×
20.06.2014
216.012.d31c

Результат интеллектуальной деятельности: МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ В КАЧЕСТВЕ КОМПЕНСАТОРА РЕАКТИВНОЙ МОЩНОСТИ С СИММЕТРИРОВАНИЕМ АКТИВНОЙ МОЩНОСТИ

Вид РИД

Изобретение

№ охранного документа
0002519815
Дата охранного документа
20.06.2014
Аннотация: Использование: в области электротехники. Технический результат - повышение быстродействия и надежности. Многоуровневый преобразователь (7) имеет несколько преобразовательных ветвей (8-10), которые соединены по схеме звезды или треугольника с фазами (2-4) трехфазной сети. На основе значений фазовых напряжений (U2-U4) и значений фазовых токов (IL2-IL4) определяют активную составляющую (w) и по меньшей мере две составляющие (w', b') асимметрии. Фильтруют составляющую (w) и по меньшей мере две составляющие (w', b') с помощью соответствующей характеристики фильтра. Значения фазовых напряжений (U2-U4) умножают на составляющую (w) и по меньшей мере две составляющие (w', b'), после чего умножают на соответствующий весовой коэффициент (ga-gc), а затем накладывают на значения фазовых токов (IL2-IL4). На основе составляющих (w', b') и значений (U2-U4) определяют ток (I0) в нулевом проводе и также накладывают на значения фазовых токов (IL2-IL4). На основе модифицированных так значений фазовых токов (IL2-IL4) определяют состояние (А) управления для преобразовательных ветвей (8-10). Соответственно управляют преобразовательными ветвями (8-10). 4 н. и 13 з.п.ф-лы, 2 ил.

Данное изобретение относится к способу работы многоуровневого преобразователя, который имеет несколько ветвей преобразователя, которые соединены по схеме звезды или треугольника с фазами трехфазной сети.

Кроме того, данное изобретение относится к компьютерной программе, которая содержит машинный код, который предназначен для непосредственного выполнения управляющим устройством для преобразовательных ветвей многоуровневого преобразователя и выполнение которого управляющим устройством приводит к тому, что управляющее устройство реализует такой способ работы.

Дополнительно к этому, данное изобретение относится к управляющему устройству для нескольких преобразовательных ветвей многоуровневого преобразователя, которые соединены по схеме звезды или треугольника с фазами трехфазной сети.

Наконец, данное изобретение относится к многоуровневому преобразователю, который имеет несколько преобразовательных ветвей, которые соединены по схеме звезды или треугольника с фазами трехфазной сети, при этом многоуровневый преобразователь дополнительно имеет управляющее устройство.

Многоуровневые преобразователи в целом известны. Они используются, среди прочего, в качестве компенсаторов реактивной мощности для нелинейных нагрузок. Нагрузка может быть, например, трехфазной дуговой печью. Однако возможны также другие нагрузки. Чисто в качестве примера можно сослаться на выполнение и принцип действия используемого в качестве компенсатора реактивной мощности многоуровневого преобразователя согласно US 6 075 350 А.

Уже с помощью известного из US 6 075 350 А принципа действия можно достигать фильтрации мешающих гармоник, а также составляющих реактивной мощности. Однако раскрытый в US 6 075 350 А принцип действия является технически очень сложным. Кроме того, этот известный принцип действия не может обеспечивать равномерного распределения желаемой активной мощности на все фазы трехфазной сети.

Из статьи “A Universal STATCOM with Delta-Connected Cascade Multilever Inverter” (Универсальный STATCOM с включенным по схеме треугольника каскадным многоуровневым инвертером), F.Z. Peng и др., 35th Annual IEEE Power Electronics Specialists Conference, Аахен, Германия, 2004, известно выполнение в многоуровневом преобразователе как компенсации реактивной мощности, так и компенсации активной мощности.

Из статьи “Symmetry Compensation using a H-Bridge Multilevel STATCOM with Zero Sequence Injection” (Симметричная компенсация с использованием включенного по схеме Н-образного моста многоуровневого STATCOM с подпиткой с нулевой последовательностью), R.E. Betz и др., Conference Records of the 42th IEEE Industrie Applications Conference, октябрь 2006, стр. 1721 - 1731, следует аналогичное содержание раскрытия.

Из статьи “Analysis of Multi-Cell Converter under Unbalanced AC Source” (Анализ многоэлементного преобразователя с нагрузкой от несбалансированного источника переменного тока), M.A. Perez и др., 36th Power Electronics Specialists Conference, Piscataway, NJ, США, 2005, известен преобразователь частоты переменного тока для электродвигателя, который работает от несбалансированного источника переменного тока и снабжает равномерно током электродвигатель.

Из US 2008/174183 А1 известна компенсация высших гармоник в токе и/или напряжении трехфазной системы.

Из WO 2005/029669 А2 известна фильтрация в трехфазной системе высших гармоник и реактивных токов с помощью активного фильтра, а также симметрирование активной мощности.

Из US 5 648 894 А известна компенсация в трехфазной системе высших гармоник и несимметричности нагрузки.

Задачей данного изобретения является создание возможностей, с помощью которых можно просто определять состояние управления многоуровневого преобразователя и распределять активную мощность равномерно на все фазы трехфазной сети.

Задача решена с помощью способа работы соответствующего многоуровневого преобразователя с признаками пункта 1 формулы изобретения. Предпочтительные варианты выполнения способа работы, согласно изобретению, являются предметом зависимых пунктов 2-5 формулы изобретения.

Согласно изобретению, на основе значений фазовых напряжений и значений фазовых токов определяют активную составляющую и по меньшей мере две составляющие асимметрии. Значения фазовых напряжений являются характеристическими для имеющихся в фазах фазовых напряжений. Значения фазовых токов являются характеристическими для проходящих в фазах фазовых токов. Составляющая активного тока является характеристической для протекающего в целом в трехфазной сети активного тока. По меньшей мере две составляющие асимметрии являются характеристическими для распределения проходящих в целом активных и реактивных токов по фазам. Составляющая активного тока и по меньшей мере две составляющие асимметрии фильтруют с помощью соответствующей характеристики фильтра. Значения фазовых напряжений умножают на отфильтрованную активную составляющую и по меньшей мере две составляющие асимметрии. Умноженные значения фазовых напряжений умножают на соответствующий весовой коэффициент, а затем накладывают на значения фазовых токов. На основе составляющих асимметрии и значений фазовых напряжений определяют ток в нулевом проводе и также накладывают на значения фазовых токов. Ток в нулевом проводе определяют так, что он симметрирует возможный асимметричный поток активной мощности многоуровневого преобразователя, который имелся бы без тока в нулевом проводе. На основе модифицированных так значений фазовых токов определяют состояние управления для преобразовательных ветвей. Преобразовательными ветвями управляют в соответствии с определяемым состоянием управления.

На основе способа согласно изобретению, с помощью которого определяют состояние управления, достигается, что отфильтровываются как высшие гармоники, так и быстро или медленно изменяющиеся составляющие реактивной мощности или сильно изменяющиеся составляющие мощности, которые вызывают пульсации, фазы трехфазной сети нагружаются равномерно активной мощностью, и, тем не менее, преобразовательные ветви остаются заряженными.

По сути, способ работы согласно изобретению состоит в задании подлежащего компенсации тока нагрузки сначала полностью в качестве номинального значения для многоуровневого преобразователя. Однако составляющие тока нагрузки модифицируют указанным выше образом, согласно изобретению, так что также не симметричные составляющие тока равномерно распределяются на все фазы трехфазной сети, и для предотвращения перегрузок многоуровневого преобразователя составляющие тока нагрузки вычитают из номинального значения тока с учетом предотвращающей пульсацию скорости изменения. Симметрирование активной нагрузки происходит с помощью асимметричной реактивной нагрузки. Для этой цели вычисляют ток в нулевом проводе, фильтруют и добавляют ко всем значениям фазовых токов.

Согласно одному предпочтительному варианту выполнения способа работы предусмотрено, что характеристики фильтра для по меньшей мере двух составляющих асимметрии выбирают так, что существующее также без фильтрации уменьшение пульсации усиливается. За счет этого можно минимизировать нежелательные обратные воздействия на сеть.

Характеристики фильтра для по меньшей мере двух составляющих асимметрии, как правило, одинаковы друг с другом. Однако они могут отличаться от характеристики фильтра для активной составляющей. За счет этого можно, в частности, оптимизировать состояние заряженности преобразовательных ветвей независимо от уменьшения пульсации.

В другом предпочтительном варианте выполнения данного изобретения предусмотрено, что на основании моментального состояния заряженности преобразовательных ветвей определяют по меньшей мере один коэффициент адаптации, на основании которого можно согласовывать по меньшей мере одну из характеристик фильтра и/или по меньшей мере один из весовых коэффициентов. Таким образом, при достижении критического состояния заряженности можно ускорять коррекцию этого состояния заряженности.

Согласно другому предпочтительному варианту выполнения способа работы согласно изобретению по меньшей мере одно из умноженных значений фазовых напряжений и/или ток в нулевом проводе перед наложением на значения фазовых токов фильтруют с помощью соответствующего согласующего фильтра, который вблизи частоты сети имеет интегрирующее действие. За счет этого можно простым образом компенсировать дифференцирующее действие питающей трехфазной сети. За счет этого можно дополнительно уменьшать действие пульсации.

Кроме того, задача решена с помощью компьютерной программы указанного выше вида, выполнение которой приводит к тому, что управляющее устройство реализует способ работы согласно изобретению. Компьютерная программа может быть записана на носителе информации в машинно-считываемом виде. Носитель информации может быть выполнен, в частности, в виде мобильного носителя информации.

Дополнительно к этому, задача решена с помощью управляющего устройства указанного вначале вида, которое выполнено так, что оно при работе выполняет способ работы согласно изобретению.

Во многих случаях управляющее устройство выполнено в виде программируемого с помощью программного обеспечения управления. В этом случае управляющее устройство программировано с помощью компьютерной программы согласно изобретению.

В многоуровневом преобразователе, согласно изобретению, предусмотрено, что управляющее устройство выполнено так, что оно при работе выполняет способ работы согласно изобретению.

Другие преимущества и подробности следуют из приведенного ниже описания примеров выполнения со ссылками на прилагаемые чертежи, на которых схематично изображено:

Фиг.1 - система трехфазного тока.

Фиг.2 - способ работы многоуровневого преобразователя.

Как показано на Фиг.1, трехфазная сеть 1 имеет несколько фаз 2-4. На Фиг.1 показаны три такие фазы 2-4. Однако число фаз может быть также больше, например, пять. Трехфазная сеть питается из источника 5. Источник 5 может быть, например, трансформатором трехфазного тока. К трехфазной сети 1 подключена нагрузка 6. Нагрузка 6 может быть выполнена, например, в виде дуговой печи трехфазного тока или другой сильно нелинейной нагрузки.

Если нагрузка 6 работает без дополнительных мер от трехфазной сети 1, то это приводит к сильным обратным воздействиям на сеть. Поэтому параллельно нагрузке 6 включен компенсатор 7 реактивной мощности. Компенсатор 7 реактивной мощности выполнен, согласно изобретению, в виде многоуровневого преобразователя 7.

Многоуровневый преобразователь 7 имеет несколько преобразовательных ветвей 8-10. Каждая преобразовательная ветвь 8-10 имеет последовательную схему отдельно инвертируемых источников напряжения. Число источников напряжения в преобразовательной ветви 8-10 можно выбирать по потребности. Как правило, оно лежит между 10 и 100. В любом случае оно значительно больше двух. Принципиальная схема преобразовательных ветвей 8-10 подробно описана в уже упомянутом US 6 075 350 А, так что можно отказаться от подробного описания схемы отдельных преобразовательных ветвей 8-10.

Как показано на Фиг.1, каждая преобразовательная ветвь 8-10 соединена с двумя соответствующими фазами 2-4. Таким образом, преобразовательные ветви 8-10 включены в фазы 2-4 трехфазной сети 1 по схеме треугольника. В качестве альтернативного решения, преобразовательные ветви 8-10 могут быть подключены к фазам 2-4 трехфазной сети 1 по схеме звезды.

Кроме того, многоуровневый преобразователь 7 имеет управляющее устройство 11. Управляющее устройство 11 принимает сигналы U2-U4, IL2-IL4 состояния трехфазной сети 1. На основании подаваемых сигналов U2-U4, IL2-IL4 состояния трехфазной сети 1 оно определяет состояние А управления для преобразовательных ветвей 8-10. Состояние А управления содержит для каждого отдельного источника напряжения каждой преобразовательной ветви 8-10 ее двоичное (+/-) или троичное (+/0/-) отдельное состояние управления.

Управляющее устройство 11 может быть реализовано с помощью схемной техники. В этом случае принцип действия управляющего устройства 11 определяется его схемной технической реализацией. Однако, как правило, управляющее устройство 11 выполнено в виде программируемого с помощью программного обеспечения управляющего устройства 11. В этом случае принцип действия управляющего устройства 11 определяется компьютерной программой 12, с помощью которой программировано управляющее устройство 11.

Компьютерная программа 12 содержит машинный код 13, который предназначен непосредственно для выполнения управляющим устройством 11. Выполнение машинного кода 13 управляющим устройством 11 приводит к тому, что управляющее устройство 11 выполняет способ работы, который определяется машинным кодом.

Компьютерная программа 12 может вводиться в управляющее устройство 11 любым образом. Например, компьютерная программа 12 может быть заложена в управляющее устройство 11 уже при изготовлении управляющего устройства 11. В качестве альтернативного решения, возможен ввод компьютерной программы в управляющее устройство 11 через вычислительную сеть, например, World Wide Web. Опять же в качестве альтернативного решения, можно сохранять компьютерную программу 12 на мобильном носителе 14 информации в машинно-читаемом виде и с помощью его вводить в управляющее устройство. Мобильный носитель 14 информации может быть выполнен по потребности. Чисто в качестве примера на Фиг.1 схематично показана флэшка USB. В качестве альтернативного решения, мобильный носитель 14 информации может быть выполнен в виде компакт-диска или CD-ROM.

Независимо от того, выполнено ли управляющее устройство 11 в виде схем или выполняет компьютерную программу 12, управляющее устройство 11 реализует способ работы, более подробное пояснение которого приводится ниже со ссылками на Фиг.2.

Как показано на Фиг.2, в управляющее устройство 11 подаются значения фазовых напряжений U2-U4 и значения фазовых токов IL2 - IL4. Значения фазовых напряжений U2-U4 являются характеристическими для приложенных к фазам 2-4 фазовых напряжений. Их можно снимать, например, с помощью соответствующих датчиков 15 напряжения. В принципе съем можно осуществлять в любом месте трехфазной сети 1. Предпочтительно, съем осуществляется вблизи источника 5 питания. Значения фазовых токов IL2-IL4 являются характеристическими для проходящих в фазах 2-4 фазовых токов. Их можно измерять, например, с помощью соответствующих датчиков 16 тока. Предпочтительно, датчики 16 тока расположены в той части трехфазной сети 1, через которую снабжается исключительно нагрузка 6.

Как показано на Фиг.1 и 2, в управляющее устройство 11 непосредственно подаются значения фазовых напряжений U2-U4 и значения фазовых токов IL2-IL4. Однако в качестве альтернативного решения можно пересчитывать значения фазовых напряжений U2-U4 и значения фазовых токов IL2-IL4 в ортогональную двухкомпонентную систему. Этот перерасчет известен специалистам и поэтому подробно не поясняется.

Управляющее устройство 11 реализует по меньшей мере пять путей 17 прохождения сигналов, которые сходятся все в общей узловой точке 18. Пути 17 прохождения сигналов уточняются в последующем для отличия друг от друга буквой а-е. Соответствующая одинаковая буква а-е применяется также, если это целесообразно, в качестве добавления для отдельных элементов соответствующих путей 17 прохождения сигналов.

В первом пути 17а прохождения сигналов происходит в блоке 19а связи (в так называемой системе прямой последовательности фаз) покомпонентное перемножение значений фазовых напряжений U2-U4 с соответствующими значениями фазовых токов IL2-IL4. Кроме того, определяется сумма произведений. Выходной сигнал блока 19а связи является активной составляющей w. Активная составляющая w является скалярной величиной, которая является характеристической для протекающего в целом в трехфазной сети 1 активного тока.

Когда, например, значения фазовых напряжений U2-U4 и значения фазовых токов IL2-IL4 пересчитываются в ортогональную двухкомпонентную систему, и в двухкомпонентной системе значения фазовых напряжений обозначаются как u1, u2, а также значения фазовых токов обозначаются как i1, i2, то для активной соответствующей w получают: w = u1 i1 + u2 i2.

Активная составляющая w фильтруется в фильтре 20а с помощью характеристики фильтра. Как правило, происходит фильтрация низких частот. Однако возможны также другие характеристики фильтра, например, полосно-пропускающая фильтрация или полосно-заграждающая фильтрация.

Фильтрованная активная составляющая w подается в блок 21 умножения, в который дополнительно подаются значения фазовых напряжений U2-U4. В блоке 21а умножения значения фазовых напряжений U2-U4 перемножаются с фильтрованной активной составляющей w. Перемноженные с активной составляющей w значения фазовых напряжений U2-U4 подаются через блок 22а взвешивания в узловую точку 18. В блоке 22 взвешивания происходит взвешивание с весовым коэффициентом ga.

Необязательно, после блока 22а взвешивания может быть расположен согласующий фильтр 26а. Согласующий фильтр 26а выполняет, если он имеется, фильтрацию, которая вблизи частоты сети (обычно 50 Гц или 60 Гц) имеет интегрирующее действие.

Второй путь 17b прохождения сигналов выполнен аналогично первому пути 17а прохождения сигналов. Однако в отличие от первого пути 17а прохождения сигналов перед обрабатывающим блоком 19b второго пути 17b прохождения сигналов расположен инвертор 23b направления вращения. Инвертор 23b направления вращения инвертирует направление вращения значений фазовых напряжений U2-U4. Таким образом, определяется так называемая противоположная система. Поэтому выходной сигнал w' блока 19b связи соответствует фиктивной активной составляющей w'. Она также является скалярной величиной. Она соответствует, относительно инвертированной трехфазной сети 1, фиктивной активной мощности. В указанной выше ортогональной двухкомпонентной системе получают фиктивную активную составляющую w', например, в виде w' = u1 i1 - u2 i2.

Третий путь 17с прохождения сигналов выполнен аналогично второму пути 17b прохождения сигналов. В качестве инвертора 23с направления вращения можно использовать при необходимости инвертор второго пути 17b прохождения сигналов. Отличие третьего пути 17с прохождения сигналов от второго пути 17b прохождения сигналов состоит в виде осуществления связи в блоке 19с связи третьего пути 17с прохождения сигналов. А именно, выходной сигнал b' третьего блока 19с связи соответствует, относительно инвертированной трехфазной сети 1, фиктивной реактивной мощности. В указанной выше ортогональной двухкомпонентной системе выходной сигнал b' получается, например, в виде b' = u1 i2 + u2 i1.

Оба выходных сигнала w', b' второго и третьего блока 19b, 19с связи являются составляющими асимметрии. Они являются характеристическими для распределения протекающих в целом в трехфазной сети 1 активных и реактивных токов по фазам 2-4 трехфазной сети 1.

Четвертый путь 17d прохождения сигналов имеет симметрирующий блок 27. В симметрирующий блок 27 подаются составляющие w', b' асимметрии и значения фазовых напряжений U2-U4. Симметрирующий блок 27 определяет ток I0 в нулевом проводе, который также подается в узловую точку 18. Ток I0 в нулевом проводе одинаков для всех фаз 2-4. Он определяется так, что он симметрирует возможный асимметричный поток активной мощности многоуровневого преобразователя 7, который бы получался без тока I0 в нулевом проводе. В частности, в указанной выше ортогональной двухкомпонентной системе ток I0 в нулевом проводе получается в виде

I0 = (2/√3) · (u1 b' + u2 w')/(u12 + u22).

Выполнение симметрирующего блока 27 само по себе известно специалистам. Оно известно, например, в статическом виде как так называемая схема Штейнметца. Чисто в качестве примера делается ссылка на статью “Koordinatentransformation fuer Mehrgroessen-Regelsysteme zur Kompensation und Symmetrierung von Drehstromnetzen” (Преобразование координат для регулировочных систем с несколькими величинами для компенсации и симметрирования трехфазных сетей), W. Meusel, H. Waldmann, Siemens Forsch.- u. Entwickl.-Ber., том 6 (1977), № 1, стр. 29-38, Springer-Verlag 1977.

Через пятый путь 17е прохождения сигналов в узловую точку 18 подаются значения фазовых токов IL2-IL4. Однако в отличие от остальных подаваемых в узловую точку 18 значений, значения фазовых токов IL2-IL4 подаются в узловую точку 18 со знаком минус.

В узловой точке 18 суммируются покомпонентно, т.е. отдельно для каждой фазы 2-4, подводимые к узловой точке 18 сигналы. Выходной сигнал узловой точки 18 соответствует требуемому номинальному току для отдельных преобразовательных ветвей 8-10 многоуровневого преобразователя 7. Он подается в преобразователь 24, который определяет из него требуемые значения напряжения преобразовательных ветвей 8-10. Значения напряжения соответствуют в совокупности номинальному состоянию управления преобразовательных ветвей 8-10. Они подаются в преобразовательные ветви 8-10, так что выполняется соответствующее управление ими. Определение номинального состояния управления при заданном требуемом номинальном токе известно для специалистов. Его можно осуществлять так же, как в упомянутом вначале US 6 075 350 А.

На основе покомпонентного образования суммы в узловой точке 18 определяют требуемый номинальный ток для отдельных преобразовательных ветвей 8-10 многоуровневого преобразователя 7 так, что компенсируются не только гармоники и составляющие реактивной мощности, но, кроме того, активная мощность равномерно распределяется по фазам 2-4 трехфазной сети 1.

Характеристики фильтров 20а-20с можно выбирать независимо друг от друга. Как правило, характеристики фильтров 20b и 20с одинаковы друг с другом. Предпочтительно, характеристики фильтров 20b, 20с для составляющих w', b' асимметрии выбирают так, что они усиливают и без фильтрации имеющееся уменьшение пульсации. Соответствующее выполнение фильтров известно специалистам. Например, фильтры 20а-20с могут в качестве альтернативного решения или (предпочтительно) дополнительно иметь характеристику для фильтрации низких частот, которая является инверсной относительно известной специалистам характеристики чувствительности глаза.

Характеристика фильтра 20а для составляющей w активной мощности может быть выбрана одинаковой с характеристиками фильтров 20b, 20с. В качестве альтернативного решения, она может отличаться от характеристики фильтров 20b, 20c. За счет этого возможна, в частности, оптимизация состояния заряженности L многоуровневого преобразователя 7 независимо от распределения состояния заряженности L на отдельные преобразовательные ветви 8-10.

Кроме того, в одном дополнительном варианте выполнения данного изобретения можно подавать в управляющее устройство 11 информацию о состоянии заряженности L преобразовательных ветвей 8-10. В этом случае может, например, в обрабатывающем блоке 25 осуществляться оценка состояния заряженности L. В рамках этой оценки можно, например, единообразно для фильтров 20а-20с и/или блоков 22а-22с взвешивания или же независимо для каждого из этих компонентов 20а-20са, 22а-22с определять коэффициент а адаптации. На основе коэффициента а адаптации можно осуществлять согласование характеристик фильтров 20а-20с и/или весовых коэффициентов ga-gc.

Для каждого из фильтров 20а-20с и каждого из блоков 22а-22с взвешивания можно определять собственный коэффициент а адаптации. В качестве альтернативного решения, возможно, что коэффициент а адаптации воздействует лишь на отдельные компоненты 20а-20с, 22а-22с. Возможно также, что коэффициент а адаптации действует одинаково или различно на некоторые из компонентов 20а-20с, 22а-22с. Воздействие может быть непрерывным или ступенчатым, с или без гистерезиса. Возможно также переключение между различными коэффициентами фильтров, комплектами параметров и т.д.

Поясненное выше выполнение полностью достаточно, когда число фаз 2-4 трехфазной сети 1 равно точно трем. Когда число фаз 2-4 больше трех, например пять, может быть необходимо определять другие составляющие асимметрии. В этом случае должны иметься, дополнительно к путям 17а-17е прохождения сигналов, для каждой дополнительно определяемой составляющей асимметрии соответствующий дополнительный путь 17 прохождения сигналов. Выполнение соответствующих дополнительных путей прохождения сигналов аналогично выполнению путей 17b и 17с прохождения сигналов.

Данное изобретение имеет много преимуществ. В частности, осуществляется простое, стабильное, надежное и быстрое регулирование многоуровневого преобразователя 7, при этом «неспокойные» и несимметричные потребители вызывают небольшие пульсации. За счет способа согласно изобретению обеспечивается очень быстрая компенсация при одновременном предотвращении перегрузки многоуровневого преобразователя 7. Кроме того, обеспечивается симметричная нагрузка трехфазной сети 1. Можно учитывать также состояние заряженности L многоуровневого преобразователя 7. Требующиеся для этого способы вычисления известны специалистам, так что их можно легко осуществлять.

Приведенное выше описание служит исключительно для пояснения данного изобретения. Объем защиты данного изобретения определяется исключительно прилагаемой формулой изобретения.


МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ В КАЧЕСТВЕ КОМПЕНСАТОРА РЕАКТИВНОЙ МОЩНОСТИ С СИММЕТРИРОВАНИЕМ АКТИВНОЙ МОЩНОСТИ
МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ В КАЧЕСТВЕ КОМПЕНСАТОРА РЕАКТИВНОЙ МОЩНОСТИ С СИММЕТРИРОВАНИЕМ АКТИВНОЙ МОЩНОСТИ
Источник поступления информации: Роспатент

Показаны записи 501-510 из 1 427.
20.01.2016
№216.013.a223

Способ работы сортировочной горки для рельсового транспорта, а также управляющее устройство для такой сортировочной горки

Изобретение относится к области железнодорожной автоматики и, в частности, к управлению сортировочными горками. Техническое решение заключается в том, что для спусков (90, 100) в виде спускаемых вагонов, соответственно групп вагонов, по меньшей мере на одном рельсовом участке сортировочной...
Тип: Изобретение
Номер охранного документа: 0002573149
Дата охранного документа: 20.01.2016
27.02.2016
№216.014.bf5d

Радиальный магнитный подшипник, имеющий радиально шихтованный ротор

Изобретение относится к радиальному магнитному подшипнику. Радиальный магнитный подшипник имеет статор и ротор, который оперт в статоре с возможностью вращения, при этом ротор имеет вал (7), а этот вал (7) окружен кольцеобразной системой (5) пакета сердечника. Система пакета сердечника имеет...
Тип: Изобретение
Номер охранного документа: 0002576307
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.bf6b

Система снабжения маслом для стационарной турбомашины

Изобретение относится к системе снабжения маслом для стационарной газовой турбины, в которой на основании нового соединения компонентов системы снабжения маслом, таких как масляный бак, насосы и теплообменник, а также системы трубопроводов, обеспечивается возможность надежной работы газовой...
Тип: Изобретение
Номер охранного документа: 0002576601
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.bff1

Схемное устройство для переключения тока и способ работы полупроводникового силового переключателя

Изобретение относится к устройствам электронной коммутации, а именно схемному устройству для переключения тока в зависимости от заданного сигнала переключения. Достигаемый технический результат - снижение потерь переключения в полупроводниковом силовом переключателе. При переключении тока (Ic)...
Тип: Изобретение
Номер охранного документа: 0002576578
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.c006

Турбинная система и газотурбинный двигатель

Турбинная система содержит первую платформу, вторую платформу, несколько аэродинамических профилей, пластину соударения. Каждый из нескольких аэродинамических профилей проходит между первой платформой и второй платформой. Первая и вторая платформа образуют секцию основного пути прохождения...
Тип: Изобретение
Номер охранного документа: 0002576754
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.c0bd

Устройство направляющих лопаток для турбины и способ его изготовления

Устройство направляющих лопаток содержит внутреннюю платформу, полый аэродинамический профиль и направляющую. Внутренняя платформа выполнена со сквозным отверстием, образующим проточный канал для охлаждающей текучей среды. Полый аэродинамический профиль выполнен в виде единого целого с первой...
Тип: Изобретение
Номер охранного документа: 0002576600
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.c13d

Способ эксплуатации стационарной газотурбинной установки и всасывающий канал для всасываемого воздуха газотурбинной установки

Способ (39) эксплуатации стационарной газотурбинной установки (10), которая оснащена по меньшей мере одним фильтром (32, 34) для очистки всасываемого воздуха (А) и подсоединена к генератору (20). Генератор выполнен с возможностью запитывания электрической энергии в электрическую...
Тип: Изобретение
Номер охранного документа: 0002576407
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.c16f

Масштабируемый по мощности и частоте инвертор

Изобретение относится к области электротехники и может быть использовано в инверторе для предоставления масштабируемого по частоте выходного сигнала инвертора, в особенности с высокой выходной мощностью. Технический результат - создание инвертора с низкими затратами для высоких напряжений или...
Тип: Изобретение
Номер охранного документа: 0002576249
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.c18b

Топливная система газопаротурбинной установки и способ ее промывки

Топливная система (8) и способ её промывки для газопаротурбинной установки с интегрированной газификацией угля, включающей газовую турбину (1). Топливная система (8) подключена к камере (3) сгорания газовой турбины (1) и содержит устройство (10) для газификации природного топлива и газопровод...
Тип: Изобретение
Номер охранного документа: 0002576398
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.c199

Возбудитель блока генерирования мощности, блок генерирования мощности и оборудование вывода энергии в электрической сети

Использование: в области электроэнергетики. Технический результат - повышение надежности и стабильности подачи питания к электрической сети. Возбудитель блока генерирования мощности включает в себя контроллер возбуждения для генерирования сигнала возбуждения согласно первому управляющему...
Тип: Изобретение
Номер охранного документа: 0002576021
Дата охранного документа: 27.02.2016
Показаны записи 501-510 из 944.
10.11.2015
№216.013.8ee0

Подводный узел плавких предохранителей

Подводный узел плавких предохранителей содержит кожух, выполненный с возможностью заполнения его диэлектрической жидкостью, компенсатор давления, содержащий гибкий элемент для компенсации давления, первый и второй проникающие элементы, каждый из которых проходит сквозь стенку кожуха, направляя...
Тип: Изобретение
Номер охранного документа: 0002568185
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.9031

Компенсация крутящего момента для вертолета

Изобретение относится к области авиации, в частности к средствам компенсации создаваемого несущим винтом вертолета крутящего момента. Устройство для компенсации крутящего момента предусмотрено для вертолета (100), главный винт (110) которого вращается при работе вокруг оси (RH) вращения и за...
Тип: Изобретение
Номер охранного документа: 0002568529
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9041

Способ высокотемпературной пайки поверхности металлической подложки

Способ может быть использован для высокотемпературной пайки поверхности (10) металлической подложки (12), имеющей пассивный слой (18) оксида металла. Активируют упомянутую поверхность (10) металлической подложки (12) посредством пескоструйной обработки порошковыми частицами (14) активирующего...
Тип: Изобретение
Номер охранного документа: 0002568545
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90c4

Электрический коммутационный аппарат

Электрический коммутационный аппарат имеет блок прерывателя с первым (10) и вторым (11) соединительными проводами. Блок прерывателя расположен внутри непроницаемого для текучей среды герметизированного корпуса (1), заполненного электрически изолирующей текучей средой. При этом блок прерывателя...
Тип: Изобретение
Номер охранного документа: 0002568676
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9211

Устройство для предварительного нагревания стального скрапа и снабженная им металлургическая плавильная емкость

Изобретение относится к области металлургии и может быть использовано для предварительного нагрева подлежащего загрузке в металлургический плавильный ковш стального скрапа. Устройство содержит окруженную стенкой корпуса для приема стального скрапа вертикальную шахту и по меньшей мере один,...
Тип: Изобретение
Номер охранного документа: 0002569009
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9271

Способ обработки отходящего газа, содержащего диоксид углерода

Изобретение относится к способу обработки отходящего газа, содержащего диоксид углерода, и используется при пуске и останове конвертера. К отходящему газу подводится углеводородсодержащий газ, и диоксид углерода отходящего газа в реакции с углеводородом, по меньшей мере, частично превращается в...
Тип: Изобретение
Номер охранного документа: 0002569105
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.934a

Ускоритель для двух пучков частиц для создания столкновения

Изобретение относится к ускорителю для ускорения и столкновения двух пучков заряженных частиц. Заявленное устройство содержит устройство формирования потенциального поля для формирования электростатического потенциального поля, которое создается таким образом, что посредством...
Тип: Изобретение
Номер охранного документа: 0002569324
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.946a

Устройство для поворота ротора турбомашины из первого положения во второе положение

Изобретение относится к машиностроению и может быть использовано для установки ротора турбомашины, в частности для поворота ротора из горизонтального положения в вертикальное. Ротор имеет несколько роторных дисков, которые стянуты друг с другом по меньшей мере одним стяжным болтом. Устройство...
Тип: Изобретение
Номер охранного документа: 0002569613
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9515

Способ регулирования радиальных зазоров, имеющихся между вершинами рабочих лопаток и стенкой канала

Изобретение касается способа для регулирования радиальных зазоров, имеющихся между вершинами рабочих лопаток и стенкой канала турбомашины при монтаже турбомашины, при котором перед пуском в эксплуатацию турбомашины регистрируются радиальные зазоры. Сенсор не является термостойким в отношении...
Тип: Изобретение
Номер охранного документа: 0002569784
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9517

Устройство резонатора для демпфирования колебаний давления в камере сгорания и способ для управления системой сгорания

Устройство резонатора, предназначенное для демпфирования колебаний давления в камере сгорания, содержит контейнер, заполненный газом, отверстие в контейнере и нагревательный элемент, выполненный с возможностью генерировать пламя. Пламя предназначено для нагрева газа в контейнере. Нагревательный...
Тип: Изобретение
Номер охранного документа: 0002569786
Дата охранного документа: 27.11.2015
+ добавить свой РИД