×
20.06.2014
216.012.d31c

Результат интеллектуальной деятельности: МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ В КАЧЕСТВЕ КОМПЕНСАТОРА РЕАКТИВНОЙ МОЩНОСТИ С СИММЕТРИРОВАНИЕМ АКТИВНОЙ МОЩНОСТИ

Вид РИД

Изобретение

№ охранного документа
0002519815
Дата охранного документа
20.06.2014
Аннотация: Использование: в области электротехники. Технический результат - повышение быстродействия и надежности. Многоуровневый преобразователь (7) имеет несколько преобразовательных ветвей (8-10), которые соединены по схеме звезды или треугольника с фазами (2-4) трехфазной сети. На основе значений фазовых напряжений (U2-U4) и значений фазовых токов (IL2-IL4) определяют активную составляющую (w) и по меньшей мере две составляющие (w', b') асимметрии. Фильтруют составляющую (w) и по меньшей мере две составляющие (w', b') с помощью соответствующей характеристики фильтра. Значения фазовых напряжений (U2-U4) умножают на составляющую (w) и по меньшей мере две составляющие (w', b'), после чего умножают на соответствующий весовой коэффициент (ga-gc), а затем накладывают на значения фазовых токов (IL2-IL4). На основе составляющих (w', b') и значений (U2-U4) определяют ток (I0) в нулевом проводе и также накладывают на значения фазовых токов (IL2-IL4). На основе модифицированных так значений фазовых токов (IL2-IL4) определяют состояние (А) управления для преобразовательных ветвей (8-10). Соответственно управляют преобразовательными ветвями (8-10). 4 н. и 13 з.п.ф-лы, 2 ил.

Данное изобретение относится к способу работы многоуровневого преобразователя, который имеет несколько ветвей преобразователя, которые соединены по схеме звезды или треугольника с фазами трехфазной сети.

Кроме того, данное изобретение относится к компьютерной программе, которая содержит машинный код, который предназначен для непосредственного выполнения управляющим устройством для преобразовательных ветвей многоуровневого преобразователя и выполнение которого управляющим устройством приводит к тому, что управляющее устройство реализует такой способ работы.

Дополнительно к этому, данное изобретение относится к управляющему устройству для нескольких преобразовательных ветвей многоуровневого преобразователя, которые соединены по схеме звезды или треугольника с фазами трехфазной сети.

Наконец, данное изобретение относится к многоуровневому преобразователю, который имеет несколько преобразовательных ветвей, которые соединены по схеме звезды или треугольника с фазами трехфазной сети, при этом многоуровневый преобразователь дополнительно имеет управляющее устройство.

Многоуровневые преобразователи в целом известны. Они используются, среди прочего, в качестве компенсаторов реактивной мощности для нелинейных нагрузок. Нагрузка может быть, например, трехфазной дуговой печью. Однако возможны также другие нагрузки. Чисто в качестве примера можно сослаться на выполнение и принцип действия используемого в качестве компенсатора реактивной мощности многоуровневого преобразователя согласно US 6 075 350 А.

Уже с помощью известного из US 6 075 350 А принципа действия можно достигать фильтрации мешающих гармоник, а также составляющих реактивной мощности. Однако раскрытый в US 6 075 350 А принцип действия является технически очень сложным. Кроме того, этот известный принцип действия не может обеспечивать равномерного распределения желаемой активной мощности на все фазы трехфазной сети.

Из статьи “A Universal STATCOM with Delta-Connected Cascade Multilever Inverter” (Универсальный STATCOM с включенным по схеме треугольника каскадным многоуровневым инвертером), F.Z. Peng и др., 35th Annual IEEE Power Electronics Specialists Conference, Аахен, Германия, 2004, известно выполнение в многоуровневом преобразователе как компенсации реактивной мощности, так и компенсации активной мощности.

Из статьи “Symmetry Compensation using a H-Bridge Multilevel STATCOM with Zero Sequence Injection” (Симметричная компенсация с использованием включенного по схеме Н-образного моста многоуровневого STATCOM с подпиткой с нулевой последовательностью), R.E. Betz и др., Conference Records of the 42th IEEE Industrie Applications Conference, октябрь 2006, стр. 1721 - 1731, следует аналогичное содержание раскрытия.

Из статьи “Analysis of Multi-Cell Converter under Unbalanced AC Source” (Анализ многоэлементного преобразователя с нагрузкой от несбалансированного источника переменного тока), M.A. Perez и др., 36th Power Electronics Specialists Conference, Piscataway, NJ, США, 2005, известен преобразователь частоты переменного тока для электродвигателя, который работает от несбалансированного источника переменного тока и снабжает равномерно током электродвигатель.

Из US 2008/174183 А1 известна компенсация высших гармоник в токе и/или напряжении трехфазной системы.

Из WO 2005/029669 А2 известна фильтрация в трехфазной системе высших гармоник и реактивных токов с помощью активного фильтра, а также симметрирование активной мощности.

Из US 5 648 894 А известна компенсация в трехфазной системе высших гармоник и несимметричности нагрузки.

Задачей данного изобретения является создание возможностей, с помощью которых можно просто определять состояние управления многоуровневого преобразователя и распределять активную мощность равномерно на все фазы трехфазной сети.

Задача решена с помощью способа работы соответствующего многоуровневого преобразователя с признаками пункта 1 формулы изобретения. Предпочтительные варианты выполнения способа работы, согласно изобретению, являются предметом зависимых пунктов 2-5 формулы изобретения.

Согласно изобретению, на основе значений фазовых напряжений и значений фазовых токов определяют активную составляющую и по меньшей мере две составляющие асимметрии. Значения фазовых напряжений являются характеристическими для имеющихся в фазах фазовых напряжений. Значения фазовых токов являются характеристическими для проходящих в фазах фазовых токов. Составляющая активного тока является характеристической для протекающего в целом в трехфазной сети активного тока. По меньшей мере две составляющие асимметрии являются характеристическими для распределения проходящих в целом активных и реактивных токов по фазам. Составляющая активного тока и по меньшей мере две составляющие асимметрии фильтруют с помощью соответствующей характеристики фильтра. Значения фазовых напряжений умножают на отфильтрованную активную составляющую и по меньшей мере две составляющие асимметрии. Умноженные значения фазовых напряжений умножают на соответствующий весовой коэффициент, а затем накладывают на значения фазовых токов. На основе составляющих асимметрии и значений фазовых напряжений определяют ток в нулевом проводе и также накладывают на значения фазовых токов. Ток в нулевом проводе определяют так, что он симметрирует возможный асимметричный поток активной мощности многоуровневого преобразователя, который имелся бы без тока в нулевом проводе. На основе модифицированных так значений фазовых токов определяют состояние управления для преобразовательных ветвей. Преобразовательными ветвями управляют в соответствии с определяемым состоянием управления.

На основе способа согласно изобретению, с помощью которого определяют состояние управления, достигается, что отфильтровываются как высшие гармоники, так и быстро или медленно изменяющиеся составляющие реактивной мощности или сильно изменяющиеся составляющие мощности, которые вызывают пульсации, фазы трехфазной сети нагружаются равномерно активной мощностью, и, тем не менее, преобразовательные ветви остаются заряженными.

По сути, способ работы согласно изобретению состоит в задании подлежащего компенсации тока нагрузки сначала полностью в качестве номинального значения для многоуровневого преобразователя. Однако составляющие тока нагрузки модифицируют указанным выше образом, согласно изобретению, так что также не симметричные составляющие тока равномерно распределяются на все фазы трехфазной сети, и для предотвращения перегрузок многоуровневого преобразователя составляющие тока нагрузки вычитают из номинального значения тока с учетом предотвращающей пульсацию скорости изменения. Симметрирование активной нагрузки происходит с помощью асимметричной реактивной нагрузки. Для этой цели вычисляют ток в нулевом проводе, фильтруют и добавляют ко всем значениям фазовых токов.

Согласно одному предпочтительному варианту выполнения способа работы предусмотрено, что характеристики фильтра для по меньшей мере двух составляющих асимметрии выбирают так, что существующее также без фильтрации уменьшение пульсации усиливается. За счет этого можно минимизировать нежелательные обратные воздействия на сеть.

Характеристики фильтра для по меньшей мере двух составляющих асимметрии, как правило, одинаковы друг с другом. Однако они могут отличаться от характеристики фильтра для активной составляющей. За счет этого можно, в частности, оптимизировать состояние заряженности преобразовательных ветвей независимо от уменьшения пульсации.

В другом предпочтительном варианте выполнения данного изобретения предусмотрено, что на основании моментального состояния заряженности преобразовательных ветвей определяют по меньшей мере один коэффициент адаптации, на основании которого можно согласовывать по меньшей мере одну из характеристик фильтра и/или по меньшей мере один из весовых коэффициентов. Таким образом, при достижении критического состояния заряженности можно ускорять коррекцию этого состояния заряженности.

Согласно другому предпочтительному варианту выполнения способа работы согласно изобретению по меньшей мере одно из умноженных значений фазовых напряжений и/или ток в нулевом проводе перед наложением на значения фазовых токов фильтруют с помощью соответствующего согласующего фильтра, который вблизи частоты сети имеет интегрирующее действие. За счет этого можно простым образом компенсировать дифференцирующее действие питающей трехфазной сети. За счет этого можно дополнительно уменьшать действие пульсации.

Кроме того, задача решена с помощью компьютерной программы указанного выше вида, выполнение которой приводит к тому, что управляющее устройство реализует способ работы согласно изобретению. Компьютерная программа может быть записана на носителе информации в машинно-считываемом виде. Носитель информации может быть выполнен, в частности, в виде мобильного носителя информации.

Дополнительно к этому, задача решена с помощью управляющего устройства указанного вначале вида, которое выполнено так, что оно при работе выполняет способ работы согласно изобретению.

Во многих случаях управляющее устройство выполнено в виде программируемого с помощью программного обеспечения управления. В этом случае управляющее устройство программировано с помощью компьютерной программы согласно изобретению.

В многоуровневом преобразователе, согласно изобретению, предусмотрено, что управляющее устройство выполнено так, что оно при работе выполняет способ работы согласно изобретению.

Другие преимущества и подробности следуют из приведенного ниже описания примеров выполнения со ссылками на прилагаемые чертежи, на которых схематично изображено:

Фиг.1 - система трехфазного тока.

Фиг.2 - способ работы многоуровневого преобразователя.

Как показано на Фиг.1, трехфазная сеть 1 имеет несколько фаз 2-4. На Фиг.1 показаны три такие фазы 2-4. Однако число фаз может быть также больше, например, пять. Трехфазная сеть питается из источника 5. Источник 5 может быть, например, трансформатором трехфазного тока. К трехфазной сети 1 подключена нагрузка 6. Нагрузка 6 может быть выполнена, например, в виде дуговой печи трехфазного тока или другой сильно нелинейной нагрузки.

Если нагрузка 6 работает без дополнительных мер от трехфазной сети 1, то это приводит к сильным обратным воздействиям на сеть. Поэтому параллельно нагрузке 6 включен компенсатор 7 реактивной мощности. Компенсатор 7 реактивной мощности выполнен, согласно изобретению, в виде многоуровневого преобразователя 7.

Многоуровневый преобразователь 7 имеет несколько преобразовательных ветвей 8-10. Каждая преобразовательная ветвь 8-10 имеет последовательную схему отдельно инвертируемых источников напряжения. Число источников напряжения в преобразовательной ветви 8-10 можно выбирать по потребности. Как правило, оно лежит между 10 и 100. В любом случае оно значительно больше двух. Принципиальная схема преобразовательных ветвей 8-10 подробно описана в уже упомянутом US 6 075 350 А, так что можно отказаться от подробного описания схемы отдельных преобразовательных ветвей 8-10.

Как показано на Фиг.1, каждая преобразовательная ветвь 8-10 соединена с двумя соответствующими фазами 2-4. Таким образом, преобразовательные ветви 8-10 включены в фазы 2-4 трехфазной сети 1 по схеме треугольника. В качестве альтернативного решения, преобразовательные ветви 8-10 могут быть подключены к фазам 2-4 трехфазной сети 1 по схеме звезды.

Кроме того, многоуровневый преобразователь 7 имеет управляющее устройство 11. Управляющее устройство 11 принимает сигналы U2-U4, IL2-IL4 состояния трехфазной сети 1. На основании подаваемых сигналов U2-U4, IL2-IL4 состояния трехфазной сети 1 оно определяет состояние А управления для преобразовательных ветвей 8-10. Состояние А управления содержит для каждого отдельного источника напряжения каждой преобразовательной ветви 8-10 ее двоичное (+/-) или троичное (+/0/-) отдельное состояние управления.

Управляющее устройство 11 может быть реализовано с помощью схемной техники. В этом случае принцип действия управляющего устройства 11 определяется его схемной технической реализацией. Однако, как правило, управляющее устройство 11 выполнено в виде программируемого с помощью программного обеспечения управляющего устройства 11. В этом случае принцип действия управляющего устройства 11 определяется компьютерной программой 12, с помощью которой программировано управляющее устройство 11.

Компьютерная программа 12 содержит машинный код 13, который предназначен непосредственно для выполнения управляющим устройством 11. Выполнение машинного кода 13 управляющим устройством 11 приводит к тому, что управляющее устройство 11 выполняет способ работы, который определяется машинным кодом.

Компьютерная программа 12 может вводиться в управляющее устройство 11 любым образом. Например, компьютерная программа 12 может быть заложена в управляющее устройство 11 уже при изготовлении управляющего устройства 11. В качестве альтернативного решения, возможен ввод компьютерной программы в управляющее устройство 11 через вычислительную сеть, например, World Wide Web. Опять же в качестве альтернативного решения, можно сохранять компьютерную программу 12 на мобильном носителе 14 информации в машинно-читаемом виде и с помощью его вводить в управляющее устройство. Мобильный носитель 14 информации может быть выполнен по потребности. Чисто в качестве примера на Фиг.1 схематично показана флэшка USB. В качестве альтернативного решения, мобильный носитель 14 информации может быть выполнен в виде компакт-диска или CD-ROM.

Независимо от того, выполнено ли управляющее устройство 11 в виде схем или выполняет компьютерную программу 12, управляющее устройство 11 реализует способ работы, более подробное пояснение которого приводится ниже со ссылками на Фиг.2.

Как показано на Фиг.2, в управляющее устройство 11 подаются значения фазовых напряжений U2-U4 и значения фазовых токов IL2 - IL4. Значения фазовых напряжений U2-U4 являются характеристическими для приложенных к фазам 2-4 фазовых напряжений. Их можно снимать, например, с помощью соответствующих датчиков 15 напряжения. В принципе съем можно осуществлять в любом месте трехфазной сети 1. Предпочтительно, съем осуществляется вблизи источника 5 питания. Значения фазовых токов IL2-IL4 являются характеристическими для проходящих в фазах 2-4 фазовых токов. Их можно измерять, например, с помощью соответствующих датчиков 16 тока. Предпочтительно, датчики 16 тока расположены в той части трехфазной сети 1, через которую снабжается исключительно нагрузка 6.

Как показано на Фиг.1 и 2, в управляющее устройство 11 непосредственно подаются значения фазовых напряжений U2-U4 и значения фазовых токов IL2-IL4. Однако в качестве альтернативного решения можно пересчитывать значения фазовых напряжений U2-U4 и значения фазовых токов IL2-IL4 в ортогональную двухкомпонентную систему. Этот перерасчет известен специалистам и поэтому подробно не поясняется.

Управляющее устройство 11 реализует по меньшей мере пять путей 17 прохождения сигналов, которые сходятся все в общей узловой точке 18. Пути 17 прохождения сигналов уточняются в последующем для отличия друг от друга буквой а-е. Соответствующая одинаковая буква а-е применяется также, если это целесообразно, в качестве добавления для отдельных элементов соответствующих путей 17 прохождения сигналов.

В первом пути 17а прохождения сигналов происходит в блоке 19а связи (в так называемой системе прямой последовательности фаз) покомпонентное перемножение значений фазовых напряжений U2-U4 с соответствующими значениями фазовых токов IL2-IL4. Кроме того, определяется сумма произведений. Выходной сигнал блока 19а связи является активной составляющей w. Активная составляющая w является скалярной величиной, которая является характеристической для протекающего в целом в трехфазной сети 1 активного тока.

Когда, например, значения фазовых напряжений U2-U4 и значения фазовых токов IL2-IL4 пересчитываются в ортогональную двухкомпонентную систему, и в двухкомпонентной системе значения фазовых напряжений обозначаются как u1, u2, а также значения фазовых токов обозначаются как i1, i2, то для активной соответствующей w получают: w = u1 i1 + u2 i2.

Активная составляющая w фильтруется в фильтре 20а с помощью характеристики фильтра. Как правило, происходит фильтрация низких частот. Однако возможны также другие характеристики фильтра, например, полосно-пропускающая фильтрация или полосно-заграждающая фильтрация.

Фильтрованная активная составляющая w подается в блок 21 умножения, в который дополнительно подаются значения фазовых напряжений U2-U4. В блоке 21а умножения значения фазовых напряжений U2-U4 перемножаются с фильтрованной активной составляющей w. Перемноженные с активной составляющей w значения фазовых напряжений U2-U4 подаются через блок 22а взвешивания в узловую точку 18. В блоке 22 взвешивания происходит взвешивание с весовым коэффициентом ga.

Необязательно, после блока 22а взвешивания может быть расположен согласующий фильтр 26а. Согласующий фильтр 26а выполняет, если он имеется, фильтрацию, которая вблизи частоты сети (обычно 50 Гц или 60 Гц) имеет интегрирующее действие.

Второй путь 17b прохождения сигналов выполнен аналогично первому пути 17а прохождения сигналов. Однако в отличие от первого пути 17а прохождения сигналов перед обрабатывающим блоком 19b второго пути 17b прохождения сигналов расположен инвертор 23b направления вращения. Инвертор 23b направления вращения инвертирует направление вращения значений фазовых напряжений U2-U4. Таким образом, определяется так называемая противоположная система. Поэтому выходной сигнал w' блока 19b связи соответствует фиктивной активной составляющей w'. Она также является скалярной величиной. Она соответствует, относительно инвертированной трехфазной сети 1, фиктивной активной мощности. В указанной выше ортогональной двухкомпонентной системе получают фиктивную активную составляющую w', например, в виде w' = u1 i1 - u2 i2.

Третий путь 17с прохождения сигналов выполнен аналогично второму пути 17b прохождения сигналов. В качестве инвертора 23с направления вращения можно использовать при необходимости инвертор второго пути 17b прохождения сигналов. Отличие третьего пути 17с прохождения сигналов от второго пути 17b прохождения сигналов состоит в виде осуществления связи в блоке 19с связи третьего пути 17с прохождения сигналов. А именно, выходной сигнал b' третьего блока 19с связи соответствует, относительно инвертированной трехфазной сети 1, фиктивной реактивной мощности. В указанной выше ортогональной двухкомпонентной системе выходной сигнал b' получается, например, в виде b' = u1 i2 + u2 i1.

Оба выходных сигнала w', b' второго и третьего блока 19b, 19с связи являются составляющими асимметрии. Они являются характеристическими для распределения протекающих в целом в трехфазной сети 1 активных и реактивных токов по фазам 2-4 трехфазной сети 1.

Четвертый путь 17d прохождения сигналов имеет симметрирующий блок 27. В симметрирующий блок 27 подаются составляющие w', b' асимметрии и значения фазовых напряжений U2-U4. Симметрирующий блок 27 определяет ток I0 в нулевом проводе, который также подается в узловую точку 18. Ток I0 в нулевом проводе одинаков для всех фаз 2-4. Он определяется так, что он симметрирует возможный асимметричный поток активной мощности многоуровневого преобразователя 7, который бы получался без тока I0 в нулевом проводе. В частности, в указанной выше ортогональной двухкомпонентной системе ток I0 в нулевом проводе получается в виде

I0 = (2/√3) · (u1 b' + u2 w')/(u12 + u22).

Выполнение симметрирующего блока 27 само по себе известно специалистам. Оно известно, например, в статическом виде как так называемая схема Штейнметца. Чисто в качестве примера делается ссылка на статью “Koordinatentransformation fuer Mehrgroessen-Regelsysteme zur Kompensation und Symmetrierung von Drehstromnetzen” (Преобразование координат для регулировочных систем с несколькими величинами для компенсации и симметрирования трехфазных сетей), W. Meusel, H. Waldmann, Siemens Forsch.- u. Entwickl.-Ber., том 6 (1977), № 1, стр. 29-38, Springer-Verlag 1977.

Через пятый путь 17е прохождения сигналов в узловую точку 18 подаются значения фазовых токов IL2-IL4. Однако в отличие от остальных подаваемых в узловую точку 18 значений, значения фазовых токов IL2-IL4 подаются в узловую точку 18 со знаком минус.

В узловой точке 18 суммируются покомпонентно, т.е. отдельно для каждой фазы 2-4, подводимые к узловой точке 18 сигналы. Выходной сигнал узловой точки 18 соответствует требуемому номинальному току для отдельных преобразовательных ветвей 8-10 многоуровневого преобразователя 7. Он подается в преобразователь 24, который определяет из него требуемые значения напряжения преобразовательных ветвей 8-10. Значения напряжения соответствуют в совокупности номинальному состоянию управления преобразовательных ветвей 8-10. Они подаются в преобразовательные ветви 8-10, так что выполняется соответствующее управление ими. Определение номинального состояния управления при заданном требуемом номинальном токе известно для специалистов. Его можно осуществлять так же, как в упомянутом вначале US 6 075 350 А.

На основе покомпонентного образования суммы в узловой точке 18 определяют требуемый номинальный ток для отдельных преобразовательных ветвей 8-10 многоуровневого преобразователя 7 так, что компенсируются не только гармоники и составляющие реактивной мощности, но, кроме того, активная мощность равномерно распределяется по фазам 2-4 трехфазной сети 1.

Характеристики фильтров 20а-20с можно выбирать независимо друг от друга. Как правило, характеристики фильтров 20b и 20с одинаковы друг с другом. Предпочтительно, характеристики фильтров 20b, 20с для составляющих w', b' асимметрии выбирают так, что они усиливают и без фильтрации имеющееся уменьшение пульсации. Соответствующее выполнение фильтров известно специалистам. Например, фильтры 20а-20с могут в качестве альтернативного решения или (предпочтительно) дополнительно иметь характеристику для фильтрации низких частот, которая является инверсной относительно известной специалистам характеристики чувствительности глаза.

Характеристика фильтра 20а для составляющей w активной мощности может быть выбрана одинаковой с характеристиками фильтров 20b, 20с. В качестве альтернативного решения, она может отличаться от характеристики фильтров 20b, 20c. За счет этого возможна, в частности, оптимизация состояния заряженности L многоуровневого преобразователя 7 независимо от распределения состояния заряженности L на отдельные преобразовательные ветви 8-10.

Кроме того, в одном дополнительном варианте выполнения данного изобретения можно подавать в управляющее устройство 11 информацию о состоянии заряженности L преобразовательных ветвей 8-10. В этом случае может, например, в обрабатывающем блоке 25 осуществляться оценка состояния заряженности L. В рамках этой оценки можно, например, единообразно для фильтров 20а-20с и/или блоков 22а-22с взвешивания или же независимо для каждого из этих компонентов 20а-20са, 22а-22с определять коэффициент а адаптации. На основе коэффициента а адаптации можно осуществлять согласование характеристик фильтров 20а-20с и/или весовых коэффициентов ga-gc.

Для каждого из фильтров 20а-20с и каждого из блоков 22а-22с взвешивания можно определять собственный коэффициент а адаптации. В качестве альтернативного решения, возможно, что коэффициент а адаптации воздействует лишь на отдельные компоненты 20а-20с, 22а-22с. Возможно также, что коэффициент а адаптации действует одинаково или различно на некоторые из компонентов 20а-20с, 22а-22с. Воздействие может быть непрерывным или ступенчатым, с или без гистерезиса. Возможно также переключение между различными коэффициентами фильтров, комплектами параметров и т.д.

Поясненное выше выполнение полностью достаточно, когда число фаз 2-4 трехфазной сети 1 равно точно трем. Когда число фаз 2-4 больше трех, например пять, может быть необходимо определять другие составляющие асимметрии. В этом случае должны иметься, дополнительно к путям 17а-17е прохождения сигналов, для каждой дополнительно определяемой составляющей асимметрии соответствующий дополнительный путь 17 прохождения сигналов. Выполнение соответствующих дополнительных путей прохождения сигналов аналогично выполнению путей 17b и 17с прохождения сигналов.

Данное изобретение имеет много преимуществ. В частности, осуществляется простое, стабильное, надежное и быстрое регулирование многоуровневого преобразователя 7, при этом «неспокойные» и несимметричные потребители вызывают небольшие пульсации. За счет способа согласно изобретению обеспечивается очень быстрая компенсация при одновременном предотвращении перегрузки многоуровневого преобразователя 7. Кроме того, обеспечивается симметричная нагрузка трехфазной сети 1. Можно учитывать также состояние заряженности L многоуровневого преобразователя 7. Требующиеся для этого способы вычисления известны специалистам, так что их можно легко осуществлять.

Приведенное выше описание служит исключительно для пояснения данного изобретения. Объем защиты данного изобретения определяется исключительно прилагаемой формулой изобретения.


МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ В КАЧЕСТВЕ КОМПЕНСАТОРА РЕАКТИВНОЙ МОЩНОСТИ С СИММЕТРИРОВАНИЕМ АКТИВНОЙ МОЩНОСТИ
МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ В КАЧЕСТВЕ КОМПЕНСАТОРА РЕАКТИВНОЙ МОЩНОСТИ С СИММЕТРИРОВАНИЕМ АКТИВНОЙ МОЩНОСТИ
Источник поступления информации: Роспатент

Показаны записи 241-250 из 1 427.
20.07.2014
№216.012.e01f

Конструктивный элемент с антимикробной поверхностью и его применение

Изобретение относится к биоцидным элементам. Конструктивный элемент с антимикробной поверхностью (12). На данной поверхности (12) имеются металлические участки поверхности (14) и соприкасающиеся с ними участки поверхности (13) из MnO, причем металлические участки поверхности (14) состоят из Ag...
Тип: Изобретение
Номер охранного документа: 0002523161
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e037

Металлическое покрытие со связующим веществом с высокой температурой перехода гамма/гамма' и деталь

Изобретение относится к области металлургии, в частности к металлическому покрытию со связующим, и может быть использовано в качестве покрытия для детали газовой турбины. Металлическое покрытие из сплава на основе никеля для деталей газовых турбин содержит γ- и γ-фазы и, необязательно, β-фазу,...
Тип: Изобретение
Номер охранного документа: 0002523185
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e098

Литьевая смоляная система для изоляторов с повышенной теплостойкостью

Настоящее изобретение относится к области литьевых смол для коммутационных устройств. Описана твердая смоляная система для изоляционных материалов в коммутационных устройствах, содержащая твердую смолу на основе бисфенола A, которая имеет эпоксидное число (DIN ISO 16945) от ≥0,2 до ≤0,3, и...
Тип: Изобретение
Номер охранного документа: 0002523282
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e183

Устройство горелки для текучего топлива и способ изготовления устройства горелки

Изобретение относится к области энергетики. Устройство (20) горелки для топочной установки для сжигания текучих сред топлива и/или инертных материалов, в частности жидкого топлива и/или топочного газа, причем для каждого вида топлива и/или инертного вещества предусмотрено, по меньшей мере, одно...
Тип: Изобретение
Номер охранного документа: 0002523517
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e185

Способ эксплуатации горелки, горелка, в частности для газовой турбины и газовая турбина

Предложен способ эксплуатации горелки, содержащей ось и по меньшей мере одно струйное сопло. Одно струйное сопло включает среднюю ось, выход и стенку, обращенную к оси горелки в радиальном направлении, исходя от средней оси. Массовый поток текучей среды, включающий топливо, течет через по...
Тип: Изобретение
Номер охранного документа: 0002523519
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e2df

Коммуникационная сеть для связанного с колеей транспортного средства

Изобретение относится к рельсовым транспортным средствам с несколькими вагонами, оснащенными сетью передачи данных. Связанное с колеей рельсовое транспортное средство с несколькими вагонами и коммуникационной сетью для передачи сигналов данных, которая включает в себя две проходящие через...
Тип: Изобретение
Номер охранного документа: 0002523869
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e31d

Способ регулирования процесса горения, в частности, в топочном пространстве парогенератора, отапливаемого ископаемым топливом, и система сжигания

Изобретение относится к способу регулирования процесса сгорания, в частности, в топочном пространстве парогенератора, отапливаемого ископаемым топливом, в котором в топочном пространстве определяются пространственно разрешимые измеренные значения. Пространственно разрешимые измеренные значения...
Тип: Изобретение
Номер охранного документа: 0002523931
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e32f

Беспроводное управляющее устройство

Изобретение относится к беспроводному управляющему устройству. Технический результат - повышение преобразования сигнала для передачи. Беспроводное управляющее устройство, содержащее антенну и сборщик мощности для генерации мощности для устройства из радиочастотного сигнала, падающего на...
Тип: Изобретение
Номер охранного документа: 0002523949
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e39a

Способ и устройство для определения магнитного параметра в сердечнике

Изобретение относится к области измерительной техники и представляет собой способ и устройство для определения магнитного параметра, в частности составляющей постоянного магнитного поля в участке сердечника, через который протекает магнитный поток, с последующей компенсацией этой составляющей....
Тип: Изобретение
Номер охранного документа: 0002524056
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e40c

Динамоэлектрическая машина

Изобретение относится к электротехнике, к динамоэлектрическим машинам с системой охлаждения. Технический результат состоит в улучшении отвода тепла без усложнения конструкции. Динамоэлектрическая машина (1) содержит статор (2) и ротор (3). В пазах, по меньшей мере, статора (2) расположена...
Тип: Изобретение
Номер охранного документа: 0002524170
Дата охранного документа: 27.07.2014
Показаны записи 241-250 из 944.
10.06.2014
№216.012.cf44

Холоднопрокатный стан с регулированием массового потока на прокатной клети

Изобретение предназначено для повышения точности регулирования массового потока холоднопрокатного стана в динамически изменяющихся эксплуатационных условиях. Стан содержит несколько последовательно проходимых холоднопрокатываемой полосой (1) прокатных клетей (2). Повышение точности конечной...
Тип: Изобретение
Номер охранного документа: 0002518831
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf57

Нано- и микроструктурное керамическое термобарьерное покрытие

Изобретение относится к керамическому термобарьерному покрытию, которое имеет наноструктурный и микроструктурный слой. Керамическое термобарьерное покрытие на подложке из жаропрочного сплава на основе никеля или кобальта, или железа содержит необязательно металлическое связующее покрытие (7) и...
Тип: Изобретение
Номер охранного документа: 0002518850
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d02a

Ветроэлектрический генератор

Изобретение относится к ветроэлектрическому генератору (1) с замкнутым внутренним охлаждающим контуром со статором (4), выполненным из листового металла, который имеет систему обмоток, которая на торцевых сторонах статора образует лобовые части (10) обмоток, причем статор (4) по меньшей...
Тип: Изобретение
Номер охранного документа: 0002519061
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d057

Компенсатор давления для подводного устройства

Изобретение относится к компенсаторам давления, предназначенным для компенсации давления между окружающей средой вокруг подводного устройства и жидкой средой, заполняющей объем подводного устройства. Компенсатор давления имеет, по меньшей мере, один внешний сильфон и первую камеру,...
Тип: Изобретение
Номер охранного документа: 0002519106
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d18c

Распылительное сопло и способ атмосферного напыления, устройство для покрытия и покрытая деталь

Изобретение относится к способу атмосферного плазменного напыления и может быть использовано для нанесения покрытия на различные детали машин, например на турбины. Из распылительного сопла для атмосферного плазменного напыления в направлении вытекания выходит материал покрытия. Сопло (4) на...
Тип: Изобретение
Номер охранного документа: 0002519415
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d206

Способ и устройство для мониторинга эцн

В способе мониторинга ЭЦН с насосом для перекачки нефти, газа, воды или других веществ текучей среды, в котором насос приводится в действие электрическим двигателем, используют акустические явления в двигателе и/или насосе как переменные состояния для вещества перекачки, причем акустические...
Тип: Изобретение
Номер охранного документа: 0002519537
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d325

Система и способ распределения мощности

Изобретение относится к системе и способу для распределения мощности. Технический результат заключается в создании улучшении качества распределения мощности. Система (10) содержит множество систем (12, 14, 16, 18) генератора, при этом каждая система (12, 14, 16, 18) генератора содержит...
Тип: Изобретение
Номер охранного документа: 0002519824
Дата охранного документа: 20.06.2014
27.06.2014
№216.012.d559

Способ и система для контроля системы, связанной с безопасностью

Группа изобретений относится к средствам контроля по меньшей мере одного процесса, происходящего в системе, связанной с безопасностью. Технический результат заключается в обеспечении возможности гибкой и обобщенной сертификации связанных с безопасностью систем. Для этого предложен способ...
Тип: Изобретение
Номер охранного документа: 0002520395
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d599

Способ регулирования для зеркала расплава в кристаллизаторе непрерывной разливки

Подачу жидкого металла в кристаллизатор непрерывной разливки устанавливают посредством блокирующего устройства. Частично отвердевшее металлическое прессованное изделие выпускают из кристаллизатора непрерывной разливки с помощью разгрузочного устройства. Измеренное фактическое значение (hG)...
Тип: Изобретение
Номер охранного документа: 0002520459
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d5ee

Способ определения очищенного ценного газа из газовой смеси, а также устройство для осуществления этого способа

Изобретение относится к способу и устройству для отделения очищенного ценного газа из газовой смеси. Способ и устройство содержат, главным образом, углекислый газ, по меньшей мере, один ценный газ, а также, по меньшей мере, одно вредное вещество, причем проводится конденсация углекислого газа,...
Тип: Изобретение
Номер охранного документа: 0002520544
Дата охранного документа: 27.06.2014
+ добавить свой РИД