×
10.07.2014
216.012.dac8

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ФАЗОВОГО СОСТАВА БЕЙНИТНЫХ СТАЛЕЙ

Вид РИД

Изобретение

Аннотация: Использование: для определения фазового состава бейнитных сталей. Сущность изобретения заключается в том, что получают рентгенодифракционный спектр, проводят качественный фазовый анализ и количественно определяют содержание фаз методом Ритвельда с учетом фактора сходимости GOF, при этом в качестве пробы выбирают бейнитную сталь в виде металлографического шлифа, на дифрактограмме выделяют рефлексы, принадлежащие альфа-фазе и разделяют их на компоненты - пики феррита и бейнитного феррита, задают степень тетрагональности решетки бейнитного феррита, рассчитывают и корректируют количественный и качественный фазовый состав. Технический результат: обеспечение возможности определения качественного и количественного фазового состава бейнитных сталей с выявлением соотношения бейнита и феррита. 5 ил.
Основные результаты: Способ определения фазового состава бейнитных сталей, заключающийся в получении рентгенодифракционного спектра с проведением качественного фазового анализа и количественного определения содержания фаз методом Ритвельда с учетом фактора сходимости GOF, отличающийся тем, что в качестве пробы выбирают бейнитную сталь в виде металлографического шлифа, на дифрактограмме выделяют рефлексы, принадлежащие альфа-фазе и разделяют их на компоненты - пики феррита и бейнитного феррита, задают степень тетрагональности решетки бейнитного феррита, рассчитывают и корректируют количественный и качественный фазовый состав.

Изобретение относится к методу рентгеновского анализа и может быть использовано при исследовании структуры и фазового состава металлов в материаловедении.

Известен способ исследования структуры трубных сталей, включающий взаимодействие образца трубной стали с водным раствором сульфосолей, последующие промывку и просушку образца, и выявление областей бейнита реечной морфологии с помощью оптического микроскопа [патент №2449055]. Недостатком является то, что способ предназначен только для определения структуры, без разделения феррита на составляющие.

Известен рентгеновский способ количественного определения фазового состава портландцементных клинкеров, принятый за прототип [RU Патент №2461817]. Способ заключается в получении рентгендифракционного спектра от порошкового препарата, изготовленного из исследуемого портландцементного клинкера, по полученному рентгендифракционному спектру определяют фазовый состав порошкового препарата методом Ритвельда. Предварительно изготавливают аншлиф из исследуемого портландцементного клинкера, по которому визуально выявляют присутствующие в аншлифе фазы, после чего фазовые составы сравнивают и осуществляют корректировку фазового состава, который получен по рентгендифракционному спектру, по тем фазам, которые выявлены в наименьших количествах, затем определяют соотношение двух моноклинных модификаций алита, который содержится в наибольшем количестве, путем анализа асимметрии наложенных отражений в интервале углов 2ΘCu=31,5-33°. Далее методом Ритвельда определяют количественное содержание всех обнаруженных фаз, затем - количественное содержание всех фаз в исследуемом клинкере в интервале между их средним содержанием и содержанием, полученным по моноклинной модификации алита, присутствующей в большем количестве. Измерения рентгендифракционного спектра можно производить в порошковом автоматизированном рентгеновском дифрактометре с использованием медного излучения в интервале определенных углов, при напряжении 45 кВ и силе тока 35 мА.

Данный способ не позволяет исследовать структуру бейнитных сталей с разделением альфа-фазы на составляющие - феррит и бейнит.

Задачей изобретения является разработка способа определения качественного и количественного фазового состава бейнитных сталей с выявлением соотношения бейнита и феррита.

На рентгеновском автоматическом дифрактометре проводят съемку рентгенодифракционного спектра металлографического шлифа бейнитной стали. По полученному спектру определяют фазовый состав стали, Фиг.1 - результат качественного фазового анализа бейнитной стали. На дифрактограмме выделяют рефлексы, принадлежащие альфа-фазе, и разделяют их на компоненты - пики феррита и бейнита. Методика разделения основана на визуальной оценке асимметрии дифракционного пика α-Fe, связанной с присутствием феррита с содержанием углерода около 0,02%, и бейнита, имеющего искаженную кристаллическую объемно-центрированную кубическую решетку, обусловленную повышенным содержанием в ней углерода. Задают степень тетрагональности решетки бейнита. Выбирают из базы структурных данных ICSD [Inorganic Crystal Structure Database] параметры атомного строения фаз для расчетов количественного состава (относительные координаты атомов, заселенности позиций и параметры смещения, а также ожидаемые средние размеры и формы кристаллитов), подсчитывают значение фактора сходимости GOF по методу Ритвельда, и, в случае необходимости, производят корректировку качественного и количественного фазового состава стали путем повторного подбора параметров атомного строения фаз до достижения значений фактора сходимости GOF по методу Ритвельда менее 1,4.

В процессе может быть произведен металлографический анализ шлифа (Фиг.2. а - Микроструктура (×500) и б - панорамное изображение структуры после травления в поляризованном свете).

Выделение рефлексов альфа-фазы, разделение их на компоненты и задание степени тетрагональности решетки бейнита позволяют выявить различия структурных характеристик феррита и бейнита, что в результате позволяет использовать метод Ритвельда для определения качественного и количественного состава бейнитной стали. Совокупность отличительных признаков является необходимой и достаточной для решения поставленной задачи.

Из образцов бейнитных сталей класса прочности К65 с содержанием углерода до 0,07% изготовили 3 металлографических шлифа.

Рентгеновское исследование полученных образцов производили на автоматизированном дифрактометре D8 Advance фирмы Bruker в Θ-Θ-геометрии с использованием медного излучения, с установленным на дифрагированном (т.е. отраженном) пучке графитного кристалл-монохроматора, в интервале углов 2Θ=34-120°, при напряжении 40 kV и силе тока 40 mA, с вращением и с регистрацией дифрагированных лучей сцинтилляционным счетчиком. Сканирование осуществляли с шагом 0,02° по 2Θ и временем накопления сигнала в каждой точке 9 с. По полученному спектру определили фазовый состав стали, включающий α- и γ-Fe и цементит (Фиг.1. Результат качественного фазового анализа бейнитной стали). Качественный фазовый анализ определяли путем сравнения набора межплоскостных расстояний экспериментально полученной рентгенограммы с рентгенометрическими данными фаз порошковой базы ICDD [International Centre for Diffraction Data - PDF2008].

На полученных дифрактограммах выделили рефлексы, принадлежащие альфа-фазе, и разделили их на компоненты - пики феррита и бейнита, предполагая, что решетка бейнита подобна решетке мартенсита, но с чрезвычайно малой (до 1,004) величиной тетрагональности (Фиг.3. Пример разделения пика α-фазы на компоненты - рефлексы феррита и бейнита). Задали степень тетрагональности решетки бейнита.

Структурные параметры для расчетов количественного фазового состава по методу Ритвельда (относительные координаты атомов, заселенности позиций и параметры смещения) были взяты из базы структурных данных ICSD [Inorganic Crystal Structure Database]. Подсчитали значение фактора сходимости GOF=4,68; Rwp=47,41.

Произвели корректировку качественного и количественного фазового состава стали путем повторного подбора параметров атомного строения фаз до достижения значений фактора сходимости GOF по методу Ритвельда менее 1,4 - GOF=1,31; Rwp=11,65. (Фиг.4. а - Вид исходной дифрактограммы; б - промежуточный результат обработки дифрактограммы по Ритвельду; в - окончательный результат расчета по Ритвельду количества фаз.)

В качестве дополнительного критерия соответствия модели и эксперимента может быть принят также вид разностной кривой (Фиг.5. Разложение экспериментального дифракционного профиля, соответствующего линии 110 α-Fe на составляющие феррита (Iron alpha) и бейнита (Bainite)).

В процессе может быть осуществлен металлографический анализ исследуемых проб, который позволит визуально определить тип и морфологию структурных составляющих - феррита и кристаллитов бейнита.

Результаты качественного и количественного фазового анализа исследуемых металлографических шлифов и параметров выявленных фаз представлены в таблице.

Образец
1 2 3
Аустенит, % 0,30 0,09 1,25
Бейнитный феррит, % 48,39 44,57 43,06
Феррит, % 50,39 54,95 55,40
Цементит, % 0,92 0,38 0,29
Параметр решетки аустенита а, Å 3,61128 (5) 3,60871 (5) 3,60852 (7)
Дисперсность карбидов, нм 308 45 67
GOF 1,31 1,36 1,29

Таким образом, предлагаемый способ позволил установить качественный и количественный фазовый состав высокопрочных трубных сталей с определением соотношения феррита и бейнитного феррита.

Способ определения фазового состава бейнитных сталей, заключающийся в получении рентгенодифракционного спектра с проведением качественного фазового анализа и количественного определения содержания фаз методом Ритвельда с учетом фактора сходимости GOF, отличающийся тем, что в качестве пробы выбирают бейнитную сталь в виде металлографического шлифа, на дифрактограмме выделяют рефлексы, принадлежащие альфа-фазе и разделяют их на компоненты - пики феррита и бейнитного феррита, задают степень тетрагональности решетки бейнитного феррита, рассчитывают и корректируют количественный и качественный фазовый состав.
СПОСОБ ОПРЕДЕЛЕНИЯ ФАЗОВОГО СОСТАВА БЕЙНИТНЫХ СТАЛЕЙ
СПОСОБ ОПРЕДЕЛЕНИЯ ФАЗОВОГО СОСТАВА БЕЙНИТНЫХ СТАЛЕЙ
СПОСОБ ОПРЕДЕЛЕНИЯ ФАЗОВОГО СОСТАВА БЕЙНИТНЫХ СТАЛЕЙ
СПОСОБ ОПРЕДЕЛЕНИЯ ФАЗОВОГО СОСТАВА БЕЙНИТНЫХ СТАЛЕЙ
СПОСОБ ОПРЕДЕЛЕНИЯ ФАЗОВОГО СОСТАВА БЕЙНИТНЫХ СТАЛЕЙ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 19.
20.01.2013
№216.012.1ccc

Порошковый износостойкий материал и способ его изготовления

Изобретение относится к порошковой металлургии, в частности к получению износостойких материалов. Может использоваться в машиностроении для защиты деталей машин от изнашивания. Порошковый износостойкий сплав содержит износостойкий компонент в виде порошка отходов твердых сплавов и пластичную...
Тип: Изобретение
Номер охранного документа: 0002472866
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1dd2

Способ параметрического трехмерного моделирования оборудования и сооружений гидроэнергетических объектов

Изобретение относится к области автоматизированного моделирования гидроэнергетических объектов (ГЭО) и способам трехмерного моделирования. Техническим результатом является снижение временных ресурсов, затрачиваемых на моделирование ГЭО. Способ трехмерного параметрического моделирования...
Тип: Изобретение
Номер охранного документа: 0002473128
Дата охранного документа: 20.01.2013
27.03.2013
№216.012.3183

Способ измерения частоты сигнала

Изобретение относится к измерительной технике и может быть использовано в спектрометрии. Способ измерения частоты сигнала предполагает прием сигнала с последующим аналого-цифровым преобразованием, выполнение быстрого преобразования Фурье, преобразование числового массива во временной области в...
Тип: Изобретение
Номер охранного документа: 0002478213
Дата охранного документа: 27.03.2013
10.06.2013
№216.012.489e

Способ получения высокоазотистой аустенитной порошковой стали с нанокристаллической структурой

Изобретение относится к порошковой металлургии, в частности к получению высокоазотистой аустенитной порошковой стали с нанокристаллической структурой. Смесь из порошков хрома, никеля, марганца и железа помещают в металлический проточный реактор высоконапряженной вибромельницы, снабженный...
Тип: Изобретение
Номер охранного документа: 0002484170
Дата охранного документа: 10.06.2013
10.08.2013
№216.012.5c2e

Способ получения заготовок с мелкозернистой структурой при прокатке

Способ получения заготовок с мелкозернистой структурой при прокатке включает деформацию заготовки вне основных валков в промежутке между смежными клетями продольной прокатки, при котором создают деформацию, обеспечивающую растяжение, сжатие и сдвиг слоев заготовки, для чего проводят непрерывное...
Тип: Изобретение
Номер охранного документа: 0002489219
Дата охранного документа: 10.08.2013
10.11.2013
№216.012.7cc2

Способ получения высокочистой вакуумноплотной фольги из бериллия

Изобретение направлено на получение высокочистой вакуумноплотной фольги с мелкокристаллической структурой из нанокристаллического бериллия, а также увеличение выхода годного. Способ получения высокочистой вакуумноплотной фольги из бериллия включает заключение заготовки в чехол из стали 20, его...
Тип: Изобретение
Номер охранного документа: 0002497611
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.804a

Цифровое устройство формирования спектрально-эффективных сигналов

Изобретение относится к радиотехнике. Технический результат - увеличение быстродействия при формировании спектрально-эффективных сигналов, а также повышение степени защиты передаваемой информации. Указанный технический результат достигается тем, что цифровое устройство формирования...
Тип: Изобретение
Номер охранного документа: 0002498515
Дата охранного документа: 10.11.2013
27.11.2013
№216.012.84b2

Способ раскатки фланцев трубчатых заготовок

Изобретение относится к раскатке фланцев трубчатых заготовок. Осуществляют ротационную высадку части заготовки валком, расположенным под углом 25°<β<30° к оси заготовки, с формированием на деформируемой части заготовки усеченного конуса. Деформируют участок усеченного конуса, прилегающий к его...
Тип: Изобретение
Номер охранного документа: 0002499648
Дата охранного документа: 27.11.2013
20.07.2014
№216.012.df2c

Способ получения нанокристаллических композиционных катодных материалов lifemsio/c

Изобретение относится к области электротехники, а именно к технологии получения нанокристаллических катодных материалов, применяемых в литий-ионных аккумуляторных батареях. Для получения нанокристаллических композиционных катодных материалов LiFeMSiO/C в качестве исходных компонентов выбирают...
Тип: Изобретение
Номер охранного документа: 0002522918
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df41

Способ получения нанокристаллических композиционных катодных материалов lifemsio/c

Изобретение относится к технологии получения нанокристаллических катодных материалов, применяемых в литий-ионных аккумуляторах, используемых в автомобилестроении, машиностроении, энергетике, аэрокосмической и морской технике. Способ получения нанокристаллических композиционных катодных...
Тип: Изобретение
Номер охранного документа: 0002522939
Дата охранного документа: 20.07.2014
Показаны записи 1-10 из 12.
20.01.2013
№216.012.1ccc

Порошковый износостойкий материал и способ его изготовления

Изобретение относится к порошковой металлургии, в частности к получению износостойких материалов. Может использоваться в машиностроении для защиты деталей машин от изнашивания. Порошковый износостойкий сплав содержит износостойкий компонент в виде порошка отходов твердых сплавов и пластичную...
Тип: Изобретение
Номер охранного документа: 0002472866
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1dd2

Способ параметрического трехмерного моделирования оборудования и сооружений гидроэнергетических объектов

Изобретение относится к области автоматизированного моделирования гидроэнергетических объектов (ГЭО) и способам трехмерного моделирования. Техническим результатом является снижение временных ресурсов, затрачиваемых на моделирование ГЭО. Способ трехмерного параметрического моделирования...
Тип: Изобретение
Номер охранного документа: 0002473128
Дата охранного документа: 20.01.2013
27.03.2013
№216.012.3183

Способ измерения частоты сигнала

Изобретение относится к измерительной технике и может быть использовано в спектрометрии. Способ измерения частоты сигнала предполагает прием сигнала с последующим аналого-цифровым преобразованием, выполнение быстрого преобразования Фурье, преобразование числового массива во временной области в...
Тип: Изобретение
Номер охранного документа: 0002478213
Дата охранного документа: 27.03.2013
10.06.2013
№216.012.489e

Способ получения высокоазотистой аустенитной порошковой стали с нанокристаллической структурой

Изобретение относится к порошковой металлургии, в частности к получению высокоазотистой аустенитной порошковой стали с нанокристаллической структурой. Смесь из порошков хрома, никеля, марганца и железа помещают в металлический проточный реактор высоконапряженной вибромельницы, снабженный...
Тип: Изобретение
Номер охранного документа: 0002484170
Дата охранного документа: 10.06.2013
10.08.2013
№216.012.5c2e

Способ получения заготовок с мелкозернистой структурой при прокатке

Способ получения заготовок с мелкозернистой структурой при прокатке включает деформацию заготовки вне основных валков в промежутке между смежными клетями продольной прокатки, при котором создают деформацию, обеспечивающую растяжение, сжатие и сдвиг слоев заготовки, для чего проводят непрерывное...
Тип: Изобретение
Номер охранного документа: 0002489219
Дата охранного документа: 10.08.2013
10.11.2013
№216.012.7cc2

Способ получения высокочистой вакуумноплотной фольги из бериллия

Изобретение направлено на получение высокочистой вакуумноплотной фольги с мелкокристаллической структурой из нанокристаллического бериллия, а также увеличение выхода годного. Способ получения высокочистой вакуумноплотной фольги из бериллия включает заключение заготовки в чехол из стали 20, его...
Тип: Изобретение
Номер охранного документа: 0002497611
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.804a

Цифровое устройство формирования спектрально-эффективных сигналов

Изобретение относится к радиотехнике. Технический результат - увеличение быстродействия при формировании спектрально-эффективных сигналов, а также повышение степени защиты передаваемой информации. Указанный технический результат достигается тем, что цифровое устройство формирования...
Тип: Изобретение
Номер охранного документа: 0002498515
Дата охранного документа: 10.11.2013
27.11.2013
№216.012.84b2

Способ раскатки фланцев трубчатых заготовок

Изобретение относится к раскатке фланцев трубчатых заготовок. Осуществляют ротационную высадку части заготовки валком, расположенным под углом 25°<β<30° к оси заготовки, с формированием на деформируемой части заготовки усеченного конуса. Деформируют участок усеченного конуса, прилегающий к его...
Тип: Изобретение
Номер охранного документа: 0002499648
Дата охранного документа: 27.11.2013
20.07.2014
№216.012.df2c

Способ получения нанокристаллических композиционных катодных материалов lifemsio/c

Изобретение относится к области электротехники, а именно к технологии получения нанокристаллических катодных материалов, применяемых в литий-ионных аккумуляторных батареях. Для получения нанокристаллических композиционных катодных материалов LiFeMSiO/C в качестве исходных компонентов выбирают...
Тип: Изобретение
Номер охранного документа: 0002522918
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df41

Способ получения нанокристаллических композиционных катодных материалов lifemsio/c

Изобретение относится к технологии получения нанокристаллических катодных материалов, применяемых в литий-ионных аккумуляторах, используемых в автомобилестроении, машиностроении, энергетике, аэрокосмической и морской технике. Способ получения нанокристаллических композиционных катодных...
Тип: Изобретение
Номер охранного документа: 0002522939
Дата охранного документа: 20.07.2014
+ добавить свой РИД