×
27.06.2014
216.012.d774

Результат интеллектуальной деятельности: ЖАРОПРОЧНЫЙ НИКЕЛЕВЫЙ СПЛАВ, ОБЛАДАЮЩИЙ ВЫСОКИМ СОПРОТИВЛЕНИЕМ К СУЛЬФИДНОЙ КОРРОЗИИ В СОЧЕТАНИИ С ВЫСОКОЙ ЖАРОПРОЧНОСТЬЮ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к никелевым сплавам, и может быть использовано при производстве сопловых и рабочих охлаждаемых лопаток газотурбинных двигателей и установок. Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью, содержит, мас.%: хром 9-16, кобальт 10-16, вольфрам 4-9, молибден 0,2-3,0, алюминий 1,8-4,5, титан 2,0-4,5, тантал 2,5-7,0, ниобий 0,01-1,5, бор 0,01-0,5, лантан 0,01-0,5, иттрий 0,01-0,2, церий 0,01-0,2, рений 0,5-5,0, гафний 0,1-1,0, марганец 0,05-1,0, кремний 0,05-1,0, магний 0,01-0,2, никель - остальное. Сплав обладает высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью. 1 табл.
Основные результаты: Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью, содержащий хром, кобальт, вольфрам, молибден, алюминий, титан, тантал, бор, иттрий, рений, отличающийся тем, что он дополнительно содержит ниобий, лантан, церий, гафний, марганец, кремний и магний при следующем соотношении компонентов, мас.%:

Изобретение относится к области металлургии и может быть использовано при производстве сопловых и рабочих охлаждаемых лопаток газотурбинных двигателей и установок.

Сплавы, имеющие никелевую матрицу с гранецентрированной кристаллической структурой, обладают высокой жаропрочностью вследствие наличия большого количества (до 70 объемных процентов) упрочняющей γ′ - фазы, которая образуется в процессе дисперсионного распада γ-твердого раствора при охлаждении сплава. Особенностью образования структуры, обеспечивающей высокую длительную прочность при температуре до (1000-1100)°C и выше, является близкий тип решетки γ и γ′ фаз, практически совпадающие размеры их кристаллических решеток, наличие когерентной связи на межфазных границах и высокая температурная устойчивость упрочняющей γ′-фазы. Указанные факторы определяют повышенную термодинамическую и структурную стабильность этих материалов, что, в свою очередь, обеспечивает их длительную работоспособность при рабочих температурах.

Вместе с тем детали авиационных ГТД и морских ГТУ, изготовленные из этих сплавов, работают в значительно отличающихся друг от друга условиях. В частности, в авиационных ГТД используется топливо высокой степени очистки, практически не содержащее вредных примесей. Основная работа авиационных двигателей приходится на большие высоты, где атмосфера практически не загрязнена. Поэтому основной причиной снижения работоспособности материала лопаток в этих условиях является высокотемпературная коррозия, протекающая со сравнительно невысокой скоростью.

Принципиально в других условиях работают лопатки морских ГТУ. В этом случае высокотемпературный воздушный поток, обтекающий поверхность пера лопатки, насыщен парами морской соли, содержащей большое количество соединений серы, натрия, хлора и других активных элементов, вызывающих появление и эффективное развитие сульфидной коррозии, которая на несколько порядков выше по сравнению с горячей коррозией на поверхности лопаток авиационных ГТД. Поэтому сплавы, предназначенные для морских ГТУ, значительно отличаются по уровню и характеру легирования от сплавов для авиационных ГТД прежде всего наличием высокой концентрации хрома, активно подавляющего сульфидную коррозию. Следует, однако, иметь ввиду, что дальнейшее повышение жаропрочности никелевых жаропрочных сплавов может быть обеспечено путем их легирования элементами, имеющими низкую диффузионную подвижность и высокую температуру плавления, в первую очередь W, Mo, Re и другие элементы. Однако в присутствии высокого содержания хрома эти элементы образуют пластинчатые топологически плотноупакованные фазы (ТПУ-фазы), резко снижающие работоспособность сплавов. Именно поэтому жаропрочные свойства сплавов для авиационных ГТД являются значительно более высокими по сравнению со свойствами сплавов для морских ГТУ, однако их стойкость к сульфидной коррозии на один - два порядка ниже.

Таким образом, создание сплавов, имеющих повышенную стойкость к сульфидной коррозии и при этом уровень жаропрочности, соответствующий сплавам для авиационных ГТД, представляет собой сложную многопараметрическую задачу, учитывающую комплекс термодинамических, структурных, физико-химических и прочностных факторов, и на этой основе обеспечивающую оптимальные составы новых сплавов.

Известен литейный жаропрочный сплав на основе никеля CMSX-11B (патент US 5489346, C22C 19/05; дата публикации 06.02.1996) при следующем соотношении компонентов, %:

Хром Cr 12,5
Кобальт Co 7
Молибден Mo 0,5
Вольфрам W 5
Тантал Ta 5
Ниобий Nb 0,1
Алюминий Al 3,6
Титан Ti 4,2
Гафний Hf 0,04
Никель Ni Остальное

Наиболее близким по технической сущности и достигаемому результату к заявленному жаропрочному никелевому сплаву является жаропрочный сплав на основе никеля (Патент РФ 2215804 C2; дата публикации 20.06.2003; МПК C22C 19/05), при следующем соотношении компонентов, %:

Хром Cr 12,5-14,5
Кобальт Co 8,0-10,0
Молибден Mo 0,8-2,2
Вольфрам W 3,5-5,5
Тантал Ta 0,5-2,5
Иттрий Y 0,005-0,05
Алюминий Al 3,5-4,8
Бор B 0,001-0,02
Титан Ti 3.4-4.3
Рений Re 0,8-2,0
Углерод C 0,005-0,07
Никель Ni Остальное

Описанные сплавы обладают недостаточным уровнем свойств для использования в перспективных газотурбинных установках, в том числе эксплуатируемых в условиях воздействия морской среды, а именно высоким показателем жаропрочности и стойкости к сульфидной коррозии. Достигнутый уровень свойств в указанных сплавах не позволяет обеспечить требования по ресурсу и надежности, предъявляемые к новым перспективным ГТУ. Кроме того, описанные сплавы не могут быть использованы в конструкциях авиационных ГТД и двигателей экранопланов, требования к материалам которых по жаропрочности значительно выше, чем у материалов ГТУ.

Техническим результатом, на достижение которого направлено изобретение, является разработка жаропрочного никелевого сплава, обладающего высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью, что обеспечивает применение этого сплава в перспективных газотурбинных установках, в том числе эксплуатируемых в условиях воздействия морской солевой среды, а также в конструкциях авиационных ГТД и двигателей экранопланов.

Указанный технический результат достигается тем, что жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью, содержащий хром, кобальт, вольфрам, молибден, алюминий, титан, тантал, бор, иттрий, рений, отличается тем, что дополнительно содержит ниобий, лантан, церий, гафний, марганец, кремний, магний при следующем соотношении компонентов, мас.%:

Хром Cr 9-16
Кобальт Co 10-16
Вольфрам W 4-9
Молибден Mo 0,2-3,0
Алюминий Al 1,8-4,5
Титан Ti 2,0-4,5
Тантал Ta 2,5-7,0
Ниобий Nb 0,01-1,5
Бор B 0,01-0,5
Лантан La 0,01-0,5
Иттрий Y 0,01-0,2
Церий Ce 0,01-0,2
Рений Re 0,5-5,0
Гафний Hf 0,1-1,0
Марганец Mn 0,05-1,0
Кремний Si 0,05-1,0
Магний Mg 0,01-0,2
Никель Ni Остальное

Повышение жаропрочности никелевого сплава обеспечивается наибольшим содержанием тугоплавких элементов, таких как вольфрам, тантал и рений в сравнении с аналогами. Углерод, снижающий ликвидус и солидус сплава, в состав предлагаемого сплава не вводится. Повышенная стойкость к сульфидной коррозии достигается высоким содержанием хрома и оптимальным соотношением основных элементов, влияющих на коррозионную стойкость. Соотношение не превышает 0,2 (Гецов Л.Б. Материалы и прочность деталей газовых турбин, книга 1, Рыбинск - 2010, с.470-471).

Также дополнительное положительное влияние на сопротивление сульфидной коррозии оказывает введение ниобия, гафния, кремния и оптимального соотношения лантана, церия, иттрия, марганца, бора и магния.

Для подтверждения эффективности предлагаемого жаропрочного никелевого сплава были проведены экспериментальные исследования стойкости к сульфидной коррозии в «Европейской среде» (удельная потеря массы в среде 25% NaCl+75% Na2SO4 при температуре 900°) и жаропрочности (длительная прочность ) с разной концентрацией рения. Результаты испытаний представлены в таблице 1.

Вариант 1. Состав исследуемого сплава, при следующем соотношении компонентов, %:

Хром Cr 9-16
Кобальт Co 10-16
Вольфрам W 4-9
Молибден Mo 0,2-3,0
Алюминий Al 1,8-4,5
Титан Ti 2,0-4,5
Тантал Ta 2,5-7,0
Ниобий Nb 0,1-1,5
Бор B 0,01-0,5
Лантан La 0,01-0,5
Иттрий Y 0,01-0,2
Церий Ce 0,01-0,2
Рений Re 0,5-1,5
Гафний Hf 0,1-1,0
Марганец Mn 0,05-1,0
Кремний Si 0,05-1,0
Магний Mg 0,01-0,2
Никель Ni Остальное

По окончании исследований получены результаты:

- Критерий (отношение концентраций легирующих элементов алюминия, хрома, титана), определяющий коррозионную стойкость сплава, не превышает допустимого значения 0,2;

- сплав с содержанием рения (Re) от 0,5 до 1,5 в расплаве солей 25% NaCl+75% Na2SO4 при температуре 900°C имеет удельную потерю массы за 1 час меньше, чем приведенные аналог и прототип, а именно 0,7-10-4 г/см2;

- длительная прочность при сточасовой выдержке при температуре 1000°C не уступает прототипу и равна 185-196 MПa.

Вариант 2. Состав исследуемого сплава, при следующем соотношении компонентов, %:

Хром Cr 9-16
Кобальт Co 10-16
Вольфрам W 4-9
Молибден Mo 0,2-3,0
Алюминий Al 1,8-4,5
Титан Ti 2,0-4,5
Тантал Ta 2,5-7,0
Ниобий Nb 0,1-1,5
Бор B 0,01-0,5
Лантан La 0,01-0,5
Иттрий Y 0,01-0,2
Церий Ce 0,01-0,2
Рений Re 1,5-3,0
Гафний Hf 0,1-1,0
Марганец Mn 0,05-1,0
Кремний Si 0,05-1,0
Магний Mg 0,01-0,2
Никель Ni Остальное

По окончании исследований получены результаты:

- Критерий также не превышает допустимого значения 0,2;

- сплав с содержанием рения (Re) от 1,5 до 3,0 в расплаве солей 25% NaCl+75% Na2SO4 при температуре 900°C имеет удельную потерю массы за 1 час меньше, чем приведенные аналог и прототип, а именно 0,87·10-4 г/см2;

- длительная сточасовая прочность при температуре 1000°C превышает показатели прототипа и изменяется от 200-212 MПa.

Вариант 3. Состав исследуемого сплава, при следующем соотношении компонентов. %:

Хром Cr 9-16
Кобальт Co 10-16
Вольфрам W 4-9
Молибден Mo 0,2-3,0
Алюминий Al 1,8-4,5
Титан Ti 2,0-4,5
Тантал Ta 2,5-7,0
Ниобий Nb 0,1-1,5
Бор B 0,01-0,5
Лантан La 0,01-0,5
Иттрий Y 0,01-0,2
Церий Ce 0,01-0,2
Рений Re 3,0-5,0
Гафний Hf 0,1-1,0
Марганец Mn 0,05-1,0
Кремний Si 0,05-1,0
Магний Mg 0,01-0,2
Никель Ni Остальное

По окончании исследований получены результаты:

- Критерий не превышает допустимого значения 0.2;

- сплав с содержанием рения (Re) от 3,0 до 5,0 в расплаве солей 25% NaCl+75% Na2SO4 при температуре 900°C имеет удельную потерю массы за 1 час меньше, чем приведенные аналог и прототип, а именно 0,9·10-5 г/см2;

- длительная сточасовая прочность при температуре 1000°C значительно превышает показатели прототипа и равна 230-240 MПa.

В таблице 1 представлены результаты исследований.

Таблица 1
Стойкость к сульфидно-оксидной коррозии Жаропрочность Удельная потеря массы в среде 25% NaCl+75% Na2SO4 при 900°C, г/см2
CMSX-11B(аналог) 0,24 183,7 0,3·10-3 при (850°C)
Патент № 2215804 (прототип) 0,28 190-195 0,2·10-3
Предлагаемый сплав 1 вариант 0,2 185-196 0,7·10-4
2 вариант 0,2 200-212 0,87·10-4
3 вариант 0,2 230-240 0,9·10-5

Анализ полученных результатов позволил установить, что рений является одним из наиболее эффективных легирующих элементов в жаропрочных никелевых сплавах. Положительное влияние рения на жаропрочность никелевых сплавов обусловлено увеличением при его присутствии в сплаве температуры солидуса, повышенными температурами начала и полного растворения γ′-фазы в никелевом γ-твердом растворе и увеличением периода его кристаллической решетки, снижением коэффициента диффузии легирующих элементов.

Предлагаемый сплав превосходит сплав-прототип по характеристикам жаропрочности на величину до 20%, а по сопротивлению к сульфидной коррозии в от 3 до 22 раз в зависимости от варианта сплава.

Таким образом, применение предлагаемого сплава позволит значительно повысить комплекс свойств деталей ГТУ, существенно увеличить ресурс и надежность перспективных изделий. Кроме того, высокие характеристики длительной прочности по сравнению с другими сплавами для ГТУ (на уровне широко применяемого в авиации сплава ЖС32) позволяют использовать его как материал для лопаток турбин ГТД самолетов и вертолетов морской авиации.

Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью, содержащий хром, кобальт, вольфрам, молибден, алюминий, титан, тантал, бор, иттрий, рений, отличающийся тем, что он дополнительно содержит ниобий, лантан, церий, гафний, марганец, кремний и магний при следующем соотношении компонентов, мас.%:
Источник поступления информации: Роспатент

Показаны записи 61-70 из 110.
25.08.2017
№217.015.c63a

Способ рентгеноструктурного контроля деталей газотурбинного двигателя

Использование: для неразрушающего способа рентгеноструктурного контроля и может использоваться для оценки технического состояния ремонтных деталей газотурбинного двигателя (ГТД) из титановых сплавов в лабораторных и заводских условиях. Сущность изобретения заключается в том, что выполняют...
Тип: Изобретение
Номер охранного документа: 0002618602
Дата охранного документа: 04.05.2017
26.08.2017
№217.015.da1d

Способ круговой электрохимической обработки компрессорных лопаток газотурбинного двигателя

Изобретение относится к электрохимической обработке. В способе заготовку лопатки устанавливают в рабочую камеру станка и ведут обработку лопатки двумя электродами-инструментами с подачей напряжения на электроды и лопатку, прокачкой электролита через межэлектродный промежуток и заданием...
Тип: Изобретение
Номер охранного документа: 0002623938
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.da5a

Способ рентгеноструктурного контроля деталей газотурбинного двигателя

Использование: для неразрушающего рентгеноструктурного контроля деталей газотурбинного двигателя. Сущность изобретения заключается в том, что осуществляют снятие рентгенограммы с контролируемой детали на предполагаемой поверхности разрушения от отражающей плоскости (11.0) без фона при...
Тип: Изобретение
Номер охранного документа: 0002623838
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.da82

Способ получения направленной кристаллизацией крупноразмерных отливок из жаропрочных сплавов

Изобретение относится к литейному производству. Нагретый до температуры выше температуры ликвидуса жаропрочный сплав через стояк 2 и коллектор 3 литниковой системы заливают в тонкостенную керамическую форму 1 с затравкой, расположенной в верхней части формы. Форму заполняют снизу вверх до...
Тип: Изобретение
Номер охранного документа: 0002623941
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.dab8

Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии

Изобретение относится к области металлургии и может быть использовано в газотурбинном двигателестроении при производстве рабочих и сопловых охлаждаемых лопаток с монокристаллической структурой. Литейный никелевый сплав содержит, мас. %: хром 9-18, кобальт 7-20, вольфрам 1-8, молибден 0,2-4,0,...
Тип: Изобретение
Номер охранного документа: 0002623940
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.e31a

Литейный жаропрочный сплав на основе никеля

Изобретение относится к области металлургии, в частности к литейным жаропрочным сплавам на никелевой основе, используемым для изготовления высоконагруженных деталей газотурбинных двигателей и установок, а именно рабочих и сопловых лопаток газовых турбин с направленной столбчатой и...
Тип: Изобретение
Номер охранного документа: 0002626118
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e417

Выносная камера сгорания

Изобретение относится к области турбомашиностроения и может быть использовано в конструкциях камер сгорания газотурбинных установок наземного и морского применения. Выносная камера сгорания содержит силовой корпус в виде двух конических стенок, неразъемно соединенных между собой большими...
Тип: Изобретение
Номер охранного документа: 0002626180
Дата охранного документа: 24.07.2017
26.08.2017
№217.015.e5f2

Комбинированная радиальная опора

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками. Комбинированная радиальная опора содержит корпус (1) подшипника, в пазах которого установлены лепестки (2), охватывающие втулку...
Тип: Изобретение
Номер охранного документа: 0002626783
Дата охранного документа: 01.08.2017
20.02.2019
№219.016.bdbb

Компрессор двухконтурного газотурбинного двигателя

Изобретение относится к управлению и регулированию компрессора газотурбинного двигателя. Компрессор двухконтурного газотурбинного двигателя содержит корпус регулируемых направляемых аппаратов (НА), который вместе с силовым промежуточным корпусом образует единый жесткий модуль, привод...
Тип: Изобретение
Номер охранного документа: 0002235914
Дата охранного документа: 10.09.2004
01.03.2019
№219.016.ca62

Газотурбинный двигатель

Двухконтурный газотурбинный двигатель содержит наружный контур 1 и внутренний контур с последовательно размещенными в нем компрессором высокого давления 2, камерой сгорания 3 и охлаждаемой турбиной 4. Воздушная полость 14 камеры сгорания 3 связана посредством многоканального воздуховода 15 с...
Тип: Изобретение
Номер охранного документа: 02236609
Дата охранного документа: 20.09.2004
Показаны записи 61-70 из 78.
07.09.2018
№218.016.847d

Опора ротора турбомашины с консистентной смазкой

Изобретение относится к области двигателестроения, в частности, авиационного применения, а именно к устройствам для смазки подшипников роторной машины, работающих на консистентной смазке. Опора ротора турбомашины с консистентной смазкой содержит полый вал (1), корпус (2), подшипник (3) с...
Тип: Изобретение
Номер охранного документа: 0002666108
Дата охранного документа: 05.09.2018
17.03.2019
№219.016.e275

Газотурбинный двигатель твердого топлива

Газотурбинный двигатель твердого топлива содержит твердотопливный заряд и корпус, образующий газовоздушный тракт двигателя, в котором последовательно размещены компрессор, камера сгорания, турбина, выходное устройство. Твердотопливный заряд размещен вне газовоздушного тракта двигателя и...
Тип: Изобретение
Номер охранного документа: 0002682224
Дата охранного документа: 15.03.2019
29.03.2019
№219.016.f0f3

Способ восстановительного ремонта деталей газотурбинных двигателей из жаропрочных никелевых сплавов

Изобретение относится к области технологии восстановительного ремонта деталей из жаропрочных никелевых сплавов после определенного срока их эксплуатации, а именно к применению горячего изостатического прессования при этом ремонте. Способ включает удаление старого защитного покрытия деталей,...
Тип: Изобретение
Номер охранного документа: 0002346799
Дата охранного документа: 20.02.2009
29.03.2019
№219.016.f165

Жаропрочный титановый сплав

Изобретение относится к области металлургии титановых сплавов и может быть использовано для деталей и узлов ракетных и авиационных двигателей, работающих под высокими нагрузками при температурах до 750-800°С. Заявлен жаропрочный титановый сплав. Сплав содержит, мас.%: алюминий 5,0-7,5, цирконий...
Тип: Изобретение
Номер охранного документа: 0002396366
Дата охранного документа: 10.08.2010
29.03.2019
№219.016.f368

Способ обработки литых деталей из жаропрочных никелевых сплавов

Изобретение относится к обработке литых деталей из жаропрочных никелевых сплавов, в том числе лопаток газотурбинных двигателей и/или других отливок. Способ включает горячее изостатическое прессование и термическую обработку. Горячее изостатическое прессование осуществляют по двухступенчатому...
Тип: Изобретение
Номер охранного документа: 0002309191
Дата охранного документа: 27.10.2007
20.04.2019
№219.017.3509

Литейный никелевый сплав с равноосной структурой

Изобретение относится к области металлургии, а именно к литейным сплавам на никелевой основе, и может быть использовано для изготовления деталей, применяемых в газотурбинном двигателестроении, например заготовок дисков и других деталей специального назначения. Литейный никелевый сплав с...
Тип: Изобретение
Номер охранного документа: 0002685455
Дата охранного документа: 18.04.2019
09.05.2019
№219.017.4c03

Состав литейного жаропрочного сплава на основе никеля

Изобретение относится к области металлургии. Состав литейного жаропрочного сплава на основе никеля содержит компоненты при следующем соотношении, мас.%: хром - 3,0-7,0, кобальт - 4,0-8,5, углерод - 0,1-0,2, вольфрам - 11,5-15,0, алюминий - 4,8-5,8, ниобий - 0,4-1,0, титан - 2,0-3,0, молибден -...
Тип: Изобретение
Номер охранного документа: 0002344190
Дата охранного документа: 20.01.2009
24.05.2019
№219.017.5ee0

Многорежимный газотурбинный двигатель твердого топлива

Многорежимный газотурбинный двигатель твердого топлива содержит твердотопливный заряд и корпус, образующий газовоздушный тракт двигателя. В газовоздушном тракте двигателя последовательно размещены компрессор, камера сгорания, турбина, выходное устройство. Твердотопливный заряд размещен вне...
Тип: Изобретение
Номер охранного документа: 0002688612
Дата охранного документа: 21.05.2019
19.06.2019
№219.017.85ae

Способ обработки отливок из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано, в частности, для изготовления рабочих лопаток газотурбинных двигателей и других узлов и деталей, работающих в диапазоне температур до 1000°С. Техническим результатом изобретения является повышение предела выносливости и прочностных...
Тип: Изобретение
Номер охранного документа: 0002344195
Дата охранного документа: 20.01.2009
19.06.2019
№219.017.85b4

Способ получения никелевого жаропрочного сплава

Изобретение относится к металлургии, а именно к производству жаропрочных сплавов на никелевой основе, и может быть использовано для литья лопаток газотурбинных двигателей, работающих в условиях высоких температур и напряжений. Техническим результатом является повышение длительной (сточасовой)...
Тип: Изобретение
Номер охранного документа: 0002344188
Дата охранного документа: 20.01.2009
+ добавить свой РИД