц диоксида кремния, включающих силановые группы из a) и b).

По одному варианту реализации силанированные коллоидные частицы диоксида кремния способны придавать твердость и/или водостойкость лакам.

По одному варианту реализации b) выбирают из силанов с амидофункциональностью, уреидофункциональностью, аминофункциональностью, с функциональностью сложных эфиров, с меркаптановыми функциональнами группами и/или с изоцианат- функциональностью, например из силанов с амидо-, уреидо- и/или аминофункциональностью, например амидо- и/или уреидофункциональностью.

Согласно одному из вариантов реализации весовое отношение b) к a) находится в пределах от около 2 до около 0,1, например от около 1,5 до около 0,2 или от около 1,1 до около 0,4. По одному варианту реализации весовое отношение обоих a) и b) к диоксиду кремния находится в пределах от около 0,01 до около 3, например от около 0,01 до около 1,5, например, от около 0,05 до около 1, или от около 0,10 до около 0,5, или от около 0,2 до около 0,5, или от около 0,3 до около 0,5.

Согласно одному из вариантов реализации амидофункциональность содержит метакриламидные группы. По одному варианту реализации силан с амидофункциональностью включает, например, этилен-ненасыщенные силаносодержащие мономеры (мет)акриламидов, содержащие силановые группы, общей формулы (II) CH2=CR5-CO-NR6-R7-SiR8m-(R9)3-m, где m=0-2, R5 является или H, или метильной группой, R6 является H или алкильной группой, содержащей от 1 до 5 атомов углерода; R7 является олефиновой группой, содержащей от 1 до 5 атомов углерода или двухвалентной органической группой, в которой углеродная цепь прерывается атомом O или атомом N, R8 является алкильной группой, содержащей от 1 до 5 атомов углерода, и R9 является алкоксильной группой, содержащей от 1 до 40 атомов углерода, которые могут быль замещены дополнительными гетероциклами. В мономерах, в которых имеются две или больше групп R5 или R9, эти группы могут быть одинаковыми или разными.

Примерами (мет)акриламидоалкилсиланов такого вида являются 3-(мет)акриламидопропилтриметоксисиланы, 3-(мет)акриламидопропилтриэтоксисиланы, 3-(мет)акриламидопропилтри(β-метоксиэтокси)силаны, 2-(мет)акриламидо-2-метилпропилтриметоксисиланы, 2-(мет)акриламидо-2-метилэтилтриметоксисиланы, N-(2-(мет)акриламидоэтил)аминопропилтриметоксисиланы, 3(мет)акриламидопропилтриацетоксисиланы, 2-(мет)акриламидоэтилтриметоксисиланы, 1-(мет)акриламидометилтриметоксисиланы, 3-(мет)акриламидопропилметилдиметоксисиланы, 3-(мет)акриламидопропилдиметилметоксисиланы, 3-(N-метил-(мет)акриламидо)пропилтриметоксисиланы, 3-((мет)акриламидометокси)-3-гидроксипропилтриметоксисиланы, 3-((мет)акриламидометокси)пропилтриметоксисиланы, хлорид N,N-диметил-N-тирметоксисилилпропил-3-(мет)акриламидопропиламмония и хлорид N,N-диметил-N-триметоксисилилпропил-2-(мет)акриламидо-2-метилпропиламмония.

Согласно одному из вариантов реализации силан с уреидофункциональностью включает, например, β-уреидоэтилтриметоксисилан, β-уреидоэтилтриэтоксисилан, γ-уреидоэтилтриметоксисилан, и/или γ-уреидопропилтриэтоксисилан.

Согласно одному из вариантов реализации силан с уреидофункциональностью может иметь структуру B(4-n)-Si-(A-N(H)-C(O)-NH2)n, где A является олефиновой группой, содержащей от 1 до около 8 атомов углерода, B является гидроксильной или алкоксильной группой, содержащей от 1 до около 8 атомов углерода, и n является целым числом от 1 до 3 при условии, что при n=1 или 2 каждая группа B может быть той же самой или разной.

Согласно одному из вариантов реализации силан с эпоксифункциональностью включает, например, глицидокси- и/или глицидоксипропиловую группу, например гамма-глицидоксипропилтриметоксисилан, гамма-глицидоксипропилтриэтоксисилан, метилдиэтоксисилан гамма-глицидоксипропилметилдиэтоксисилан, (3-глицидоксипропил)триметоксисилан, (3-глицидоксипропил)гексилтриметоксисилан, бета-(3,4-эпоксициклогексил)этилтриэтоксисилан.

По одному варианту реализации силан с эпоксифункциональностью включает, по меньшей мере, одну глицидокси- или глицидоксипропиловую группу, в частности гамма-глицидоксипропилтриметоксисилан и/или гамма-глицидоксипропилметилдиэтоксисилан.

Согласно одному из вариантов реализации силан с меркаптановыми функциональными группами включает 3-меркаптопропилтриметоксисилан, HS(CH2)3, Si(OCH3)3, меркаптосилан, обладающий, по меньшей мере, одной гидроксиалкоксиловой группой и/или циклической диалкоксиловой группой, гамма-меркаптопропилтриметоксисилан, гамма-меркаптопропилтриэтоксисилан.

Согласно одному из вариантов реализации силан с аминофункциональностью выбирают из аминометилтриэтоксисилана, N-(β-аминоэтил)аминометилтриметоксисилана, аминометилметилдиэтоксисилана, N-(β-аминоэтил)метилтриэтоксисилана, γ-аминопропилтриэтоксисилана, γ-аминопропилметилдиэтоксисилана, γ-аминоизобутилтриметоксисилана, N-(β-аминоэтил)-γ-аминопропилтриметоксисилана и N-(β-аминоэтил)-γ-аминопропилметилдиметоксисилана. Дополнительные конкретные примеры вышеупомянутых силановых функциональных групп, которые могут использоваться, включают группы, упомянутые в патенте США 5928790, включенном таким образом ссылкой.

Согласно одному из вариантов реализации силановые соединения могут быть смешаны в каком-либо порядке с коллоидными частицами диоксида кремния. По одному варианту реализации по меньшей мере одно силановое соединение с эпоксидной функциональностью смешивают с коллоидными частицами диоксида кремния перед смешиванием его, по меньшей мере, с одним силановым соединением b).

Согласно одному из вариантов реализации силановое соединение с эпоксидной функциональностью смешивают с коллоидными частицами диоксида кремния после того, как диоксид кремния был модифицирован силановым соединением b), например, силаном с аминофункциональностью.

Согласно одному из вариантов реализации силановые соединения a) и b) смешивают с коллоидными частицами диоксида кремния при pH ниже 12, например ниже 11, ниже 10 или ниже 9,5.

Согласно одному из вариантов реализации смешивание силановых соединений, например силана с аминофункциональностью, проводят при pH выше 10, например выше 11.

Согласно одному из вариантов реализации смешивание силановых соединений с коллоидными частицами диоксида кремния можно проводить при pH от около 1 до около 13, таком как от около 6 до около 12, или от около 7,5 до около 11, или от около 9 до около 10,5.

Смешивание силана с коллоидными частицами диоксида кремния можно проводить непрерывно, например, при температуре от около 20 до около 95°C, такой как от около 50 до около 75°C или от около 60 до около 70°C. Например, силан медленно добавляют к частицам диоксида кремния при энергичном перемешивании при температуре около 60°C и с контролируемой скоростью, которая соответственно составляет от около 0,01 до около 100, например от около 0,1 до около 10, от около 0,5 до около 5 или от около 1 до около 2 молекул силана на нм2 площади поверхности коллоидного диоксида кремния (на коллоидных частицах диоксида кремния) в час. Добавление силана можно продолжать в течение любого подходящего времени в зависимости от скорости добавления, количества добавляемого силана и степени желательного силанирования. Тем не менее, добавление силана можно продолжать до около 5 часов или до около 2 часов, пока не будет добавлено надлежащее количество силановых соединений a) и b). Количество a) и b), добавленных к коллоидным частицам диоксида кремния, соответственно составляет от около 0,1 до около 6, например, от около 0,3 до около 3 или от около 1 около до 2 молекул силана на нм2 площади поверхности коллоидного диоксида кремния. Непрерывное добавление силана к коллоидным частицам может быть особенно важным при получении высоко концентрированной дисперсии силанированного диоксида кремния с содержанием диоксида кремния до около 80% мас. Тем не менее, содержание диоксида кремния в дисперсии соответственно составляет от около 20 до около 80% мас., от около 25 до около 70% мас. или от около 30 до около 60% мас.

Согласно одному из вариантов реализации по меньшей мере одно из силановых соединений a) и b), например a), перед смешиванием его с коллоидными частицами диоксида кремния разбавляют, например, водой, для приготовления предварительной смеси силана и воды, соответственно в весовом соотношении от около 1:8 до около 8:1, от около 3:1 до около 1:3 или от около 1,5:1 до около 1:1,5. Полученный водный раствор силана в значительной степени прозрачен, стабилен и легко смешивается с коллоидными частицами диоксида кремния. При непрерывном добавлении силана к коллоидным частицам диоксида кремния, по окончании добавления силана, перемешивание можно продолжать от около 1 секунды до около 30 минут, например, от около 1 до около 10 минут.

Согласно одному из вариантов реализации относительное увеличение вязкости дисперсии спустя два месяца после ее приготовления составляет ниже чем около 100%, например ниже чем около 50% или ниже чем около 20%. По одному варианту реализации относительное увеличение вязкости дисперсии спустя четыре месяца после ее приготовления составляет ниже, чем около 200%, например, ниже, чем около 100% или ниже, чем около 40%.

Коллоидные частицы диоксида кремния, именуемые здесь также как силиказоли, можно получить, например, из осажденного диоксида кремния, микрокремнезема (силикатного дыма), пирогенного кремнезема (дымового кремнезема) или силикагелей достаточной чистоты и их смесей; их можно силанизировать по способу, описанному в патентной публикации WO 2004/035474. Силиказоль можно также обычно получить из жидкого стекла, как раскрыто, например, в патенте США 5368833.

По данному изобретению коллоидные частицы диоксида кремния и силиказоли могут быть модифицированы и могут содержать другие элементы, такие как амины, алюминий и/или бор, которые могут присутствовать в частицах и/или в сплошной фазе. Модифицированные бором силиказоли описаны, например, в патенте США 2630410. Модифицированные алюминием частицы диоксида кремния соответственно с содержанием Al2O3 от около 0,05 до около 3% мас., например от около 0,1 около до 2% мас. Методика приготовления модифицированного алюминием силиказоля описана также, например, в книге Iler, K. Ralph, "The Chemistry of Silica", стр.407-409, издательства John Wiley & Sons, 1979 г.? и в патенте США 5368833.

Коллоидные частицы диоксида кремния соответственно имеют средний диаметр частиц в пределах от около 2 до около 150 нм, от около 3 до около 50 нм, от около 5 до около 40 нм или от около 7 до около 22 нм. Соответственно, коллоидные частицы диоксида кремния имеют удельную поверхностность от около 20 до около 1500 м2/г, например от около 50 до около 900 м2/г, от около 70 до около 600 м2/г или от около 130 до около 360 м2/г.

Согласно одному из вариантов реализации коллоидные частицы диоксида кремния могут иметь узкое распределение размеров частиц, то есть низкое значение относительного стандартного отклонения размера частиц.

Согласно одному из вариантов реализации относительное стандартное отклонение распределения размеров частиц является отношением стандартного отклонения распределения размеров частиц к среднему размеру частиц, выраженным числом. Относительное стандартное отклонение распределения размеров частиц составляет ниже чем около 60% от числа, например ниже чем около 30% от числа или ниже, чем около 15% от числа.

Коллоидные частицы диоксида кремния диспергированы соответствующим образом в водной среде в присутствии, соответственно, стабилизирующих катионов, таких как K+, Na+, Li+, NH4+, органических катионов, первичных, вторичных, третичных и четвертичных аминов или их смесей, с тем чтобы образовать водный силиказоль. Однако можно использовать также дисперсии, содержащие органическую среду, например низшие спирты, ацетон или их смеси, соответственно в количестве от около 1 до около 20, от около 1 до около 10 или от около 1 до около 5 объемных процентов от общего объема диспергирующей среды. По одному варианту реализации используются водные силиказоли без какой-либо дополнительной органической среды. По одному варианту реализации коллоидные частицы диоксида кремния отрицательно заряжены. Соответственно, содержание диоксида кремния в золе составляет от около 20 до около 80% мас., например от около 25 до около 70% мас. и от около 30 около до 60% мас. Чем выше содержание диоксида кремния, тем более концентрирована полученная коллоидная дисперсия силанированного диоксида кремния. pH силиказоля соответственно составляет от около 1 до около 13, от около 3,5 до 12, от около 6 до около 12 или от около 7,5 до около 11.

Согласно одному из вариантов реализации силиказоль имеет S-значение от около 20 до около 100%, например от около 30 до около 90% или от около 60 до около 90%.

Обнаружено, что дисперсии с S-значением в пределах таких диапазонов могут улучшить устойчивость полученной дисперсии. S-значение характеризует степень агрегирования коллоидных частиц диоксида кремния, то есть степень формирования агрегата или микрогеля.

S-значение было измерено и рассчитано по формулам, приведенным в статье Iler, R.K. & Dalton, R.L., в журнале J.Phys. Chem. 60(1956), 955-957.

S-значение зависит от содержания диоксида кремния, вязкости и плотности коллоидных частиц диоксида кремния. Высокое значение S указывает на низкое содержание микрогеля. Показатель S означает количество SiO2 в массовых процентах, находящегося в диспергированной фазе, например силиказоле. Доля микрогеля может контролироваться в ходе процесса производства, как дополнительно описано, например, в патенте США 5368833.

Силановые соединения могут образовывать устойчивые ковалентные силоксановые связи (Si-O-Si) с силаноловыми группами или быть связанными с силаноловыми группами, например, водородными связями на поверхности коллоидных частиц диоксида кремния.

Согласно одному из вариантов реализации водную дисперсию силанированных коллоидных частиц диоксида кремния смешивают с лаком, таким как водный/на водной основе (или смешивающийся с водой) лак, например, на основе смолы, такой как дисперсии или эмульсии эпоксидных, полиуретановых, акриловых, полиэфирных, алкидных смол для использования в покрытиях дерева, металла, пластмасс, бумаги или покрытиях стекла и керамики или минеральных субстратов.

В общих чертах, термин лак обобщает любой прозрачный или цветной лак, который сохнет путем испарения растворителя и зачастую также процесса отверждения, который образует твердое, прочное отделочное покрытие с любой степенью блеска - от ультраматового до супер-глянца, и который можно дополнительно по требованию полировать.

Согласно одному из вариантов реализации к дисперсии силанированных коллоидных частиц диоксида кремния добавляют органическое связующее вещество. Термин "органическое связующее вещество" включает в себя латекс, водорастворимые смолы, полимеры и их смеси. Водорастворимые смолы и полимеры могут быть различных типов, таких как, например, поливиниловые спирты, модифицированные поливиниловые спирты, поликарбоксилаты, полиэтиленгликоли, полипропиленгликоли, поливинилпирролидоны, полиаллиламины, полиакриловые кислоты, полиамидамины, полиакриламиды, полипирролы, белки, такие как казеин, соевые белки, синтетические белки, полисахариды,такие как производные целлюлозы, включая метилцеллюлозы, этилцеллюлозы, гидроксиэтилцеллюлозы, метилгидроксиэтилцеллюлозы, этилгидроксиэтилцеллюлозы или карбоксиметилцеллюлозы, и крахмалы или модифицированные крахмалы; хитозан, полисахаридные смолы, такие как, например, гуаровые смолы, гуммиарабики, ксантановые смолы и мастиковые смолы и их смеси или гибриды. Термин "латекс" включает синтетические и/или натуральный латексы на основе эмульсий смол и/или полимеров различных типов, например стиролбутадиеновых полимеров, бутадиеновых полимеров, полиизопреновых полимеров, бутиловых полимеров, нитриловых полимеров, винилацетатных гомополимеров, акриловых полимеров, таких как винилакриловые сополимеры или стиролакриловые полимеры, полиуретаны, эпоксидные полимеры, целлюлозные полимеры, например микроцеллюлоза, меламиновые смолы, неопреновые полимеры, полимеры на фенольной основе, полиамидные полимеры, полиэфирные полимеры, полиолефиновые полимеры, полиолефиновые полимеры, поливинилбутиральные полимеры, силиконы, такие как силиконовый каучук и силиконовые полимеры (например, силиконовые масла), мочевиноформальдегидные полимеры, виниловые полимеры или их смесь или гибриды.

Согласно одному из вариантов реализации дисперсию силанированных коллоидных частиц диоксида кремния смешивают с лаком, таким как водный лак, например лак по дереву или эпоксидный лак, в весовом соотношении диоксида кремния к лаку на сухой основе от около 0,01 до около 4, например от около 0,1 до около 2, или от около 0,2 до около 1, или от около 0,2 до около 0,5. Аналогично, силанированные частицы могут быть смешаны с органическим связующим веществом в тех же самых пропорциях. По одному варианту реализации силанированные коллоидные частицы диоксида кремния смешивают с дополнительным компонентом, таким как органическое связующие вещество или лак, при умеренной температуре, соответственно от около 15 до около 35°C или от около 20 до около 30°C. По одному варианту реализации компоненты перемешивают от около 10 секунд до около 1 часа или от около 1 минуты до около 10 минут.

Изобретение также относится к водной дисперсии, получаемой описанным здесь способом. В частности, изобретение относится к водной дисперсии, содержащей силанированные коллоидные частицы диоксида кремния, в которой силанированные коллоидные частицы диоксида кремния содержат силановые группы a), по меньшей мере, одного силанового соединения с эпоксифункциональностью, b), по меньшей мере, одного силанового соединения без эпоксифункциональности.

Согласно одному из вариантов реализации упомянутые силаны способны модифицировать коллоидные частицы диоксида кремния. Силановые группы могут быть от любых раскрытых здесь силановых соединений.

Компоненты дисперсии соответственно имеют технические характеристики, как раскрыто здесь в методической части.

Водная дисперсия способна образовывать покровную пленку на различных видах субстратов.

Согласно одному из вариантов реализации водная дисперсия дополнительно содержит лак, например водный лак. Водная дисперсия способна придавать улучшенную твердость, особенно начальную твердость, и/или водостойкость лаковой композиции. По одному варианту реализации в такой дисперсии содержание диоксида кремния составляет от около 1 до около 80% мас., например от около 10 до около 70% мас., от около 20 до около 50% мас. в пересчете на сухое вещество в дисперсии. Помимо того, являясь более эффективной по условиям устойчивости, дисперсия имеет более короткое время высыхания после нанесения на материал, который должен быть покрыт.

Энергозатраты, используемые для сушки, могут быть, таким образом, значительно снижены. Высокое содержание диоксида кремния в дисперсии является предпочтительным, пока силанированные коллоидные частицы диоксида кремния остаются стабильно диспергированными без какой-либо значительной агрегации, осаждения и/или гелеобразования. Это также выгодно с точки зрения сниженной стоимости ее транспортировки.

Согласно одному из вариантов реализации весовое отношение обоих a) и b) к диоксиду кремния в дисперсии составляет от около 0,01 до около 3, например от около 0,01 до около 1,5, к примеру от около 0,05 до около 1, или от около 0,1 до около 0,5, или от около 0,2 до около 0,5, или от около 0,3 до около 0,5. По одному варианту реализации весовое отношение b) к a) находится в пределах от около 2 до около 0,1, например от около 1,5 до около 0,2 или от около 1,1 до около 0,4.

В состав диоксида кремния входят диоксид кремния в модифицированных силанированных частицах диоксида кремния и частицы немодифицированного диоксида кремния, которые также могут присутствовать в готовой дисперсии. Суммарное содержание силана основано на всем свободно диспергированном силане и всех связанных или химически связанных силановых группах.

Согласно одному из вариантов реализации дисперсия, кроме того, содержит органическое связующее вещество, такое как латекс, как здесь дополнительно описано. Суммарное содержание твердого вещества в дисперсии, содержащей органическое связующее вещество и силанированные коллоидные частицы диоксида кремния, соответственно составляет от около 15 до около 80% мас., например от около 25 до около 65% мас., или от около 30 до около 50% мас. Весовое соотношение диоксида кремния к органическому связующему веществу в пересчете на сухую основу находится соответственно в диапазоне от около 0,01 до около 4, например от около 0,1 до около 2 или от около 0,2 до около 1.

Согласно одному из вариантов реализации силанированные коллоидные частицы диоксида кремния и органическое связующее вещество присутствуют в дисперсии как отдельные частицы. Устойчивость дисперсии облегчает обращение с ней и ее применение при любом использовании, поскольку она допускает хранение и не требует приготовления на месте немедленно перед употреблением. Уже готовую дисперсию можно, таким образом, легко непосредственно использовать. Такая дисперсия также выгодна в том смысле, что не содержит опасные количества токсических компонентов. Водная дисперсия может содержать водорастворимую органическую среду. Например, подходящая органическая смешивающаяся с водой среда может содержаться в водной дисперсии в количестве от около 1 до около 20, например в количестве от около 1 до около 10 или от около 1 до около до 5 объемных процентов общего объема воды и органической среды.

Дисперсия может содержать помимо силанированных коллоидных частиц диоксида кремния также, по меньшей мере, до некоторой степени несиланированные коллоидные частицы диоксида кремния в зависимости от размера частиц диоксида кремния, весового соотношения силана к диоксиду кремния, вида силанового соединения, условий реакции и т.д. Соответственно, по меньшей мере около 40% мас. коллоидных частиц диоксида кремния силанированы (модифицированы силаном), например по меньшей мере около 65% мас., или по меньшей мере около 90% мас., или, по меньшей мере, около 99% мас. Помимо силана в виде силановых групп или производных силана химически связанных или соединенных с поверхностью частиц диоксида кремния дисперсия может содержать также, по меньшей мере, до некоторой степени свободно диспергированные несвязанные силановые соединения. Соответственно, по меньшей мере около 40% мас., например, по меньшей мере около 60% мас., по меньшей мере около 75% мас., по меньшей мере около 90% мас. или по меньшей мере около 95% мас. силановых соединений химически связаны или соединены с поверхностью частиц диоксида кремния.

Дополнительно, изобретение относится к лаковым композициям, содержащим силанированные коллоидные частицы диоксида кремния, как здесь описано.

Изобретение также относится к применению дисперсии силанированного коллоидного диоксида кремния для использования в покрытиях, таких как лаковые композиции, например лаки по дереву или эпоксидные лаки, в качестве добавок, для придания улучшенной водостойкости, твердости, в частности начальной твердости, и прочности. Кроме того, дисперсии данного изобретения могут придавать улучшенную адгезионную способность и износостойкость. Дисперсия данного изобретения может также обеспечить улучшенные шлифуемость (полируемость) и реологические свойства. Данный вид дисперсий может также обладать лучшими свойствами пленок в пигментированных системах, таких как краски.

Дисперсия также подходит для покрытия и пропитки тканого и нетканого текстиля, кирпичей, фотобумаги, дерева, металлических поверхностей, таких как сталь или алюминий, пластмассовых пленок, таких как, например, полиэфирные, полиэтилентерефталатные (PET), полиолефиновые пленки, полиамиды, поликарбонаты или полистиролы; тканей, кожи, бумажных и бумагоподобных материалов, керамики, камней, цементирующих материалов, асфальта, твердого волокна, соломы, стекла, фарфора, пластмасс множества различных видов, стекловолокон, например, для антистатической и жиростойкой обработки; как связующее для нетканых материалов, адгезивов, активаторов склеивания, ламинирующих агентов, уплотняющих материалов, гидрофобизирующих агентов, как, например, связующие для пробкового порошка или опилок, асбеста и резиновых отходов; как вспомогательные средства в текстильной печати и в бумажной промышленности; как добавки к полимерам в качестве клеющего агента, например, для стекловолокон; и для обработки кожи.

Будет очевидным, что изобретение, которое описано таким образом, может быть изменено во многих отношениях. Такие изменения не должны быть расценены как отступление от сути и объема настоящего изобретения, и все такие модификации, как должно быть очевидно специалисту в данной области техники, предназначены быть включенными в объем формулы изобретения. В то время как примеры, приведенные здесь ниже, предоставляют более конкретные детали реакций, здесь могут быть раскрыты нижеследующие общие принципы. Нижеследующие примеры дополнительно проиллюстрируют без ограничения объема изобретения, как описанное изобретение может быть выполнено.

Все доли и проценты относятся к массовым долям и процентам, если не заявлено иначе.

ПРИМЕРЫ

Силаны A-E, используемые далее, доступны от компании Momentive (Швейцария).

A: Silquest A-187 (эпоксисодержащий глицидоксисилан)

B: Silquest A-1524 (уреидосодержащий силан)

C: Silquest A-1100 (аминосодержащий силан)

D: Silquest A-1130 (аминосодержащий силан)

E: Silquest A-178 (акриламидосодержащий силан)

Гидролиз силана

Силановые соединения A-E добавляли к воде с установленным pH при умеренном перемешивании при комнатной температуре, посредством чего через 60-120 минут были получены прозрачные растворы.

Используемый силиказоль Bindzil 30/360, доступный от компании Eka Chemicals AB (Швеция), представлен ниже в таблице 2:

Таблица 2
Используемый поверхностно не модифицированный силиказоль
№ золя Силиказоль Количество силиказоля (г) Содержание диоксида кремния (мас.%) Размер частиц (нм) Модификация поверх-
ности
pH
A1 Bindzil® 30/360 5000 30 7 нет 9-10

Таблица 3
Используемые водостойкие лаки
Торговая марка Тип лака Основной материал/связующее в лаке
Sadolin® Golvlack Stark (бесцветный) 2-компонентный эпоксидный Эпоксидная смола, полиэфирдиамин
Sadolin® Parkettlack Helblank 1-компонентный лак для дерева Водная акрилово/полиуретановая дисперсия

Приготовление дисперсий силанированного коллоидного диоксида кремния

Предварительно гидролизованные растворы силанов А-E (см. таблицу 1) добавляли по каплям к силиказолю A1 при значительном перемешивании со скоростью 600 г раствора в час. После добавления силана перемешивание продолжали около 30 минут.

Температура процесса составляла 60-70°C. Предварительно перемешанные образцы разбавленных водой силановых соединений готовили смешением в равных количествах воды с силаном (см. таблицы 4-6). Смеси медленно перемешивали до получения прозрачных растворов. Разбавленные силаны затем смешивали при умеренном перемешивании с силиказолем, если не заявлено иначе. Около 300 м.д. свободного эпоксисилана не прореагировали с частицами диоксида кремния.

Таблица 7
Данные по устойчивости модифицированных силаном золей (№ 1-7 таблицы 5) по истечении месяца
№ силанированного силиказоля pH Вязкость (сантипуазы) Комментарий
1 11,0 4,6 Устойчив только при рН 11. Гелеобразование**
2 10,7 6,5 Устойчив только при рН 11. Гелеобразование**
3 - - Не устойчив, гелеобразование
4 - - Не устойчив, гелеобразование
5 - - Не устойчив, гелеобразование
6 - - Не устойчив, гелеобразование
7 10,9 5,2 Не устойчив при низком/нейтральном рН**
**Гелеобразование происходит при понижении рН до 9 или ниже как катионным обменом, так и добавлением кислоты

Таблица 8
Данные по устойчивости золей № 8-16 (по таблице 6) по истечении месяца
№ силанированного силиказоля pH Вязкость (сантипуазы) Комментарий
8 7,0 6,8 Устойчивый силиказоль
9 10,9 6,7 Устойчивый силиказоль
10 8,1 11.7 Устойчивый силиказоль
11 8,1 5,1 Устойчивый силиказоль
12 11,5 4,5 Устойчивый силиказоль
13 11,4 3,8 Устойчивый силиказоль
14 11,4 4,3 Устойчивый силиказоль
15* 8,3 4,0 Устойчивый силиказоль
16* 8,1 3,5 Устойчивый силиказоль
*pH понижен от pH 10,5 до pH 7,5 катионным обменом силилированного диоксида кремния.

Испытания на твердость по Кенигу проводили после 1, 7, 14 и 30 дней для композиций лаков по дереву и эпоксидных лаков 1-6 и 7-11 соответственно.

Композиции лаков по дереву (№ 1-6):

20 г модифицированного силаном коллоидного диоксида кремния добавляли при значительном перемешивании к 80 г лака на водной основе.

Покрытия по дереву требуют композиции с нейтральным pH из-за обесцвечивания дуба, которое происходит, если pH превышает 8,5. Поэтому необходимо иметь модифицированный силаном силиказоль, который устойчив при нейтральном pH, и не дает скачка pH в кроющей композиции.

Композиции эпоксидных лаков (№ 7-11):

сначала при значительном перемешивании 5 г модифицированного силаном коллоидного диоксида кремния добавляли к 10 г 2-компонентного эпоксидного лака и затем добавляли 10 г эпоксидного отвердителя.

Пленки наносили на стеклянные пластины с помощью пленочного аппликатора. Толщина влажных пленок составляла 200 мкм, и твердость измеряли после 1, 7, 14 и 30 дней (сушку и хранение проводили при комнатной температуре).

Испытания проводили на маятниковом твердомере Кенига по стандарту ISO 1522 (подобный ASTM D-4366).

Таблица 9
Композиции лаков по дереву с/без добавления модифицированного силаном золя
№ композиции Лак по дереву Силиказоль Силиказоли ( из таблиц 5 и 6)
1 100 г - (эталон)
2 80 г 20 г №8 (эталон)
3 80 г 20 г №10
4 80 г 20 г №11
5 80 г 20 г №15
6 80 г 20 г №16

Таблица 10
pH и вязкость лаковых композиций (№ 1-6 таблицы 9)
№ композиции рН Вязкость (сантипуазы при 20°С)
1 7,8 46
2 7,8 26
3 7,9 31
4 7,9 26
5 7,9 26
6 8,1 28

Таблица 11
Композиции эпоксидных лаков с/без модифицированного силаном силиказоля
Эпоксидный лак Отвердитель Силиказоль Силиказоль (из таблиц 5 и 6)
7 10 г 10 г - (эталон)
8 10 г 10 г 5 г (эталон)
9 10 г 10 г 5 г №12
10 10 г 10 г 5 г №13
11 10 г 10 г 5 г №14

Все лаковые композиции в таблице 11 устойчивы в эпоксидном лаке более 2-х месяцев.

Таблица 12
Твердость (сек) по Кенигу для композиций таблицы 9
24 часа 7 дней 30 дней Комментарий
1 31 сек 71 сек 85 сек Эталонный образец
2 52 сек 98 сек 110 сек Силиказоль, модифицированный только эпоксисиланом, эталон
3 61 сек 118 сек 120 сек Силиказоль, модифицированный эпоксисиланом и уреидосиланом
4 60 сек 118 сек 119 сек Силиказоль, модифицированный эпоксисиланом и уреидосиланом
5 56 сек 104 сек 110 сек Силиказоль, модифицированный эпоксисиланом и акриламидосиланом
6 63 сек 115 сек 123 сек Силиказоль, модифицированный эпоксисиланом и акриламидосиланом

Как можно заметить в таблице 12, композиции № 3-6 на основе дуально силанированных коллоидных дисперсий диоксида кремния демонстрируют улучшенную начальную твердость по сравнению с контрольным образцом (№ 1) и моносиланированными коллоидными дисперсиями диоксида кремния (№ 2). То, что процесс затвердевания стал быстрым, имеет существенное значение, поскольку потребители требуют почти моментального употребления при применениях, например размещение мебели и т.п. на свежепокрытых полах, где использовалась композиция лака по дереву.

Таблица 13
Твердость (секунды) по Кенигу для композиций таблицы 11
24 часа 30 дней Комментарий
7 27 сек 180сек Эталонный образец
8 26 сек 178 сек Силиказоль, модифицированный только эпоксисиланом, эталон
9 32 сек 180 сек Силиказоль, модифицированный эпоксисиланом и аминосиланом (Silquest A-1100)
10 36 сек 191 сек Силиказоль, модифицированный эпоксисиланом и аминосиланом (Silquest A-1130)
11 38 сек 204сек Силиказоль, модифицированный эпоксисиланом и аминосиланом (Silquest A-1130)

Можно заметить, что композиции 9-11 на основе дуально силанированных коллоидных дисперсий диоксида кремния демонстрируют улучшенную начальную твердость по сравнению с контрольным образцом (№ 7) и моносиланированными коллоидными дисперсиями диоксида кремния (№ 8).

Испытание на водостойкость (24-часовое)

На пленку сроком изготовления 24 часа (при 20°C), как на субстрат с прозрачной пленкой коллоидного диоксида кремния, помещали 10 капель воды. Над каплями помещали чашку объемом 50 мл для защиты их от испарения. После 24 часов пластины были проанализированы по шкале от 1 до 5.

Шкала была таковой:

1: Пленка "растворена"

2: Частично растворена

3: Оказано воздействие на пленку

4: Некоторое воздействие на пленку

5: Нет воздействия

Таблица 14
Водостойкость (24 часовая) композиций лаков по дереву, представленная в таблице 9
Водостойкость Комментарий
1 5 Эталонный образец
2 1 Силиказоль, модифицированный только эпоксисиланом, эталон
3 5 Силиказоль, модифицированный эпоксисиланом и уреидосиланом
4 5 Силиказоль, модифицированный эпоксисиланом и уреидосиланом
5 4 Силиказоль, модифицированный эпоксисиланом и акриламидосиланом
6 4 Силиказоль, модифицированный эпоксисиланом и акриламидосиланом

Таблица 15
Водостойкость (24 часовая) композиций эпоксидных лаков, представленная в таблице 11
Водостойкость Комментарий
7 4 Эталонный образец
8 4 Силиказоль, модифицированный только эпоксисиланом, эталон
9 4 Силиказоль, модифицированный эпоксисиланом и аминосиланом (Silquest A-1100)
10 4 Силиказоль, модифицированный эпоксисиланом и аминосиланом (Silquest A-1130)
11 4 Силиказоль, модифицированный эпоксисиланом и аминосиланом (Silquest A-1130)

Композиции лаков по дереву (№ 1-6):

Из композиций лаков по дереву можно увидеть, что значительно лучшая водостойкость получена для силанированных частиц диоксида кремния, модифицированных обоими силанами с уреидо- или акриламидной функциональностью и эпоксисиланом, по сравнению с модифицированным эпоксисиланом.

Композиции эпоксидных лаков (№ 7-11):

На водостойкость ни для одного из образцов не оказано отрицательного воздействия.

Источник поступления информации: Роспатент

Показаны записи 61-70 из 82.
01.11.2018
№218.016.9920

Способ для модификации полимеров и сополимеров на основе этилена

Изобретение относится к способу функционализации основанного на этилене (со)полимера, включающему стадию контактирования основанного на этилене (со)полимера при температуре в диапазоне от 100 до 250°C с азидом формулы (I) где Y представляет собой m равно 0 или 1, n равно 0 или 1, n+m равно 1...
Тип: Изобретение
Номер охранного документа: 0002671352
Дата охранного документа: 30.10.2018
12.12.2018
№218.016.a563

Способ отверждения радикально отверждаемой смолы

Изобретение относится к способу ускорения отверждения радикально отверждаемых смол органическим пероксидом при помощи окислительно-восстановительной системы, а также к двухкомпонентной композиции для отверждения радикально отверждаемых смол. Способ осуществляют добавлением к отверждаемой смоле,...
Тип: Изобретение
Номер охранного документа: 0002674416
Дата охранного документа: 07.12.2018
13.12.2018
№218.016.a604

Способ получения монохлоруксусной кислоты

Изобретение относится к способу хлорирования уксусной кислоты с образованием монохлоруксусной кислоты, включающему следующие стадии: a) взаимодействие уксусной кислоты с хлором с использованием уксусного ангидрида и/или ацетилхлорида в качестве катализатора с образованием жидкой фазы и газовой...
Тип: Изобретение
Номер охранного документа: 0002674474
Дата охранного документа: 11.12.2018
08.02.2019
№219.016.b806

Состав циклического пероксида кетона

Объектом изобретения является инициирующий состав, содержащий по меньшей мере два тримерных циклических пероксида кетона: тримерный циклический пероксид метилэтилкетона (3MEK-cp) формулы (I) и по меньшей мере один пероксид, удовлетворяющий формуле (II), в которой R-Rпредставляют собой алкил,...
Тип: Изобретение
Номер охранного документа: 0002679146
Дата охранного документа: 06.02.2019
17.05.2019
№219.017.52c1

Применение эмульгатора в композиции флотоагента

Предложенная группа изобретений относится к использованию эмульгаторов в композициях вторичных флотореагентов, содержащих разветвленный спирт и/или алкоксилат, и к использованию таких композиций для пенной флотации несульфидных руд, в особенности, фосфатных руд, в сочетании с первичным...
Тип: Изобретение
Номер охранного документа: 0002687665
Дата охранного документа: 15.05.2019
26.05.2019
№219.017.60d8

Способ отверждения (мет)акрилатсодержащей ненасыщенной полиэфирной или виниловоэфирной смолы

Настоящее изобретение относится к способу отверждения ненасыщенной полиэфирной смолы или виниловой эфирной смолы. Описан способ отверждения ненасыщенной полиэфирной смолы или виниловой эфирной смолы, содержащей реакционно-способный разбавитель, выбранный из группы, состоящей из акриловой...
Тип: Изобретение
Номер охранного документа: 0002689151
Дата охранного документа: 24.05.2019
09.06.2019
№219.017.7637

Диалкил-полиалкиламинные композиции, способ их получения и их применение

Изобретение относится к композиции полиалкиламинов, которая подходит для применения в смазочных маслах для машин, в качестве деэмульгаторов для эмульсий типа масло-в-воде, ингибитора коррозии, присадки к топливу, агента против образования накипи, добавки к асфальту, добавки к...
Тип: Изобретение
Номер охранного документа: 0002690941
Дата охранного документа: 07.06.2019
20.06.2019
№219.017.8d40

Синергетический эффект вспомогательных поверхностно-активных веществ в отношении реологических характеристик жидкостей для бурения, заканчивания скважины/вскрытия пласта и гидроразрыва пласта

Группа изобретений относится к жидкостям на основе вязкоупругих поверхностно-активных веществ и к способам их применения на нефтяных месторождениях. Технический результат - улучшенная вязкость в рассолах высокой плотности при повышенных температурах более 300°F. Вязкоупругая жидкость для...
Тип: Изобретение
Номер охранного документа: 0002691906
Дата охранного документа: 18.06.2019
29.06.2019
№219.017.a27a

Низкосолевой способ изготовления полисульфида

114 Изобретение относится к способу получения полисульфида низкосолевым способом. Способ получения полисульфида заключается в том, что проводят стадию взаимодействия бис(2-галогеналкил)формаля с полисульфидом натрия (i) либо с комбинацией гидросульфида натрия и серы (ii). Реакцию проводят в...
Тип: Изобретение
Номер охранного документа: 0002692777
Дата охранного документа: 27.06.2019
12.08.2019
№219.017.bf0c

Устройство и способ для расширения термически расширяемых термопластических микросфер до расширенных термопластических микросфер

Группа изобретений относится к устройству и способу для расширения суспензии термически расширяемых термопластических микросфер. Устройство для расширения термически расширяемых термопластических микросфер содержит: нагревательную зону, способную выдерживать давление, составляющее, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002696709
Дата охранного документа: 05.08.2019
Показаны записи 41-48 из 48.
26.08.2017
№217.015.e950

Способ и жидкость для улучшения проницаемости пластов песчаника с помощью хелатирующего агента

Группа изобретений относится к добыче нефти и газа. Технический результат – улучшение проницаемости пластов песчаника, способность к биоразложению и высокая кислотность без образования отложений жидкости обработки. Способ обработки пласта песчаника включает введение в пласт жидкости, содержащей...
Тип: Изобретение
Номер охранного документа: 0002627787
Дата охранного документа: 11.08.2017
29.12.2017
№217.015.f395

Композиции и способы улучшения совместимости водорастворимых пестицидных солей и концентрированного удобрения

Изобретение относится к сельскому хозяйству. Для улучшения совместимости водного гербицидного раствора, содержащего по меньшей мере одну водорастворимую соль гербицидно активного ингредиента и концентрированное удобрение, где указанное концентрированное удобрение включает >16 мас.% одного или...
Тип: Изобретение
Номер охранного документа: 0002637656
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f6e0

Частицы, содержащие одно или несколько сшитых активных веществ с регулируемым высвобождением

Изобретение относится к частице сшитого препятствующего образованию отложений вещества для операций добычи нефти, для источника воды охлаждающей колонны, способу изготовления частицы и ее использованию. Частица сшитого препятствующего образованию отложений вещества для операций добычи нефти,...
Тип: Изобретение
Номер охранного документа: 0002639232
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fce9

Дисперсионная краска

Изобретение относится к водной дисперсионной краске, содержащей силанизированные частицы коллоидного диоксида кремния и связующее вещество на основе акрилата, где массовое отношение SiO к связующему веществу на основе акрилата в расчете на сухое вещество колеблется от 0,02 до 0,2 и где...
Тип: Изобретение
Номер охранного документа: 0002638382
Дата охранного документа: 13.12.2017
20.01.2018
№218.016.190c

Способ отверждения термореактивных смол

Изобретение относится к способу отверждения термореактивных смол. Описан способ отверждения термореактивной смолы, содержащий стадию введения в контакт смолы с (i) 0,1-5 в.ч. в расчете на 100 весовых частей смолы, одного или нескольких иминов структуры , где y=1, Z=1-4 и y+z≥2, X представляет...
Тип: Изобретение
Номер охранного документа: 0002636149
Дата охранного документа: 21.11.2017
13.02.2018
№218.016.23ad

Фосфатированные соединения в качестве промоторов адгезии

Изобретение относится к использованию производного фосфата для промотирования адгезии между битумом и заполнителями в композиции асфальта. Кроме того, изобретение относится к композиции, содержащей битум и производное фосфата. При этом производное фосфата получено в результате: i) проведения...
Тип: Изобретение
Номер охранного документа: 0002642661
Дата охранного документа: 25.01.2018
04.04.2018
№218.016.3532

Эмульсия битума, содержащая алюминийсодержащие полимеры

Изобретение относится к добавке для эмульсии битума, которая представляет собой особую смесь алкоксилированных соединений с низким и высоким содержанием групп окиси алкилена в комбинации с алюминийсодержащим полимером. При использовании данной добавки становится возможным получить водную...
Тип: Изобретение
Номер охранного документа: 0002645996
Дата охранного документа: 28.02.2018
23.02.2019
№219.016.c6a3

Композиция для покрытия металлических подложек

Изобретение относится к композиции для покрытия, пригодной для покрытия металлической, предпочтительно стальной подложки, которая предназначена быть смонтированной и покрытой внешним покрытием. Композиция содержит порошок цинка и/или сплава цинка и золь модифицированного диоксида кремния. Золь...
Тип: Изобретение
Номер охранного документа: 0002442811
Дата охранного документа: 20.02.2012
+ добавить свой РИД