×
10.07.2014
216.012.db55

Результат интеллектуальной деятельности: СПОСОБ ВЫПОЛНЕНИЯ АНОДНОГО ЗАЗЕМЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электрохимической защиты подземных сооружений от грунтовой коррозии и может найти применение в нефтегазовой промышленности, а также в коммунальном хозяйстве при выполнении анодного заземления. Способ включает бурение скважины преимущественно горизонтально, вдоль подземного сооружения с выходом на дневную поверхность с обоих концов скважины, обсадку скважины и протягивание в нее электродов с установкой их в горизонтальной части скважины, заполнение скважины электропроводящим материалом, при этом определяют уровень грунтовых вод и глубину промерзания грунта вдоль подземного сооружения. Горизонтальную часть скважины располагают ниже уровня грунтовых вод и глубины промерзания грунта. Скважину обсаживают перфорированными неметаллическими трубами или электропроводными трубами из композиционного материала, а электроды подключают к кабелям, выходящим на дневную поверхность с обоих концов скважины. Технический результат: повышение эффективности, надежности и ремонтопригодности анодного заземления. 2 пр., 1 ил.
Основные результаты: Способ выполнения анодного заземления подземного сооружения, включающий бурение скважины преимущественно горизонтально, вдоль подземного сооружения с выходом на дневную поверхность с обоих концов скважины, обсадку скважины и протягивание в нее электродов с установкой их в горизонтальной части скважины, заполнение скважины электропроводящим материалом, отличающийся тем, что определяют уровень грунтовых вод и глубину промерзания грунта вдоль защищаемого подземного сооружения, при этом горизонтальную часть скважины располагают ниже уровня грунтовых вод и глубины промерзания грунта, скважину обсаживают перфорированными неметаллическими трубами или электропроводными трубами из композиционного материала, а электроды подключают к кабелям, выходящим на дневную поверхность с обоих концов скважины.

Изобретение относится к электрохимической защите от грунтовой коррозии и может найти применение в нефтегазовой и энергетической отраслях промышленности, а также в коммунальном хозяйстве при выполнении анодного заземления.

Известно устройство горизонтального анодного заземления, включающее траншею, которую выполняют вдоль защищаемого сооружения, электроды анодного заземления, размещенные в траншее, контрольно-измерительные колонки для контроля эффективности электрохимической защиты, кабели для соединения электродов и токопроводящий раствор, покрывающий электроды (патент РФ №2407824, опубл. 27.12.2010 г.).

К недостаткам способа относят трудоемкость выполнения заземления и его ремонта при наличии рядом с защищаемой конструкцией сторонних подземных трубопроводов, дорог с твердым покрытием, подземных линий связи, силовых кабелей, например на территории промышленных площадок компрессорных и насосных станций.

Наиболее близким к заявляемому изобретению является способ выполнения анодного заземления, заключающийся в бурении преимущественно вертикальной скважины, опускании в скважину под собственным весом электродов и заполнении скважины от забоя до устья токопроводящим неметаллическим материалом (патент РФ №2394942, опубл. 20.07.2010 г.).

К недостаткам относятся:

- низкая эффективность анодного заземления в случае горизонтального чередования пластов грунта с различными электрическими характеристиками (удельным электрическим сопротивлением);

- неравномерное распределение защитного потенциала вдоль защищаемого сооружения;

- высокая электрическая мощность источников постоянного тока, требуемых для осуществления электрохимической защиты, вследствие значительного расстояния от анодного заземления до объекта защиты (например, для магистральных нефтегазопроводов расстояние составляет 500-700 м);

- существование риска заклинивания и «складывания» электродов в скважине при их опускании под собственным весом, что в последующем существенно снижает эффективность работы заземления;

- невысокая надежность анодного заземления, обусловленная тем, что все подключающие кабели вводят только с одной стороны скважины (со стороны устья).

В поставленном изобретении решается задача повышения эффективности и надежности анодного заземления, а также повышения его ремонтопригодности.

Поставленная задача решается тем, что в способе выполнения анодного заземления подземного сооружения, включающем бурение скважины преимущественно горизонтально, вдоль подземного сооружения с выходом на дневную поверхность с обоих концов скважины, обсадку скважины и протягивание в нее электродов с установкой их в горизонтальной части скважины, заполнение скважины электропроводящим материалом, определяют уровень грунтовых вод и глубину промерзания грунта вдоль подземного сооружения, при этом горизонтальную часть скважины располагают ниже уровня грунтовых вод и глубины промерзания грунта, скважину обсаживают перфорированными неметаллическими трубами или электропроводными трубами из композиционного материала, а электроды подключают к кабелям, выходящим на дневную поверхность с обоих концов скважины.

Изобретение иллюстрируется чертежом, на котором схематически изображена конструкция анодного заземления для электрохимической защиты сооружения 1, выполненное в виде горизонтально расположенной скважины 2, основная часть которой находится ниже уровня грунтовых вод 3 и уровня промерзания грунта 4, имеющей два выхода на дневную поверхность 5, установленных в скважине неметаллических перфорированных труб 6, электродов 7, кабелей 8.

Способ выполнения анодного заземления осуществляют следующим образом.

Выполняют анализ гидрогеологических характеристик грунта вдоль защищаемого сооружения 1. Методом наклонно-направленного либо горизонтально-направленного бурения бурят скважину 2, которая на участке действия анодного заземления параллельна защищаемому сооружению 1 и проходит ниже уровня грунтовых вод 3 и уровня промерзания грунта 4, в этом случае часть скважины, в которой расположены электроды, постоянно находится в электропроводящем слое грунта, чем обеспечивается эффективность работы анодного заземления. Оба конца скважины выходят на дневную поверхность 5.

В пробуренной скважине устанавливают перфорированные неметаллические трубы либо трубы из электропроводящего композита 6, внутрь которых при помощи троса протягивают электроды 7. В случае применения перфорированных труб грунтовая вода затекает в трубы, при применении электропроводных герметичных труб внутрь закачивают электропроводящий раствор.

Электроды 7 подключают кабелями 8 к системе электрохимической защиты, при этом кабели выводят с обоих концов скважины 2, что снижает падение напряжения в кабелях и повышает надежность заземления.

Данным способом целесообразно выполнять анодные заземления для электрохимической защиты подземных сооружений, например трубопроводов, под руслами рек или других водных преград, а также на территориях компрессорных или насосных станций в условиях наличия рядом с защищаемым сооружением дорог, подземных кабелей, сторонних трубопроводов, линий связи.

В случае необходимости ремонта анодного заземления электроды с подключающими кабелями извлекают из скважины и устанавливают новые.

Пример 1

Участок подземного технологического трубопровода газа 1 протяженностью 100 м, расположенный на территории промышленной площадки компрессорной станции, имеет высокий риск развития коррозии вследствие недостаточно эффективно действующих глубинных заземлений катодной защиты в связи с их удалением от защищаемого трубопровода и экранированием другими защищаемыми коммуникациями, а также контурами защитных заземлений и фундаментами.

По проектной документации определяют, что глубина заложения трубопровода до его оси на участке составляет 2,0-2,5 м. Глубина промерзания грунта - 2,2 м, уровень грунтовых вод 2,0-4,0 м.

При помощи оборудования для наклонно-направленного бурения (на фиг. не показано) бурят скважину 2 диаметром 168 мм, которая проходит горизонтально на глубине 5,0 м, что ниже уровня грунтовых вод 3 и уровня промерзания грунта 4. Скважину располагают параллельно (в проекции) защищаемому участку газопровода 1 таким образом, чтобы горизонтальный участок составлял около 100 м и располагался рядом с защищаемым трубопроводом 1. Второй конец скважины (забой) выходит на дневную поверхность 5. Общая длина скважины - 140 м.

В скважину 2 на всю ее длину протягивают полиэтиленовые трубы 6 внешним диаметром 120 мм. Трубы имеют перфорацию в виде отверстий диаметром 8 мм в количестве 10-20 шт./дм2 (на фиг. не показано).

В трубы 6 протягивают магнетитовые электроды 7, соединенные в гирлянду протяженностью 100 м и устанавливают гирлянду электродов на горизонтальном участке скважины 2. Электроды 7 подключены к кабелям 8, выходящим на дневную поверхность 5 из обоих концов скважины 2. Кабели 8, выходящие на поверхность 5, подключают к установке катодной защиты (далее - УКЗ) (на фиг. не показано).

В трубу 6 закачивают электропроводный буровой раствор из бентонитовой глины (на фиг. не показано), применяемый для бурения скважины 2.

Пример 2

Участок магистрального газопровода 1 пересекает реку (на фиг. не показано) шириной 600 м и глубиной до десяти метров. На берегах расположены УКЗ (на фиг. не показано). Методом катодной поляризации участка трубопровода, а также при помощи бесконтактного измерителя тока, например БИТА-01, определено, что на трубопроводе под рекой имеются повреждения изоляционного покрытия газопровода значительных размеров, что делает неэффективной катодную защиту, осуществляемую глубинными анодами, расположенными на берегах реки, на участке газопровода и имеются протяженные участки с защитными потенциалами ниже минимально допустимых (по модулю) по ГОСТ Р 51164-98*. Увеличение режимов работы УКЗ приводит к превышению максимально допустимых защитных потенциалов по ГОСТ Р 51164-98 в районе точки дренажа, при этом защитный потенциал на водном переходе не достигает требуемых значений. Выполнить ремонт изоляции не представляется возможным. Требуется установка дополнительного анодного заземления установки катодной защиты вдоль трубопровода на водном переходе.

По проектной документации определяют глубину заложения трубопровода, тип и характеристики грунтов, уровень грунтовых вод в районе перехода и под ним. При помощи оборудования для наклонно-направленного бурения (на фиг. не показано) бурят скважину 2 диаметром 168 мм, которая проходит на глубине заложения нижней образующей трубопровода 1 и выходит за 400 м от уреза воды (на фиг. не показано) в каждую сторону. В скважину 2 протягивают трубы 6 внешним диаметром 120 мм из электропроводного композиционного материала на основе сополимера этилена с винилацетатом ЭПК-7.

В трубы 6 протягивают протяженный гибкий анод (электрод) 7 типа ПВЕК по ТУ 3435-005-97598003-2011 длиной 600 м с кабелями 8, выходящими на дневную поверхность 5 из обоих концов скважины 2, и подключают их к установкам катодной защиты (на фиг. не показано), расположенным на берегах. Гибкий анод устанавливают на участке скважины, проходящем под руслом реки.

В трубу 6 закачивают электропроводный буровой раствор из бентонитовой глины (на фиг. не показано), применяемый для бурения скважины 2.

Способ выполнения анодного заземления подземного сооружения, включающий бурение скважины преимущественно горизонтально, вдоль подземного сооружения с выходом на дневную поверхность с обоих концов скважины, обсадку скважины и протягивание в нее электродов с установкой их в горизонтальной части скважины, заполнение скважины электропроводящим материалом, отличающийся тем, что определяют уровень грунтовых вод и глубину промерзания грунта вдоль защищаемого подземного сооружения, при этом горизонтальную часть скважины располагают ниже уровня грунтовых вод и глубины промерзания грунта, скважину обсаживают перфорированными неметаллическими трубами или электропроводными трубами из композиционного материала, а электроды подключают к кабелям, выходящим на дневную поверхность с обоих концов скважины.
СПОСОБ ВЫПОЛНЕНИЯ АНОДНОГО ЗАЗЕМЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 21-27 из 27.
29.12.2017
№217.015.fd7b

Способ предотвращения коррозионного растрескивания под напряжением в подземных трубопроводах

Способ предотвращения коррозионного растрескивания под напряжением (КРН) в подземных трубопроводах относится к трубопроводному транспорту и может быть использован при строительстве новых и реконструкции действующих подземных трубопроводов. Способ заключается в том, что трубопровод размещают на...
Тип: Изобретение
Номер охранного документа: 0002638121
Дата охранного документа: 11.12.2017
13.02.2018
№218.016.21a6

Способ определения технического состояния изоляционного покрытия подземного трубопровода

Изобретение относится к трубопроводному транспорту и может быть использовано при определении технического состояния изоляционного покрытия участков подземных трубопроводов, подверженных воздействию геомагнитно-индуцированного тока. Определяют положение границ и длину участка трубопровода,...
Тип: Изобретение
Номер охранного документа: 0002641794
Дата охранного документа: 22.01.2018
13.02.2018
№218.016.2241

Способ идентификации источника блуждающего тока

Изобретение относится к области защиты подземных металлических сооружений от коррозии, вызванной блуждающими токами. Способ идентификации источника блуждающего тока заключается в следующем: отключают средства электрохимической защиты трубопровода и синхронно измеряют разности потенциалов...
Тип: Изобретение
Номер охранного документа: 0002642137
Дата охранного документа: 24.01.2018
13.02.2018
№218.016.2278

Способ защиты участков трубопроводов от геомагнитно-индуцированных блуждающих токов и устройство для его осуществления

Группа изобретений относится к области защиты подземных металлических сооружений от коррозии, вызванной геомагнитно-индуцированными источниками блуждающих токов, и может быть использована в нефтяной и газовой промышленности при эксплуатации подземных трубопроводов, подверженных влиянию...
Тип: Изобретение
Номер охранного документа: 0002642141
Дата охранного документа: 24.01.2018
10.04.2019
№219.017.07ac

Способ мониторинга и оценки технического состояния магистрального трубопровода и система для его реализации

Группа изобретений относится к средствам диагностики и может быть использована для комплексного непрерывного мониторинга технического состояния магистральных трубопроводов. Способ включает измерение физических параметров набором датчиков, расположенных внутри и с внешней стороны трубопровода по...
Тип: Изобретение
Номер охранного документа: 0002451874
Дата охранного документа: 27.05.2012
10.04.2019
№219.017.09a0

Модульная компрессорная станция

Изобретение относится к машиностроению, в частности к компрессорным станциям, и может быть использовано при транспортировке газа по магистральным трубопроводам. Модульная компрессорная станция, характеризующаяся тем, что она включает технологические модули, при этом каждый технологический...
Тип: Изобретение
Номер охранного документа: 0002463515
Дата охранного документа: 10.10.2012
09.06.2019
№219.017.7f33

Способ обнаружения маркеров - параметрических рассеивателей

Изобретение относится к способам обнаружения пассивных маркеров-ответчиков, являющимся вторичными источниками электромагнитного излучения. Сущность способа заключается в том, что излучается зондирующий сигнал, состоящий из последовательности пар связанных пачек радиоимпульсов сигнала накачки,...
Тип: Изобретение
Номер охранного документа: 0002441253
Дата охранного документа: 27.01.2012
Показаны записи 21-30 из 63.
29.12.2017
№217.015.fd7b

Способ предотвращения коррозионного растрескивания под напряжением в подземных трубопроводах

Способ предотвращения коррозионного растрескивания под напряжением (КРН) в подземных трубопроводах относится к трубопроводному транспорту и может быть использован при строительстве новых и реконструкции действующих подземных трубопроводов. Способ заключается в том, что трубопровод размещают на...
Тип: Изобретение
Номер охранного документа: 0002638121
Дата охранного документа: 11.12.2017
13.02.2018
№218.016.21a6

Способ определения технического состояния изоляционного покрытия подземного трубопровода

Изобретение относится к трубопроводному транспорту и может быть использовано при определении технического состояния изоляционного покрытия участков подземных трубопроводов, подверженных воздействию геомагнитно-индуцированного тока. Определяют положение границ и длину участка трубопровода,...
Тип: Изобретение
Номер охранного документа: 0002641794
Дата охранного документа: 22.01.2018
13.02.2018
№218.016.2241

Способ идентификации источника блуждающего тока

Изобретение относится к области защиты подземных металлических сооружений от коррозии, вызванной блуждающими токами. Способ идентификации источника блуждающего тока заключается в следующем: отключают средства электрохимической защиты трубопровода и синхронно измеряют разности потенциалов...
Тип: Изобретение
Номер охранного документа: 0002642137
Дата охранного документа: 24.01.2018
13.02.2018
№218.016.2278

Способ защиты участков трубопроводов от геомагнитно-индуцированных блуждающих токов и устройство для его осуществления

Группа изобретений относится к области защиты подземных металлических сооружений от коррозии, вызванной геомагнитно-индуцированными источниками блуждающих токов, и может быть использована в нефтяной и газовой промышленности при эксплуатации подземных трубопроводов, подверженных влиянию...
Тип: Изобретение
Номер охранного документа: 0002642141
Дата охранного документа: 24.01.2018
10.05.2018
№218.016.3dbb

Конструкция перехода трубопровода через препятствия

Изобретение относится к строительству трубопроводов и может быть использовано при прокладке трубопроводов по дну водоемов, по заболоченной местности, а также на речных и морских переходах небольшой протяженности. Конструкция перехода трубопровода через препятствия содержит внутреннюю трубу,...
Тип: Изобретение
Номер охранного документа: 0002648171
Дата охранного документа: 22.03.2018
04.07.2018
№218.016.6a53

Способ регулирования параметров катодной защиты подземных трубопроводов

Изобретение относится к области защиты подземных сооружений от коррозии, в частности, к регулированию потенциалов катодной защиты участков защищаемого сооружения. Способ включает назначение контрольных точек, в которых определяют значение потенциала «труба-земля», изменение параметров катодной...
Тип: Изобретение
Номер охранного документа: 0002659543
Дата охранного документа: 02.07.2018
25.09.2018
№218.016.8b05

Способ ремонта трубопровода

Изобретение относится к трубопроводному транспорту и может быть использовано при ремонте эксплуатируемых трубопроводов. На дефектном участке вскрывают трубопровод, подготавливают дефектное место для проведения диагностики. Уточняют тип, линейные размеры и глубину дефекта стенки трубы методами...
Тип: Изобретение
Номер охранного документа: 0002667730
Дата охранного документа: 24.09.2018
03.10.2018
№218.016.8cbe

Способ локализации участков трубопроводов, подверженных влиянию геомагнитно-индуцированных блуждающих токов

Изобретение относится к области защиты подземных металлических сооружений от коррозии, вызванной источниками геомагнитно-индуцированных блуждающих токов. Сущность: по максимальным колебаниям разности потенциала «труба-земля» определяется начальная точка на трассе трубопровода, где...
Тип: Изобретение
Номер охранного документа: 0002668352
Дата охранного документа: 28.09.2018
20.02.2019
№219.016.bc79

Способ выявления нарушений соединения полимерного покрытия с металлическими трубами

Использование: для выявления нарушений соединения полимерного покрытия с металлическими трубами. Сущность заключается в том, что осуществляют введение посредством пьезоэлектрического преобразователя ультразвукового дефектоскопа импульсов ультразвуковых колебаний в покрытие, прием и...
Тип: Изобретение
Номер охранного документа: 0002278378
Дата охранного документа: 20.06.2006
20.02.2019
№219.016.bcdd

Способ определения механических напряжений в стальных конструкциях

Изобретение относится к области оценки технического состояния конструкций и может быть использовано для определения механических напряжений, например, в стальных трубопроводах надземной прокладки. Сущность изобретения состоит в том, что для определения механических напряжений стальных...
Тип: Изобретение
Номер охранного документа: 0002281468
Дата охранного документа: 10.08.2006
+ добавить свой РИД