×
10.07.2014
216.012.dc30

Результат интеллектуальной деятельности: СПОСОБ ВЫРАВНИВАНИЯ ТЕМПЕРАТУРНОГО ПОЛЯ В ГАЗОТУРБИННЫХ УСТРОЙСТВАХ

Вид РИД

Изобретение

Аннотация: Способ может быть использован в энергетике, а именно в газоперекачивающих агрегатах материальных газопроводов, автономных электростанциях и других энергоустановках, содержащих газотурбинный привод, работающий на природном газе. В данном способе топливо к отдельным горелкам подается с критическими параметрами течения в каналах, проходные сечения которых выполняют идентичными. Продольные профили всех каналов выполняют совпадающими с профилем любого произвольно взятого канала, предпочтительно изготовленного первым, с точностью, определяемой погрешностью изготовления, причем стенки каналов выполняют с одинаковой шероховатостью поверхности, при этом равенство расходов топлива, поступающего во входную часть каждого канала, дополнительно обеспечивают за счет выполнения во входной части канала настроечного элемента, преимущественно в виде фаски, с возможностью изменения его геометрических размеров при настройке канала на заданный расход. Технический результат изобретения - обеспечение равномерности температурного поля перед турбиной газотурбинной установки. 1 з.п. ф-лы, 2 ил.

Изобретение относится к энергетике и может быть использовано в газоперекачивающих агрегатах магистральных газопроводов, автономных электростанциях и в других энергоустановках, содержащих газотурбинный привод, работающий на природном газе.

Известны способы выравнивания температурного поля в газотурбинных двигателях (установках), основанные на равенстве расходов топлива через отдельные горелочные устройства камеры сгорания путем и заключающиеся в подборе комплекта форсунок (горелочных устройств) по производительности (Трофимович Г.К., Речистер В.Д., Гильмутдинов А.Г. Справочник по ремонту судовых газотурбинных двигателей. - Л.: Судостроение, 1980, с.72) или в калибровке отверстий в горелочных устройствах (Моверман Г.С., Радчик И. И. Ремонт импортных газоперекачивающих агрегатов. - М.: Недра, 1986, с.72-77).

К недостатку данных технических решений следует отнести то, что при изменении проходных сечений на отдельных топливных линиях, например, за счет нагарообразования на калиброванных отверстиях или их эрозионного износа из-за содержания в топливе мехпримесей происходит изменение массовых расходов топлива на отдельных топливных линиях, а следовательно, создаются условия к неравномерности температурного поля перед турбиной.

Известен способ выравнивания температурного поля в газотурбинных установках, основанный на равенстве расходов топлива через отдельные горелочные устройства камеры сгорания, причем топливо к отдельным горелочным устройствам подают с критическими параметрами течения в каналах, проходные сечения которых выполняют идентичными (патент РФ №2121068, МПК: F02C 7/22 - прототип).

Указанный способ реализуется следующим образом.

На каждой линии подачи топлива к горелкам организуются сечения с критическими параметрами течения, при этом изменения гидравлических характеристик за этими сечениями не приводят к изменению расходов топлива, а следовательно, к изменению температуры в камерах сгорания. В зависимости от геометрии сечения и физико-химических свойств рабочего тела критические параметры течения могут быть различны. При любом выбранном конструктивном исполнении канала, в котором создается течение с критическими параметрами, на каждой топливной линии горелки должен быть один и тот же вариант, т.е. проходные сечения в каналах должны быть идентичными.

Основным недостатком указанного способа является то, что при нагарообразовании на горелках перед ними будет расти давление (т.е. увеличиваться Pвых), и отдельные каналы будут выходить из критического режима течения раньше расчетного значения и на них изменится (уменьшится) расход топливного газа, а следовательно, уменьшится температура в соответствующих камерах сгорания.

Задачей предложенного изобретения является устранение указанных недостатков и обеспечение равномерности температурного поля перед турбиной газотурбинной установки.

Решение поставленной задачи достигается за счет того, что в предложенном способе выравнивания температурного поля в газотурбинных установках, основанном на обеспечении равенства расходов компонентов топлива через отдельные горелочные устройства камеры сгорания и заключающемся в подаче компонентов топлива к отдельным горелочным устройствам по каналам, в которых обеспечивают критические параметры течения, состоящим из входной и выходной частей, соединенных между собой при помощи минимального проходного сечения, при этом проходные сечения указанных каналов выполняют идентичными, согласно изобретению продольные профили всех каналов выполняют совпадающими с профилем любого произвольно взятого канала, предпочтительно изготовленного первым, с точностью, определяемой погрешностью изготовления, причем стенки каналов выполняют с одинаковой шероховатостью поверхности, при этом равенство расходов топлива, поступающего во входную часть каждого канала, дополнительно обеспечивают за счет выполнения во входной части канала настроечного элемента, преимущественно в виде фаски, с возможностью изменения его геометрических размеров при настройке канала на заданный расход.

В варианте применения способа входную и выходную части каналов выполняют профилированными.

Совокупность существенных признаков предложенного способа позволяет получить иные свойства в сравнении с известными решениями, заключающиеся в том, что обеспечивается стабилизация массового расхода топлива через каждое горелочное устройство независимо от изменения в них проходных сечений. Таким образом, предложенное техническое решение соответствует критериям "Изобретательский уровень" и "Новизна".

Данное техническое решение планируется к внедрению на одном из газотурбинных приводов газоперекачивающего агрегата магистрального газопровода и, следовательно, отвечает критерию "Промышленная применимость".

Сущность изобретения иллюстрируется чертежами, где на фиг.1 приведен один из вариантов профиля канала, с помощью которого можно организовать течение с критическими параметрами, на фиг.2 показана зависимость (характер) изменения массового расхода топлива при изменении отношения давлений на вышеуказанном канале.

Основными элементами канала, представленного на фиг.1, являются:

1 - входная часть канала (конфузор), или сужающаяся часть для организации течения потока на входе с минимальными гидравлическими потерями давления;

2 - минимальное проходное сечение для обеспечения заданного массового расхода рабочего тела (топливного газа);

3 - выходная часть канала (диффузор), или расширяющаяся часть для организации течения потока на выходе с минимальными гидравлическими потерями давления;

α- угол конусности расширяющейся части (диффузора);

Fс - площадь минимального проходного сечения;

Fвых - площадь выходного сечения;

Pвх - давление входа;

Pвых - давление выхода.

На фиг.2 обозначены:

4 - зависимость изменения расхода топлива применительно к каналу фиг.1;

5 - зависимость изменения расхода топлива применительно к каналу диафрагмы (на фиг.1 и 2 не показано);

mт - текущий расход топлива при изменении давления Pвых;

mт max - расчетный расход топлива при Pвх=const и наличии критического течения в канале.

Предложенный способ выравнивания температурного поля в газотурбинных установках может быть реализован следующим образом.

Способ выравнивания температурного поля в газотурбинных установках основан на обеспечении равенства, расходов компонентов топлива через отдельные горелочные устройства камеры сгорания и заключается в подаче компонентов топлива к отдельным горелочным устройствам по каналам, в которых обеспечивают критические параметры течения, состоящим из входной и выходной частей, соединенных между собой при помощи минимального проходного сечения, при этом проходные сечения указанных каналов выполняют идентичными, продольные профили всех каналов выполняют совпадающими с профилем любого произвольно взятого канала, предпочтительно изготовленного первым, с точностью, определяемой погрешностью изготовления, причем стенки каналов выполняют с одинаковой шероховатостью поверхности, при этом равенство расходов топлива, поступающего во входную часть каждого канала, дополнительно обеспечивают за счет выполнения во входной части канала настроечного элемента, преимущественно в виде фаски, с возможностью изменения его геометрических размеров при настройке канала на заданный расход.

При достижении критических параметров течения на массовый расход газа не оказывают влияния возмущения, имеющие место по потоку за сечением, в котором создано это условие. Исходя из этого, если на каждой линии подачи топлива к горелкам организовать сечения с критическими параметрами течения, то изменения гидравлических характеристик за этими сечениями не будут приводить к изменению расходов топлива, а следовательно, к изменению температуры в камерах сгорания. В зависимости от геометрии сечения и физико-химических свойств рабочего тела критические параметры течения могут быть различны.

Так, например, для воздуха на дросселирующем элементе в виде диафрагмы (дроссельной шайбы с острыми кромками) критические параметры достигают при отношении давлений Pвых/Pвх≤0,528, а на дросселирующем элементе в виде сопла Лаваля с малой конусностью диффузора (6-12) град) при Pвых/Pвх≤0,92-0,93 в зависимости от качества изготовления сопла.

При величинах отношений давлений больше указанных расход уменьшается (см. фиг.2).

Дросселирующий элемент в виде сопла Лаваля (см. фиг.1) представляет собой последовательное соединение конфузора 1 и диффузора 3 с образованием между ними минимального проходного сечения 2.

Входная часть сопла (конфузор) выполняется конической с углом конусности 40-60 град или с профилем в виде радиуса скрепления входных кромок в 1.5-2 раза больше радиуса минимального сечения.

Выходную часть сопла выполняется с углом конусности 6-12 град при отношении площадей

Возможны другие исполнения расширяющейся части, например:

- по закону обеспечения .

здесь ΔР - перепад давления на участке сопла, ΔХ - длина участка сопла;

- с переменным углом конусности: вначале 6-12 град, затем 15-30 град.

Последние указанные исполнения в основном позволяют уменьшить длину сопла при прочих равных условиях. С другой стороны, известно, что для уменьшения длины подобных дросселирующих элементов применяют элемент в виде решетки. Для предложенного технического решения каждое отверстие в решетке выполняется, например, в виде сопла Лаваля.

При любом выбранном конструктивном исполнении канала, в котором создается течение с критическими параметрами, на каждой топливной линии горелки должен быть один и тот же вариант, т.е. проходные сечения в каналах должны быть идентичными. В противном случае, например, при нагарообразовании на горелках перед ними будет расти давление (т.е. увеличиваться Pвых) и отдельные каналы будут выходить из критического режима течения раньше расчетного значения и на них изменится (уменьшится) расход топливного газа на этих каналах, а следовательно, уменьшится температура в соответствующих камерах сгорания.

При реализации предложенного технического решения следует принять во внимание то, что расчет геометрии сопла на заданный расход топлива при критических параметрах течения необходимо производить для величины отношения давлений порядка Pвых/Pвх=0,85. Тогда при нагарообразовании на горелках и уменьшении в связи с этим на них проходных сечений, а следовательно увеличении отношения давлений до Pвых/Pвх=0,92 будет обеспечиваться стабилизация расхода топлива. С целью исключения эрозионного износа проходного сечения Fс необходимо внутреннюю поверхность канала (сопла) выполнять с высокой твердостью, что на практике вполне возможно, т.к. этот канал будет смонтирован в относительно холодной зоне, где применимы соответствующие материалы.

Кроме вышеотмеченных положительных качеств следует иметь в виду, что еще предложенное техническое решение позволяет упростить систему управления (регулирования) газотурбинной установки и упростить конструкцию элементов разводки топлива по отдельным линиям. Это обуславливается тем, что расход топлива по отдельным линиям в предложенном решении зависит только от величины входного давления сопла, а не от перепада давления на этих линиях, которое, как правило, находится во взаимосвязи с давлением воздуха после компрессора и на порядок может быть выше перепада на этих линиях. В связи с этим легко устанавливается взаимосвязь давления топлива перед соплом и давления воздуха после компрессора, которую можно реализовать редуктором давления. В части упрощения разводки следует понимать, что дополнительные сужения, повороты, влияния на расход топлива оказывать не будут, они только скажутся на гарантированном диапазоне стабилизации расхода (т.е. на диапазон от Pвых/Pвх=0,85 до Pвых/Pвх=0,92, который рекомендуется выбирать для исключения влияния нагарообразования.

Использование предложенного способа позволит обеспечить сохранность настройки равномерного температурного поля перед турбиной при длительной работе газотурбинной установки, особенно в газоперекачивающих агрегатах магистральных газопроводов.


СПОСОБ ВЫРАВНИВАНИЯ ТЕМПЕРАТУРНОГО ПОЛЯ В ГАЗОТУРБИННЫХ УСТРОЙСТВАХ
СПОСОБ ВЫРАВНИВАНИЯ ТЕМПЕРАТУРНОГО ПОЛЯ В ГАЗОТУРБИННЫХ УСТРОЙСТВАХ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 536.
27.04.2013
№216.012.3ac8

Соосно-струйная форсунка

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива жидкостных ракетных двигателей (ЖРД). Соосно-струйная форсунка содержит имеющий осевой вход и выход трубчатый корпус с основным осевым каналом, а также не менее...
Тип: Изобретение
Номер охранного документа: 0002480609
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3d2c

Корпус батискафа

Изобретение относится к области судостроения, в частности к средствам борьбы за живучесть подводных объектов в случае возникновения пробоины в их корпусе. Корпус батискафа содержит силовую внутреннюю оболочку, внешнюю обшивку, образующие межкорпусное пространство, сообщающееся с внешней средой...
Тип: Изобретение
Номер охранного документа: 0002481227
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d2d

Батиплан

Изобретение относится к области судостроения, в частности к средствам борьбы за живучесть подводных объектов в случае возникновения пробоины в их корпусе. Батиплан содержит корпус, в котором расположено техническое оборудование, обеспечивающее функционирование и живучесть батиплана. Указанный...
Тип: Изобретение
Номер охранного документа: 0002481228
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d2e

Способ повышения живучести подводного судна

Изобретение относится к области судостроения, в частности к способам борьбы за живучесть подводных объектов в случае возникновения пробоины в их корпусе. Способ повышения живучести подводного судна, содержащего корпус, в котором расположено техническое оборудование, обеспечивающее...
Тип: Изобретение
Номер охранного документа: 0002481229
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e2e

Камера жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок, смесительных головок и камер жидкостных ракетных двигателей (ЖРД). Камера ЖРД содержит профилированные...
Тип: Изобретение
Номер охранного документа: 0002481485
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e2f

Жидкостный ракетный двигатель

Изобретение относится к области ракетного двигателестроения и может быть использовано при создании безгенераторных жидкостных ракетных двигателей, работающих на криогенных компонентах, например кислороде и водороде. Жидкостный ракетный двигатель содержит кольцевую камеру со смесительной...
Тип: Изобретение
Номер охранного документа: 0002481486
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e30

Камера жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок, смесительных головок и камер жидкостных ракетных двигателей (ЖРД). Камера жидкостного ракетного двигателя...
Тип: Изобретение
Номер охранного документа: 0002481487
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e33

Соосно-струйная форсунка

Изобретение относится к области энергетических установок и может быть использовано при разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Соосно-струйная форсунка содержит имеющий осевой вход и выход трубчатый корпус с основным осевым каналом, а также не менее чем...
Тип: Изобретение
Номер охранного документа: 0002481490
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e34

Смесительная головка камеры жидкостного ракетного двигателя

Изобретение относится к смесительным головкам жидкостных ракетных двигателей (ЖРД). Смесительная головка камеры жидкостного ракетного двигателя содержит корпус, блок подачи окислителя, блок подачи водорода, блок подачи керосина. Соосно-струйные форсунки установлены в указанных блоках...
Тип: Изобретение
Номер охранного документа: 0002481491
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e35

Способ подачи компонентов топлива в камеру жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям (ЖРД). Способ подачи компонентов топлива в камеру жидкостного ракетного двигателя заключается в подаче окислителя, преимущественно кислорода, и горючего, преимущественно керосина и водорода, в полость камеры сгорания из соответствующих...
Тип: Изобретение
Номер охранного документа: 0002481492
Дата охранного документа: 10.05.2013
Показаны записи 21-30 из 285.
10.05.2014
№216.012.c296

Статор электрической машины

Изобретение относится к области электрических машин, в частности к генераторам ветроэнергетических установок. Техническим результатом является упрощение технологии, уменьшение стоимости. Статор электрической машины содержит обмотку, активные и пассивные электромагнитные элементы, крепежные...
Тип: Изобретение
Номер охранного документа: 0002515563
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c297

Синхронный генератор

Изобретение относится к области электротехники, в частности, к электрическим машинам, а именно к синхронным генераторам индукторного типа, применяемым, например, в автотракторном оборудовании. В предлагаемом синхронном генераторе, содержащем источник возбуждения, статор с полюсными...
Тип: Изобретение
Номер охранного документа: 0002515564
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c2a3

Сопло камеры жидкостного ракетного двигателя

Изобретение относится к области ракетной техники. Сопло камеры жидкостного ракетного двигателя содержит наружную и огневую оболочки с каналами охлаждения между ними, образованными двутавровыми проставками, на которых размещены турбулизаторы потока. Полки двутавровых проставок выполнены...
Тип: Изобретение
Номер охранного документа: 0002515576
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c2a4

Ротор ветроэлектрогенератора

Изобретение относится к области ветроэнергетики. Ротор ветроэлектрогенератора содержит ступицу, лопасти, спицы, обод и ферромагнитные тела, установленные на ободе. Ферромагнитные тела выполнены в виде отрезков труб круглого сечения. Средняя часть отрезков труб имеет выборку, обращенную наружу и...
Тип: Изобретение
Номер охранного документа: 0002515577
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c2b1

Способ получения наноструктурного покрытия

Изобретение относится к технологии нанесения наноструктурных покрытий и может быть использовано в наноэлектронике и наноэлектромеханике. Покрытие получают из композита металл-керамика состава (CoNbTa)(SiO). Осуществляют осаждение композита ионно-лучевым распылением с обеспечением образования...
Тип: Изобретение
Номер охранного документа: 0002515600
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c2b5

Способ локального удаления диэлектрических покрытий

Изобретение относится к области машиностроения и может быть использовано для локального удаления диэлектрических покрытий с металлических деталей, например для обеспечения сварочных, паяльных, клеевых работ, измерения твердости основы, толщины покрытия. Способ включает обработку детали...
Тип: Изобретение
Номер охранного документа: 0002515604
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c336

Наноструктурное покрытие

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д. Наноструктурное покрытие выполнено из нанокомпозиционного металл-керамического материала состава...
Тип: Изобретение
Номер охранного документа: 0002515733
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c49d

Ветроэнергетическая установка

Изобретение относится к области ветроэнергетики и может быть применено для выработки электроэнергии. Изобретение направлено на уменьшение массы и габаритов установки. Это достигается тем, что ветроэнергетическая установка, содержащая башню, поворотное основание, направляющий киль, статор,...
Тип: Изобретение
Номер охранного документа: 0002516092
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c54e

Устройство для управления шаговым двигателем

Изобретение относится к области автоматики и может быть использовано в дискретном электроприводе с программным управлением. Технический результат заключается в расширении функциональных возможностей устройства, в повышении надежности и упрощении эксплуатации этого устройства. Для этого...
Тип: Изобретение
Номер охранного документа: 0002516269
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c600

Синхронный индукторный генератор

Изобретение относится к области электротехники, в частности к электрическим машинам, и касается особенностей конструктивного выполнения синхронных генераторов индукторного типа, применяемых, например, в автотракторном оборудовании. Предлагаемый синхронный индукторный генератор содержит...
Тип: Изобретение
Номер охранного документа: 0002516447
Дата охранного документа: 20.05.2014
+ добавить свой РИД