×
10.07.2014
216.012.da88

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТА

Вид РИД

Изобретение

№ охранного документа
0002521722
Дата охранного документа
10.07.2014
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических параметров объектов, таких как геометрические размеры изделий, расстояние до какого-либо объекта, уровень веществ в емкостях, физические свойства жидкостей и газов, находящихся в емкостях и перемещаемых по трубопроводам и т.п. Устройство состоит из датчика в виде резонатора, электронного блока для возбуждения электромагнитных колебаний в резонаторе и измерения его резонансной частотыи циркулятора с числом плеч 3 и более. К плечам циркулятора подсоединены соответствующие чувствительные элементы, в том числе идентичные, выполненные в виде приемопередающих антенн или отрезков волноводов с открытым торцом, направленных в сторону контролируемого объекта. Для измерения физических параметров жидкости чувствительные элементы могут быть выполнены в виде частично погруженных в неё отрезков волноводов. Техническим результатом является повышение чувствительности устройства. 4 ил.
Основные результаты: Устройство для измерения физических параметров объекта, включающих геометрические параметры изделий, уровень веществ в емкостях, расстояние до объекта, физические свойства вещества, содержащее датчик в виде резонатора, имеющего циркулятор, к одному из плеч которого подсоединен чувствительный элемент, и электронный блок для возбуждения электромагнитных колебаний в резонаторе и измерения его резонансной частоты, отличающееся тем, что циркулятор выполнен k-плечим, где k равно 3, 4, …, и к каждому его плечу подсоединен соответствующий ему чувствительный элемент.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических параметров объектов. К числу таких параметров относятся: геометрические параметры (толщина листов; диаметр труб, стержней и др.) готовых и производимых изделий, уровень веществ в емкостях, физические свойства (плотность, влагосодержание и др.) веществ (жидкостей, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам; расстояние до какого-либо объекта и т.п.

Известно устройство для определения физических параметров объектов (монография: Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз. 1963. С.125-128). Оно содержит датчик, представляющий собой волновод, у которого чувствительным элементом является одна из торцевых областей. В зависимости от геометрических или (и) электрофизических параметров контролируемого объекта тот или иной информативный параметр датчика, в частности, как в данном техническом решении, собственная (резонансная) частота его электромагнитных колебаний принимает соответствующую величину. Недостатком такого устройства является его невысокая чувствительность, что вызывает затруднения при проведении прецизионных измерений.

Известно также техническое решение (SU 1741033, 15.06.1992), которое содержит описание устройства, по технической сущности наиболее близкого к предлагаемому устройству и принятого в качестве прототипа. Это устройство-прототип содержит датчик в виде радиоволнового резонатора, содержащего в своей конструкции трехплечий циркулятор. Одно из его боковых плеч содержит чувствительный элемент, воспринимающий полезную информацию. В зависимости от типа чувствительного элемента можно осуществлять контактные или бесконтактные измерения. Два других плеча циркулятора подсоединены к частях волноводного резонатора.

Недостатком данного устройства является его невысокая чувствительность. Она обусловлена тем, что лишь малая часть длины такого резонатора служит для получения полезной информации о физических параметрах объекта. Лишь в этой части имеет место изменение характеристик распространения электромагнитных волн под влиянием контролируемого объекта.

Техническим результатом изобретения является повышение чувствительности устройства.

Технический результат достигается тем, что предлагаемое устройство для измерения физических параметров объекта, включающих геометрические параметры изделий, уровень веществ в емкостях, расстояние до объекта, физические свойств вещества, содержащее датчик в виде резонатора, имеющего циркулятор, к одному из плеч которого подсоединен чувствительный элемент, и электронный блок для возбуждения электромагнитных колебаний в резонаторе и измерения его резонансной частоты, при этом циркулятор выполнен k-плечим, где k равно 3,4,…, и к каждому его плечу подсоединен соответствующий ему чувствительный элемент.

Предлагаемое устройство поясняется чертежами. На фиг.1 изображена обобщенная схема устройства. На фиг.2 - схема устройства для бесконтактного измерения расстояния до объекта. На фиг.3 показана схема устройства для бесконтактного измерения физических параметров листового материала. На фиг.4 - схема устройства для контактного измерения уровня жидкости в емкости или физических свойств жидкости.

Здесь введены обозначения: 1 - контролируемый объект, 2а, 2б, …, 2к - чувствительные элементы, 3 - циркулятор, 4 - генератор электромагнитных колебаний, 5 - приемное устройство.

В данном устройстве совокупность чувствительных элементов 2а, 2б, …, 2к и k-плечевого циркулятора 3 (k=3,4,…) образует конструкцию датчика. Каждый из k чувствительных элементов 2а, 2б, …, 2к взаимодействует с контролируемым объектом. К датчику в каких-либо точках его конструкции подсоединены генератор электромагнитных колебаний 1 и приемное устройство 5. В зависимости от электрофизических и (или) геометрических параметров контролируемого объекта изменяется тот или иной информативный параметр резонаторного датчика.

Устройство работает следующим образом. С помощью чувствительных элементов 2а, 2б, …, 2к осуществляют зондирование контролируемого объекта 1. Под влиянием измеряемого физического параметра объекта имеет место изменение информативного параметра этих чувствительных элементов одновременно. Колебательные характеристики резонатора, образованного совокупностью данных чувствительных элементов 2а, 2б, …, 2к и k-плечевого циркулятора 3 (k=3,4,…), являются функциями измеряемого параметра. К числу этих колебательных характеристик резонатора относятся: его собственная (резонансная) частота электромагнитных колебаний, число типов колебаний, возбуждаемых в фиксированном диапазоне частот, и др.

Циркулятор 3, являющийся в данном устройстве k-плечим циркулятором (k=3,4,…), есть невзаимное устройство. Специфические особенности таких ферритовых невзаимных устройств освещены в литературе (монографии: 1) Абрамов В.П., Дмитриев В.А., Шелухин С.А. Невзаимные устройства на ферритовых резонаторах. М., Радио и связь. 1989. 200 с.; 2) Милованов О.С., Собенин Н.П. Техника сверхвысоких частот. М., Атомиздат. 1980. 464 с. С.223-227).

При этом, в отличие от устройства-прототипа, в условие резонанса (баланса фаз) входит многократно (в k раз, где k=3,4,…) увеличенное значение фазового сдвига, обусловленного полезным одновременным взаимодействием всех чувствительных элементов с контролируемым объектом 1. Следствием этого является повышение чувствительности к измеряемому параметру в соответствующее число раз. Упомянутое условие резонанса в общем случае имеет следующий вид:

где L - общая длина волноводного тракта вне области зондирования, βn=2πfnф - фазовая постоянная, fn - собственная частота электромагнитных колебаний n-ого типа резонатора, x - величина измеряемого прараметра, Δφ - фазовый сдвиг, обусловленный взаимодействием каждого чувствительного элемента с контролируемым объектом, k - число чувствительных элементов, νф - фазовая скорость электромагнитной волны в резонаторе, которую, не нарушая общности, считаем одинаковой во всех элементах волноводного тракта. Здесь также, не нарушая общности результатов, считаются все чувствительные элементы идентичными, обеспечивая их одинаковое взаимодействие с контролируемым объектом 1.

Из (1) находим

и, следовательно, чувствительность S данного резонаторного датчика есть

где - чувствительность датчика с одним рабочим торцом резонатора. Соотношение (3) показывает, что значение чувствительности S в k раз превышает ее значение S0 при k=1.

Из данного соотношения вытекают другие формулы, описывающие зависимость информативных параметров от измеряемого параметра для каждого конкретного случая.

На фиг.2, 3 и 4 приведены конкретные примеры применения данного устройства.

На фиг.2 - схема устройства, предназначенного для бесконтактного измерения расстояния до контролируемого объекта 1 - поверхности материала. Здесь в качестве чувствительных элементов 2а, 2б, …, 2к используют приемо-передающие антенны, направленные в сторону данной поверхности. Эти антенны подключены к соответствующим плечам циркулятора 3.

В зависимости от величины расстояния антенн до данной поверхности изменяются колебательные характеристики резонатора, в частности, число N типов колебаний (резонансов) при девиации частоты f генератора (4 на фиг.1) в фиксированных пределах [f1, f2].

Условие резонанса (1) принимает в данном случае следующий вид (дисперсию в волноводе не учитываем, что не влияет существенно на рассмотрение вопросов, связанных с оценкой чувствительности датчика):

где β=2πfn/c, L - длина волновода, x - расстояние от антенн до контролируемой поверхности, c - скорость света (в общем случае это есть фазовая скорость νф волны в свободном пространстве).

Из соотношения (4) находим

При девиации частоты f генератора 7, подключенного к элементу связи 5, в фиксированных пределах file:///fif2~/-, число N возбуждаемых типов колебаний (резонансных импульсов) есть

где

Число возбуждаемых резонансных импульсов служит здесь в качестве информативного параметра. Чувствительность S выражается при этом формулой:

Для резонатора с измерительным волноводом той же длины, но с одной "рабочей" антенной (другой торец волновода короткозамкнут) формулы, аналогичные формулам (6) и (7), имеют вид:

Отсюда видно, что чувствительность S датчика с k "рабочими" антеннами в k раз выше чувствительности S0 аналогичного датчика, имеющего одну "рабочую" антенну. Информативным параметром может являться величина , соответствующая переменной составляющей в сумме (6) и не зависящая от параметров измерительного волновода.

Таким образом, применение бесконтактных датчиков с двумя торцевыми зондами (антеннами) обеспечивает проведение дистанционных дискретных отсчетов расстояния (уровня вещества) с повышенной чувствительностью. Точность измерений возрастает с уменьшением длины зондирующей волны. Выходная характеристика датчика N(x) является функцией расстояния до контролируемой поверхности.

Погрешность ΔN счета числа N резонансных импульсов определяет величину погрешности Δx определения расстояния

в то время как в случае аналогичного датчика с одной "рабочей" антенной

т.е. в k раз больше.

В соответствии с (10) в диапазоне частот, например, от f1=5 ГГц до f2=10 ГГц при k=3 абсолютная погрешность измерений, обусловленная ошибкой ΔN в счете числа резонансных импульсов на единицу (ΔN=1), составляет величину Δx=5 мм. Например, в диапазоне измерения 0÷1000 мм это соответствует относительной погрешности δ=0,5%. При f1=9 ГГц, f2=11 ГГц и ΔN=1 будем иметь: Δx=1,25 см, чему в диапазоне измерения 0÷1000 мм соответствует величина δ=1,25%, а в диапазоне 0÷10000 мм - величина δ=0,125%.

Следовательно, рассматриваемые дискретные измерения расстояния (уровня) являются высокоточными и характеризуются малым постоянным шагом дискретности, определяемым величиной девиации [f1, f2] частоты.

Отметим, что учет частотной дисперсии в измерительном волноводе не вносит принципиальных изменений в полученные результаты (имеют место количественные изменения, существенно не изменяющие порядок полученных оценок).

На фиг.3 - схема устройства для измерения малых расстояний, параметров листовых материалов, в том числе диэлектрических и металлических листов (в последнем случае требуется наличие двух аналогичных рассматриваемых резонаторов, установленных с обеих сторон металлического листа; на фигурах это не показано). Здесь интересующими параметрами часто являются толщина листа, его влагосодержание (в случае диэлектриков) и др. Для проведения измерений каждый из чувствительных элементов 2а, 2б, …, 2к выполнен в виде отрезка волновода, один торец которого подсоединен к соответствующему плечу k-плечевого циркулятора 3, а другой открыт и направлен в сторону контролируемого листа. При этом изменяется электрическая длина каждого участка длины резонатора, содержащего чувствительный элемент и, как результат, его используемый информативный параметр в зависимости от измеряемого физического параметра листа. В частности, информативным параметром может служить резонансная частота fn электромагнитных колебаний данного резонатора.

Для схемы на рис.3 условие резонанса может быть записано следующим образом:

Здесь x - измеряемое расстояние, L0 - общая длина волноводного тракта вне области зондирования; βn=2πfnф - фазовая постоянная, fn - резонансная (собственная) частота n-ого типа электромагнитных колебаний резонатора; νф - фазовая скорость электромагнитных волн в резонаторе; βn=2πfn/c; c - скорость света; k=1,2,… - число зондирований.

При бесконтактном измерении малых расстояний (x<<L0) фазовую скорость νф электромагнитных волн в резонаторе считаем, не нарушая общности рассмотрения, равной скорости с волн на участке длиной x, т.е. в пространстве между волноводом и контролируемой поверхностью.

С учетом этого из соотношения (12) следует

Чувствительность Sk=dfn/dx к измеряемому расстоянию x, как следует из (13), есть

где x<<L. Отсюда видно, что чувствительность прямо пропорциональна числу k зондирований поверхности листового материала. Отметим, что диапазон однозначности измерений снижен в k раз по сравнению с тем случаем, когда k=1.

Приведем оценки, характеризующие увеличение чувствительности. Для этого рассмотрим соотношения (12) и (13). При L0=0,1 м, k=4, n=6 (это соответствует, в частности, колебаниям типа H016), c=3·108 м/с из формулы (13) следует f6≈9 ГГц. Здесь учтено, что x<<L0, например, x≈0,02. Если Δx=0,001 м, то, как следует из (13), этому изменению расстояния (зазора) соответствует изменение собственной частоты, равное Δf=36 МГц; если же k=1, то Δf=9 МГц, т.е. только выбором числа k зондирований при прочих равных условиях можно многократно (в данном примере в четыре раза) увеличить чувствительность, а, значит, и точность измерений малого расстояния x.

При контактном измерении (фиг.3) физических свойств объекта 1, в частности листового диэлектрического материала, фазовая скорость νф электромагнитных волн в резонаторе не равна скорости света с, а является функцией электрофизических свойств контролируемого объекта 1. Так, если этот объект является диэлектриком с диэлектрической проницаемостью ε, то В этом случае условие резонанса может быть записано следующим образом:

Здесь d - фиксированное расстояние (толщина листа), проходимое электромагнитной волной в диэлектрике в одном (прямом или обратном) направлении, отражаясь от противоположной стороны диэлектрического листа. Этот лист может быть расположен на металлическом основании. Из (15) находим

Отсюда следует, что, измеряя fn, возможно определить значение как ε, так и d, если одна из этих величин известна.

Измеряя ε, можно определить теоретически или (и) экспериментально функционально связанные с ней физические свойства: влагосодержание W(ε), плотность ρ(ε) и др. (монографии: 1) Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1980. 280 с; 2) Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат. 1989. 208 с.).

Устройство на фиг.4 предназначено для измерения физических параметров жидкостей, в частности, уровня жидкости в какой-либо емкости, физических свойств (влагосодержания, плотности и др.). Здесь в качестве чувствительных элементов 2а, 2б, …, 2к используют волноводы, частично погружаемые в контролируемую жидкость. Она заполняет (частично) каждый волновод по его длине. В качестве информативного параметра здесь целесообразно использовать резонансную частоту электромагнитных колебаний данного резонатора; также возможно применять упомянутое выше число типов колебаний, возбуждаемых в фиксированном диапазоне частот. Выбор конкретного информативного параметра диктуется спецификой решаемой задачи, электрофизическими свойствами контролируемой жидкости. Для регистрации информативного параметра предназначено приемное устройство на фиг.1.

При измерении уровня жидкости путем приема электромагнитных волн, отраженных от поверхности жидкости, в зависимости от уровня жидкости изменяются колебательные характеристики резонатора, в частности число N типов колебаний (резонансов) при девиации частоты f генератора (4 на фиг.1) в фиксированных пределах [f1, f2]. В данном случае соотношение для зависимости N от уровня x жидкости, отсчитываемого от верхних торцов волноводов, описывается соотношениями, аналогичными соотношениям (4)÷(11) для схемы на фиг.2.

Данные варианты применения данного устройства следует рассматривать лишь как примеры. Иные задачи требуют выполнения пригодных для их решения различных типов и форм чувствительных элементов, что не меняет сущности данного технического решения.

Таким образом, данное устройство позволяет производить измерения с высокой чувствительностью. Выбор конструктивных параметров датчика данного устройства определяется спецификой той или иной решаемой задачи. Область применения устройства охватывает различные задачи, в которых требуется определять бесконтактным или контактным путем физические свойства веществ, материалов и изделий, их геометрические и иные параметры, расстояния до различных объектов.

Устройство для измерения физических параметров объекта, включающих геометрические параметры изделий, уровень веществ в емкостях, расстояние до объекта, физические свойства вещества, содержащее датчик в виде резонатора, имеющего циркулятор, к одному из плеч которого подсоединен чувствительный элемент, и электронный блок для возбуждения электромагнитных колебаний в резонаторе и измерения его резонансной частоты, отличающееся тем, что циркулятор выполнен k-плечим, где k равно 3, 4, …, и к каждому его плечу подсоединен соответствующий ему чувствительный элемент.
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТА
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТА
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТА
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТА
Источник поступления информации: Роспатент

Показаны записи 231-240 из 304.
10.08.2018
№218.016.7af9

Устройство для ударного воздействия на призабойную зону

Изобретение относится к средствам генерирования сейсмической энергии, например упругих колебаний в нефтеносных пластах, в частности к средствам ударного воздействия на призабойную зону скважин и нефтенасыщенные пласты при добыче углеводородов, например нефти. Устройство для ударного воздействия...
Тип: Изобретение
Номер охранного документа: 0002663766
Дата охранного документа: 09.08.2018
10.08.2018
№218.016.7b22

Способ ударного воздействия на призабойную зону

Изобретение относится к средствам генерирования сейсмической энергии, например упругих колебаний в нефтеносных пластах, в частности к средствам ударного воздействия на призабойную зону скважин и нефтенасыщенные пласты при добыче углеводородов. Способ ударного воздействия на призабойную зону...
Тип: Изобретение
Номер охранного документа: 0002663770
Дата охранного документа: 09.08.2018
29.08.2018
№218.016.8148

Устройство для идентификации уровней междисциплинарного синтеза исследований

Изобретение относится к вычислительной технике и может быть использовано для идентификации уровней междисциплинарного синтеза исследований, проводимых в рамках научного проекта. Техническим результатом является повышение воспроизводимости и точности определения уровней междисциплинарного...
Тип: Изобретение
Номер охранного документа: 0002665278
Дата охранного документа: 28.08.2018
25.09.2018
№218.016.8aef

Модульный автономный необитаемый подводный аппарат

Изобретение относится к области подводной морской техники, в частности к автономным необитаемым подводным аппаратам (АНПА), и может быть применено в разного рода подводных исследованиях. Предложен модульный АНПА, содержащий металлический корпус с размещенными в нем герметичными модулями,...
Тип: Изобретение
Номер охранного документа: 0002667674
Дата охранного документа: 24.09.2018
11.10.2018
№218.016.9087

Доплеровский измеритель путевой скорости

Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения. Указанный результат достигается тем, что доплеровский...
Тип: Изобретение
Номер охранного документа: 0002669016
Дата охранного документа: 05.10.2018
19.10.2018
№218.016.934b

Устройство для полива плантаций растений в закрытых помещениях

Изобретение относится к области полива растений в закрытом грунте и может быть использовано для полива комнатных растений. Устройство для полива плантаций растений в закрытых помещениях содержит горшок с землей и посаженным в нее растением, накопительно-расходную емкость, подводящую трубку и...
Тип: Изобретение
Номер охранного документа: 0002670067
Дата охранного документа: 17.10.2018
23.10.2018
№218.016.9526

Устройство для определения количества бурового раствора в емкости

Изобретение относится к области метрологии, в частности к устройствам для определения количества бурового раствора в емкости. Устройство содержит источник электромагнитных колебаний, детектор, усилитель, передающий и приемный отрезки прямоугольного волновода, диэлектрический волновод,...
Тип: Изобретение
Номер охранного документа: 0002670367
Дата охранного документа: 22.10.2018
23.10.2018
№218.016.9537

Устройство для измерения температуры

Устройство для измерения температуры относится к области информационно-измерительной техники. Заявлено устройство для измерения температуры, содержащее чувствительный элемент в виде термопары и усилитель, введены микроволновый генератор с варакторной перестройкой частоты, источник постоянного...
Тип: Изобретение
Номер охранного документа: 0002670355
Дата охранного документа: 22.10.2018
26.10.2018
№218.016.965a

Устройство для измерения угла поворота дроссельной заслонки

Изобретение относится к метрологии, в частности к устройствам для измерения угла поворота дроссельной заслонки. Устройство содержит генератор электромагнитных колебаний, соединенный первым плечом с источником питания, и измеритель, волноводный циркулятор, отрезок прямоугольного волновода,...
Тип: Изобретение
Номер охранного документа: 0002670701
Дата охранного документа: 24.10.2018
26.10.2018
№218.016.965f

Способ кратковременного спектрального анализа квазистационарных сигналов

Изобретение относится к измерительной технике и предназначено для определения частот и амплитуд многокомпонентных нестационарных сигналов. Заявлен способ кратковременного спектрального анализа, в котором ошибки, возникающие из-за перекрытия характеристик полосовых фильтров (ПФ) при...
Тип: Изобретение
Номер охранного документа: 0002670702
Дата охранного документа: 24.10.2018
Показаны записи 221-228 из 228.
21.11.2019
№219.017.e432

Способ измерения положения границы раздела двух веществ в резервуаре

Изобретение может быть использовано для измерения положения границы раздела двух веществ, находящихся в резервуаре одно над другим и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от электрофизических параметров обоих веществ....
Тип: Изобретение
Номер охранного документа: 0002706455
Дата охранного документа: 19.11.2019
20.04.2023
№223.018.4bcd

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств Устройство для измерения физических свойств жидкости содержит волноводный резонатор в виде отрезка коаксиальной длинной линии с двумя, рабочим и эталонным,...
Тип: Изобретение
Номер охранного документа: 0002760641
Дата охранного документа: 29.11.2021
20.04.2023
№223.018.4c18

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб. Техническим результатом изобретения является упрощение процесса измерения. Технический результат достигается тем, что в способе измерения длины металлической трубы, при...
Тип: Изобретение
Номер охранного документа: 0002765897
Дата охранного документа: 04.02.2022
15.05.2023
№223.018.57ec

Способ измерения физических свойств диэлектрической жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002767585
Дата охранного документа: 17.03.2022
15.05.2023
№223.018.57ee

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике, в частности к устройствам для бесконтактного измерения внутреннего диаметра металлических труб. Техническим результатом является расширение функциональных возможностей устройства. Технический результат достигается тем, что устройство, содержащее...
Тип: Изобретение
Номер охранного документа: 0002767586
Дата охранного документа: 17.03.2022
21.05.2023
№223.018.6913

Устройство для измерения уровня диэлектрической жидкости в емкости

Изобретение относится к измерительной технике и служит для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. Технический результат - повышение точности измерений. Результат достигается тем, что в устройстве для измерения уровня диэлектрической жидкости...
Тип: Изобретение
Номер охранного документа: 0002794447
Дата охранного документа: 18.04.2023
29.05.2023
№223.018.7271

Способ определения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Технический результат – повышение точности определения длины...
Тип: Изобретение
Номер охранного документа: 0002796388
Дата охранного документа: 22.05.2023
05.06.2023
№223.018.76c3

Способ измерения физической величины

Изобретение относится к области электротехники, а именно к волноводному резонатору для измерения диэлектрической проницаемости жидкости. Повышение точности измерений является техническим результатом, который достигается за счет того, что предварительно определяют номинальное значение...
Тип: Изобретение
Номер охранного документа: 0002786526
Дата охранного документа: 21.12.2022
+ добавить свой РИД