×
20.06.2014
216.012.d2bc

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕГО ПРОКАТА ИЗ МИКРОЛЕГИРОВАННЫХ СТАЛЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к обработке металлов давлением и может быть использовано для упрочнения металла в процессе обработки. Для повышения прочностных характеристик производимой стали осуществляют нагрев заготовки выше температуры аустенизации стали, черновую прокатку, междеформационное охлаждение, чистовую прокатку в температурном диапазоне 950-770°C в течение не менее 60 с с обеспчением формирования наноразмерных выделений Nb-Nb, и/или Nb-Ti, и/или Nb-Mo, и/или Мо-Мо в матрице парамагнитного кубического гранецентрированного и/или объемноцентрированного железа и последующую термическую обработку в интервале 680-450°C в течение не менее 80 с, обеспечивающую формирование наноразмерных выделений Cu-Cu и/или Cu-Ni в матрице ферромагнитного кубического объемноцентрированного железа. 2 з.п. ф-лы, 4 пр.

Изобретение относится к обработке металлов давлением и может быть использовано для упрочнения металла в процессе обработки.

Известна технология упрочнения рабочих поверхностей металлических материалов на основе железа, никеля, вольфрама, которая включает облучение поверхности газовыми или металлическими ионами в ускорителе с энергией 10-50 кэВ, стационарной или импульсной плазмой, при этом при облучении формируют нанокластерную структуру, состоящую из металлической матрицы, пронизанной кластерами размерами 3-4 нм, имеющими кристаллическую симметрию, отличную от матрицы (RU 2209848 [1]). Недостатками технологии являются ее сложность, высокая стоимость и невозможность применения в крупнотоннажном производстве. Кроме того, упрочнение достигается только на поверхностях металлических материалов.

Известен способ упрочнения режущего инструмента наноструктурированием, включающий его пластическое деформирование, создающее на поверхности и в приповерхностном слое нанодисперсную структуру. Деформирование осуществляется при интенсивном деформационном воздействии импульсами ультразвуковой частоты 20-25 кГц посредством цилиндрических инденторов, свободно перемещающихся в осевом направлении по нормали к обрабатывамой поверхности с энергией удара 0,3-0,9 кГц и локальном нагревом в месте контакта 300-500°C (RU 2010118808 [2]).

Недостатками способа являются его сложность, высокая стоимость и невозможность применения в крупнотоннажном производстве. Кроме того, упрочнение достигается только на поверхности металлических материалов.

Известен способ производства стали, содержащей карбидные наночастицы и микрокристаллы феррита. Способ предусматривает горячую прокатку стали мартенситно-бейнитного класса с обеспечением распределения карбидных наночастиц по поверхности ферритных микрокристаллов, что приводит к повышению прочности и пластичности. Способ не требует отжига после прокатки (CN 1752222 [3]).

Недостатком известного способа является относительно невысокая прочность производимой эти способом стали.

Известен способ получения низкоуглеродистой стали с высокой прочностью и высокой пластичностью с ультрамелкозернистым ферритом и нанокарбидами (CN 101671771 [4]). Способ включает горячую прокатку низкоуглеродистой стали марки 14MnNb в слитках при температурах наличия в слитках аустенита в качестве единственной фазы, затем охлаждение распылением воды для перехода в двухфазную область аустенит-феррит, дальнейшее нагревание до температуры ниже Ас1 для прокатки и воздушное охлаждение до комнатной температуры. В полученном материале присутствуют структурные элементы из зерен феррита со средним диаметром 0,5-0,8 мк и наночастиц карбида со средним диаметром 55-90 нм. Параметры стали: предел текучести 640-695 МПа, предел прочности при растяжении 765-851 МПа, общий коэффициент удлинения составляет 12,4-16,5%.

Недостатком известного способа является сложность реализации, связанная с водяным охлаждением в промежуточной стадии и повторным нагревом перед чистовой прокаткой.

Наиболее близким к заявляемому способу производства горячекатаного листа из микролегированных сталей по совокупности существенных признаков является способ производства низколегированной высокоуглеродистой стали с высокой прочностью и высокой пластичностью с элементами наноструктуры (CN 101693981 [5]).

Сталь содержит следующие компоненты в процентах по весу: 0,7-0,9 процента C, 1,4-1,6 процента Si, 1,2-1,4 процента Mn, 1,4-1,6 процента Al, 0,7-0,9 процента Cr, 0,7-0,9 процента W, менее 0,02 процента P, менее 0,02 процента S, остальное Fe. Способ включает следующие этапы: плавление компонентов, формирование стального слитка, медленное охлаждение его до комнатной температуры, нагревание стального слитка до 1160-1180°C, горячую прокатку слитка до толщины менее 25 мм, чистовую прокатку при температуре 990-1010°C, быстрое перемещение заготовки после прокатки в соляную ванну с температурой 220-260°C и выдержка при постоянной температуре 4-24 ч, а затем охлаждение на воздухе до комнатной температуры для получения низколегированной высокоуглеродистой стали с высокой прочностью и высокой пластичностью. Микроструктура состоит из бейнитного феррита размером 60-90 нм и остаточного аустенита и имеет предел прочности при растяжении 2000-2300 МПа, предел текучести 1500-1900 МПа при условии 0,2 процента деформации, общий процент удлинения 6,7-7,8 процента.

Недостатком известного способа является сложность реализации и отсутствие целенаправленного управления наноструктурными выделениями микролегирующих элементов в стали.

Заявляемый способ производства горячекатаного листа из микролегированных сталей направлен на повышение прочностных характеристик производимой стали.

Указанный результат достигается тем, что способ производства горячего проката из микролегированных сталей включает нагрев заготовки выше температуры аустенизации стали, черновую прокатку, междеформационное охлаждение, чистовую прокатку в температурном диапазоне 950-770°C в течение не менее 60 с с обеспчением формирования наноразмерных выделений Nb-Nb, и/или Nb-Ti, и/или Nb-Mo, и/или Мо-Мо в матрице парамагнитного кубического гранецентрированного и/или объемноцентрированного железа и последующую термическую обработку в интервале 680-450°C в течение не менее 80 с, обеспечивающую формирование наноразмерных выделений Cu-Cu и/или Cu-Ni в матрице ферромагнитного кубического объемноцентрированного железа.

Указанный результат достигается также тем, что при производстве рулонного проката термическую обработку осуществляют путем ускоренного охлаждения от температуры конца прокатки до температуры смотки с последующим остыванием рулона на воздухе.

Указанный результат достигается также тем, что при производстве толстолистового проката термическую обработку осуществляют путем ускоренного охлаждения проката от температуры конца прокатки до комнатной температуры с последующим нагревом до 450-680°C, выдержкой и охлаждением на воздухе.

Необходимость выделения двух различных вариантов реализации способа обусловлена различными технологиями, применяемыми при производстве проката разных сортаментных групп: рулонного и толстолистового.

В частных случаях реализации при производстве рулонного проката термическую обработку осуществляют путем ускоренного охлаждения от температуры конца прокатки до температуры смотки с последующим остыванием рулона на воздухе. Остывание смотанного рулона происходит по механизму теплопередачи внутри массивного тела, в течение которого реализуются необходимые температурно-временные условия для формирования наноразмерных выделений Cu-Cu и/или Cu-Ni в матрице ферромагнитного ОЦК железа.

В ряде случаев при производстве толстолистового проката термическую обработку осуществляют путем ускоренного охлаждения проката от температуры конца прокатки до комнатной температуры с последующим нагревом до 450-680°C, выдержкой и охлаждением на воздухе. Применение повторного нагрева и выдержки позволяет через управление структурным состоянием металла существенно повлиять на механические свойства готового проката. Дополнительно формируя при термической обработке наноразмерные выделения микролегирующих элементов, можно увеличить их объемную долю в объеме металла, обеспечив тем самым больший уровень упрочнения.

Известными способами повышения прочности микролегированных сталей являются:

- увеличение содержания углерода;

- твердорастворное упрочнение феррита, достигаемое при легировании стали такими элементами, как Mn, Si, Ni, Cr и т.п.;

- измельчение зерна в конечной структуре;

- дисперсионное твердение по механизму образования карбонитридов таких микролегирующих элементов, как V, Nb и Ti.

Авторами было установлено, что наряду с вышеперечисленными способами упрочнения микролегированных сталей существенное влияние на их прочностные свойства оказывает образование в стали частиц легирующих элементов наноразмерного масштаба.

Одну из ключевых ролей в термодинамике стали и сплавов на основе железа играет магнетизм. При понижении температуры ниже точки Кюри Тк (в железе Тк=770°C) магнитные моменты упорядочиваются, ориентируясь в одном направлении (ферромагнитное состояние), благодаря чему энергетически предпочтительным оказывается ОЦК структура (α-фаза, феррит). При температуре Т>Тк средний по образцу магнитный момент равен нулю (парамагнитное состояние), но ближний порядок в ориентации магнитных моментов сохраняется в железе вплоть до температуры 911°C, при которой происходит переход в парамагнитную ГЦК фазу.

В результате применения современных методов электронной теории металлов и численного моделирования, основанных на теории функционала электронной (или спиновой) плотности (DFT) [6, 7], и первопринципных расчетов электронной структуры [8], энтальпии смешения [8, 9], энергии эффективных парных и многочастичных взаимодействий между атомами легирующих и примесных элементов [8-11] было установлено, что:

- существенным фактором, определяющим характер взаимодействия между легирующими элементами, является магнитное состояние матрицы;

- Nb, Nb-Ti, Nb-Mo и Mo имеют существенную склонность к кластеризации (образованию нановыделений) в парамагнитном ГЦК и ОЦК железе на трех координационных сферах;

- Cu является единственным легирующим элементом, демонстрирующим сильную склонность к кластеризации в матрице ОЦК Fe, при этом в тройной системе Fe-Cu-Ni имеется притяжение между атомами меди и никеля. Присутствие в химическом составе никеля будет стимулировать кластеризацию меди на наномасштабном уровне.

Из этого следует, что формирование наноразмерных выделений Nb-Nb, и/или Nb-Ti, и/или Nb-Mo, и/или Мо-Мо необходимо осуществлять в матрице ГЦК или ОЦК железа, находящегося в парамагнитном состоянии (выше Тк железа), а формирование наноразмерных выделений Cu-Cu и/или Cu-Ni - в матрице ферромагнитного ОЦК железа (ниже Тк железа).

Установлено, что формирование частиц наноразмерного масштаба различных микролегирующих элементов в матрице железа осуществляется при соблюдении надлежащих режимов термомеханической обработки. Эти режимы могут быть подобраны экспериментально или расчетно.

При экспериментальном определении режимов, обеспечивающих формирование наноразмерных выделений легирующих элементов, образцы исследуемой стали подвергались нагреву, деформации различной степени, выдержкам различной продолжительности и охлаждению с различными скоростями в диапазоне температур, при которых железо находится в соответствующем состоянии; для наноразмерных выделений Nb-Nb, и/или Nb-Ti, и/или Nb-Mo, и/или Мо-Мо - парамагнитное ГЦК или ОЦК железо, для наноразмерных выделений Cu-Cu и/или Cu-Ni - ферромагнитное ОЦК железо.

Затем образцы подвергались закалке и электронно-микроскопическим исследованиям на просвечивающем электронном микроскопе. По результатам исследования устанавливалась наличие в образцах соответствующих выделений наноразмерного масштаба с характерным размером 5-10 нм. Методом 3D-атом-проб томографии устанавливался химический состав выделений.

При определении режимов расчетным путем проводилось численное моделирование процесса нагрева и выдержки сплавов железа, содержащих легирующие элементы в заданной концентрации методом кинетического Монте-Карло (КМК). Для этого сначала в кристаллите, содержащем не менее 1000000 атомов, моделировалось случайное размещение атомов легирующего элемента, замещающие атомы железа и в кластерном приближении вычислялась конфигурационная энергия сплава по формуле

,

где - энергия атома сорта α (в эВ), занимающего узел i, - энергия эффективного парного (трехчастичного) взаимодействия (в эВ) между атомами сортов α, β (α, β γ), расположенных в узлах i, j (i, j, k), рассчитанная из первых принципов методами теории функционала электронной плотности, - числа заполнения, равные 1, если атом сорта α занимает узел I, и равные 0 в противоположном случае. Затем осуществлялся обмен каждого атома легирующего элемента со случайно выбранным соседним атомом железа, и новая конфигурация принималась с вероятностью 1, если ее энергия ниже исходной, либо с вероятностью ехр(-ΔЕ/kТ), если ее энергия ваше исходной на величину ΔЕ; при этом время обмена атомами выбиралось в так, чтобы обеспечить известную скорость диффузии легирующего элемента в железе при известной температуре. При этой температуре после заданного числа КМК шагов, соответствующих определенному времени выдержки, определялась объемная доля и размер образовавшихся кластеров легирующих элементов. Построенная в результате термокинетическая ТТТ диаграмма распада использовалась для определения оптимальных температур и времен выдержки для образования наноразмерных выделений.

Было установлено, что для формирования наноразмерных выделений Nb и/или Nb-Ti в матрице парамагнитного ГЦК или ОЦК железа необходимо обеспечить условия, при которых температура металла будет находиться в интервале от 950 до 770°C в течение не менее 60 с. Для формирования наноразмерных выделений Cu, и/или Ni, и/или Cu-Ni в матрице ферромагнитного ОЦК железа необходимо обеспечить условия, при которых температура металла будет находиться в интервале от 680 до 450°C в течение не менее 80 с. При этом условия пребывания металла в указанном температурном интервале могут допускать такие технологические операции, как, например, деформирование, выдержка, нагрев, охлаждение, термоциклирование и пр.

Сущность заявляемого способа поясняется примерами реализации.

Пример 1. Заготовку (сляб) весом 16,95 т размерами 300×2400×3100 мм из стали следующего состава, масс.%: 0,07% С; 0,22% Si; 1,62% Mn; 0,002% S; 0,01% P; 0,16% Cr; 0,18% Ni; 0,14% Cu; 0,04% Al; 0,006% N; 0,02% V; 0,012% Ti; 0,078% Nb; 0,188% Mo; 0,0004% B; 0,005% Sn; остальное Fe и неконтролируемые примеси, полученную после разливки на машине непрерывного литья заготовок, передавали на толстолистовой стан горячей прокатки.

Перед началом прокатки заготовку нагревали до температуры 1200°C. Контролируемую прокатку производили в две стадии: черновая и чистовая с междеформационным охлаждением. Черновую прокатку проводили за 8 проходов в реверсивной клети в температурном диапазоне 1060-1020°C с суммарной степенью деформации 60% в течение 90 с.

Режимы чистовой прокатки, обеспечивающие формирование наноразмерных выделений Nb-Nb, Nb-Mo и Mo-Mo в матрице парамагнитного ГЦК железа, определяли экспериментальным путем в соответствии с методикой, приведенной выше.

Чистовую прокатку проводили за 13 проходов в реверсивной клети в температурном диапазоне 825-790°C с суммарной степенью деформации 80% в течение 115 с. Охлаждение проката в установке ускоренного охлаждения проводили со скоростью 25°C/с от температуры 780°C до 540°C, затем на воздухе.

Проведенные структурные исследования показали наличие в стали частиц Nb-Nb, Nb-Mo и Mo-Mo с характерным размером 5-10 нм.

Полученный листовой прокат имел следующие механические свойства: предел прочности при растяжении 690 Н/мм2, предел текучести 620 Н/мм2, отношение предела текучести к пределу прочности 0,9, относительное удлинение 23%, относительное сужение 8%.

Для сравнения - листы, прокатанные по традиционным режимам, имели следующие механические свойства: предел прочности при растяжении 660 Н/мм2, предел текучести 605 Н/мм2, отношение предела текучести к пределу прочности 0,92, относительное удлинение 20%, относительное сужение 7%.

Пример 2. Заготовку (сляб) весом 35,3 т размерами 250×1550×12000 мм из стали следующего состава, масс.%: 0,05% C; 0,22% Si; 1,55% Mn; 0,002% S; 0,012% Р; 0,08% Cr; 0,2% Ni; 0,17% Cu; 0,035% Al; 0,006% N; 0,01% V; 0,018% Ti; 0,09% Nb; 0,01% Mo; остальное Fe и неконтролируемые примеси, полученную после разливки на машине непрерывного литья заготовок, передавали на широкополосный стан горячей прокатки.

Перед началом прокатки заготовку нагревали до температуры 1190°C. Контролируемую прокатку производили в две стадии: черновая и чистовая с междеформационным охлаждением. Прокатку в черновой группе клетей проводили в температурном диапазоне 1100-970°C с суммарной степенью деформации 80%.

Прокатку в чистовой группе клетей проводили в температурном диапазоне 940-820°C с суммарной степенью деформации 72%.

Режимы охлаждения, обеспечивающие формирование наноразмерных выделений Cu-Cu и Cu-Ni в матрице ферромагнитного ОЦК железа, определяли расчетным путем в соответствии с методикой, приведенной выше.

Осуществляли охлаждение проката в установке ускоренного охлаждения со скоростью 30°C/с от температуры 790°C до 580°C, затем проводили смотку полосы с последующим остыванием в рулоне на воздухе.

Проведенные структурные исследования показали наличие в стали частиц Cu-Cu и Cu-Ni с характерным размером 5-10 нм.

Полученный рулонный прокат имел следующие механические свойства: предел прочности при растяжении 650 Н/мм2, предел текучести 555 Н/мм2, отношение предела текучести к пределу прочности 0,85, относительное удлинение 23%, относительное сужение 60%.

Для сравнения - полоса, прокатанная по традиционным режимам, имела следующие механические свойства: предел прочности при растяжении 600 Н/мм2, предел текучести 520 Н/мм2, отношение предела текучести к пределу прочности 0,86, относительное удлинение 20%, относительное сужение 60%.

Пример 3. Заготовку (сляб) весом 42,15 т размерами 250×1850×12000 мм из стали следующего состава, масс.%: 0,07% C; 0,25% Si; 1,5% Mn; 0,001% S; 0,01% P; 0,04% Cr; 0,22% Ni; 0,25% Cu; 0,038% Al; 0,006% N; 0,005% V; 0,02% Ti; 0,075% Nb; 0,007% Mo; остальное Fe и неконтролируемые примеси, полученную после разливки на машине непрерывного литья заготовок, передавали на широкополосный стан горячей прокатки.

Перед началом прокатки заготовку нагревали до температуры 1190°C. Контролируемую прокатку производили в две стадии: черновая и чистовая с междеформационным охлаждением. Прокатку в черновой группе клетей проводили в температурном диапазоне 1100-970°C с суммарной степенью деформации 78%.

Режимы чистовой прокатки и последующего охлаждения, обеспечивающие формирование наноразмерных выделений Nb-Nb и Nb-Ti в матрице парамагнитного ГЦК железа, и режимы охлаждения, обеспечивающие формирование наноразмерных выделений Cu-Cu и Cu-Ni в матрице ферромагнитного ОЦК железа, определяли расчетным путем, а затем уточнялись экспериментально в соответствии с методиками, приведенными выше.

Прокатку в чистовой группе клетей проводили в температурном диапазоне 920-800°C с суммарной степенью деформации 70%.

Осуществляли охлаждение проката в установке ускоренного охлаждения со скоростью 30°C/с от температуры 770°C до 560°C, затем проводили смотку полосы с последующим остыванием в рулоне на воздухе.

Проведенные структурные исследования показали наличие в стали частиц Nb-Nb, Nb-Ti и частиц Cu-Cu, Cu-Ni с характерным размером 5-10 нм.

Полученный рулонный прокат имел следующие механические свойства, предел прочности при растяжении 690 Н/мм2, предел текучести 580 Н/мм2, отношение предела текучести к пределу прочности 0,84, относительное удлинение 22%, относительное сужение 60%.

Для сравнения - полоса, прокатанная по традиционным режимам, имела следующие механические свойства: предел прочности при растяжении 600 Н/мм2, предел текучести 520 Н/мм2, отношение предела текучести к пределу прочности 0,86, относительное удлинение 20%, относительное сужение 60%.

Пример 4.

Заготовку (сляб) весом 16,95 т размерами 300×2400×3100 мм из стали следующего состава, масс.%: 0,07% С; 0,22% Si; 1,62% Mn; 0,002% S; 0,01% Р; 0,16% Cr; 0,18% Ni; 0,14% Сu; 0,04% Al; 0,006% N; 0,02% V; 0,012% Ti; 0,078% Nb; 0,188% Mo; 0,0004% B; 0,005% Sn; остальное Fe и неконтролируемые примеси, полученную после разливки на машине непрерывного литья заготовок, передавали на толстолистовой стан горячей прокатки.

Перед началом прокатки заготовку нагревали до температуры 1200°C. Контролируемую прокатку производили в две стадии: черновая и чистовая с междеформационным охлаждением. Черновую прокатку проводили за 8 проходов в реверсивной клети в температурном диапазоне 1060-1020°C с суммарной степенью деформации 60% в течение 90 с.

Режимы чистовой прокатки, обеспечивающие формирование наноразмерных выделений Nb-Nb, Nb-Mo и Мо-Мо в матрице парамагнитного ГЦК железа, определяли экспериментальным путем в соответствии с методикой, приведенной выше.

Чистовую прокатку проводили за 13 проходов в реверсивной клети в температурном диапазоне 825-790°C с суммарной степенью деформации 80% в течение 115 с. Охлаждение проката в установке ускоренного охлаждения проводили со скоростью 25°C/с от температуры 780°C до 540°C, затем на воздухе.

Режимы термической обработки, обеспечивающие формирование наноразмерных выделений Cu-Cu и Cu-Ni в матрице ферромагнитного ОЦК железа, определяли расчетным путем, а затем уточнялись экспериментально в соответствии с методиками, приведенными выше.

Термическую обработку проводили в соответствии со следующим режимом: осуществляли нагрев раската до температуры 610°C и выдержку в течение 20 мин, дальнейшее охлаждение осуществляли на воздухе.

Проведенные структурные исследования показали наличие в стали частиц Nb-Nb, Nb-Mo, Mo-Mo и частиц Cu-Cu, Cu-Ni с характерным размером 5-10 нм.

Полученный листовой прокат имел следующие механические свойства: предел прочности при растяжении 710 Н/мм2, предел текучести 635 Н/мм2, отношение предела текучести к пределу прочности 0,89, относительное удлинение 23%, относительное сужение 8%.

Для сравнения - листы, прокатанные по традиционным режимам без термической обработки, имели следующие механические свойства: предел прочности при растяжении 660 Н/мм2, предел текучести 605 Н/мм2, отношение предела текучести к пределу прочности 0,92, относительное удлинение 20%, относительное сужение 7%.

Список литературы

1. RU 2209848.

2. RU 2010118808.

3. CN 1752222.

4. CN 101671771.

5. CN 101693981

6. Hohenberg P., Kohn W., Inhomogenious electron gas // Phys Rev 1964, V.136, P.B864-B871.

7. Kohn W., Sham L.J., Self-Consistent Equations Including Exchange and Correlation Effects // Phys Rev 1965, V.140, P.A1133-A1138.

8. A V Ruban and I A Abrikosov, Rep. Prog. Phys. 71, 046501 (2008).

9. O.I. Gorbatov, A.V. Ruban, P.A. Korzhavyi, Yu. N. Gornostyrev, Effect of magnetism on precipitation of Cu in bcc Fe: Ab-initio based modeling, Mater. Res. Soc. Proc. V.1193, 469 (2009).

10. Gorbatov, A.R. Kuznetsov, Yu. N. Gornostyrev, A.V. Ruban, N.V. Ershov, V.A. Lukshina, Yu. P. Chernenkov, V.I. Fedorov, Role of magnetism in the formation of a short-range order in iron-silicon alloys, ZhETP, 112, 848 (2011).

11. O.I. Gorbatov, P.A. Korzhavyi, A.V. Ruban, B. Johansson, Yu. N. Gornostyrev, Vacancy-solute interactions in ferromagnetic and paramagnetic bcc iron: Ab initio calculations, Journal of Nuclear Materials, 419248 (2011).

Источник поступления информации: Роспатент

Показаны записи 41-50 из 188.
09.06.2018
№218.016.5abf

Способ определения удельного теплового эффекта фазового превращения

Изобретение относится к области исследования кинетики структурных и фазовых превращений в металлах. Заявлен способ определения удельного теплового эффекта фазового превращения, включающий регистрацию кривых охлаждения, охлаждение до комнатных температур и определение их фазового состава. При...
Тип: Изобретение
Номер охранного документа: 0002655458
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5af8

Способ измерения теплоемкости материалов

Изобретение относится к тепловым испытаниям, а именно к устройствам для определения теплоемкости материалов, и может быть применено для определения их теплотехнических свойств. Предложен способ измерения теплоемкости материалов, который осуществляется посредством дифференциального...
Тип: Изобретение
Номер охранного документа: 0002655459
Дата охранного документа: 28.05.2018
20.02.2019
№219.016.bf8a

Способ производства холоднокатаной стальной ленты

Изобретение предназначено для улучшения потребительских свойств стальной ленты, используемой в автомобильной промышленности. Способ включает травление горячекатаной полосовой заготовки и ее последующую холодную прокатку на непрерывном стане. Повышение механических свойств ленты обеспечивается...
Тип: Изобретение
Номер охранного документа: 0002350407
Дата охранного документа: 27.03.2009
20.02.2019
№219.016.c476

Способ регулирования процесса прокатки

Изобретение относится к прокатному производству и предназначено для регулирования процесса горячей и/или холодной прокатки. Способ регулирования процесса прокатки включает измерение параметров прокатываемой полосы в нескольких точках по длине стана и выбор корректирующих воздействий на...
Тип: Изобретение
Номер охранного документа: 0002177847
Дата охранного документа: 10.01.2002
01.03.2019
№219.016.c90d

Способ микролегирования стали азотом

Изобретение относится к области металлургии, а именно к микролегированию стали азотом. Способ включает выплавку металла в сталеплавильном агрегате, выпуск металла в ковш, раскисление, отбор пробы на содержание азота и последующую его разливку. Микролегирование стали азотом при...
Тип: Изобретение
Номер охранного документа: 0002266338
Дата охранного документа: 20.12.2005
01.03.2019
№219.016.c938

Система калибров профилегибочного стана

Изобретение относится к прокатному производству. Система калибров профилегибочного стана для формовки неравнополочных уголков включает предчистовые калибры, образованные верхним и нижним валками, установленными с заданным зазором S. При этом упомянутые калибры выполнены с закрытием...
Тип: Изобретение
Номер охранного документа: 0002261152
Дата охранного документа: 27.09.2005
01.03.2019
№219.016.ca3c

Валок профилегибочного стана

Изобретение относится к прокатному оборудованию и может быть использовано при производстве профилей. Валок профилегибочного стана содержит ось и укрепленные на оси боковые цилиндроконические элементы с промежуточными цилиндрическими элементами между ними. При этом, по меньшей мере, один боковой...
Тип: Изобретение
Номер охранного документа: 0002256523
Дата охранного документа: 20.07.2005
01.03.2019
№219.016.cb28

Способ профилирования равнополочного двухслойного уголка

Изобретение относится к профилегибочному производству, в частности к технологии изготовления гнутых равнополочных двухслойных уголков. Начиная с первого прохода, осуществляют подгибку кромок более широкой нижней полосы с охватыванием ею боковых кромок верхней полосы с определенными углами...
Тип: Изобретение
Номер охранного документа: 0002346775
Дата охранного документа: 20.02.2009
01.03.2019
№219.016.cb2c

Способ профилирования равнополочного швеллера

Изобретение относится к прокатному производству, в частности к профилированию швеллеров. При профилировании равнополочного двухслойного швеллера осуществляют подгибку кромок более широкой нижней полосовой заготовки с схватыванием ею боковых кромок верхней полосы с заданными углами подгибки в...
Тип: Изобретение
Номер охранного документа: 0002346774
Дата охранного документа: 20.02.2009
01.03.2019
№219.016.cb64

Инструмент непрерывного широкополосного стана горячей прокатки

Изобретение предназначено для улучшения геометрии поперечного сечения горячекатаных полос двойной ширины, предназначенных для последующего продольного роспуска, за счет соответствующей профилировки рабочих валков клетей чистовой группы непрерывного широкополосного стана. Инструмент содержит...
Тип: Изобретение
Номер охранного документа: 0002397034
Дата охранного документа: 20.08.2010
Показаны записи 41-50 из 110.
09.06.2018
№218.016.5abf

Способ определения удельного теплового эффекта фазового превращения

Изобретение относится к области исследования кинетики структурных и фазовых превращений в металлах. Заявлен способ определения удельного теплового эффекта фазового превращения, включающий регистрацию кривых охлаждения, охлаждение до комнатных температур и определение их фазового состава. При...
Тип: Изобретение
Номер охранного документа: 0002655458
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5af8

Способ измерения теплоемкости материалов

Изобретение относится к тепловым испытаниям, а именно к устройствам для определения теплоемкости материалов, и может быть применено для определения их теплотехнических свойств. Предложен способ измерения теплоемкости материалов, который осуществляется посредством дифференциального...
Тип: Изобретение
Номер охранного документа: 0002655459
Дата охранного документа: 28.05.2018
14.12.2018
№218.016.a783

Способ производства высокопрочного хладостойкого листового проката из низколегированной стали

Изобретение относится к области производства высокопрочного хладостойкого листового проката из низколегированной стали с повышенной хладостойкостью для транспортного и тяжелого машиностроения. Получение экономнолегированного листового проката, обладающего повышенной хладостойкостью и...
Тип: Изобретение
Номер охранного документа: 0002674797
Дата охранного документа: 13.12.2018
18.01.2019
№219.016.b0fb

Способ производства листового проката из конструкционной хладостойкой стали (варианты)

Изобретение относится к области металлургии, в частности к производству листового проката из конструкционных сталей северного исполнения. Для повышения хладостойкости и трещиностойкости при сохранении достаточного уровня прочностных и пластических свойств в прокате выплавляют сталь,...
Тип: Изобретение
Номер охранного документа: 0002677445
Дата охранного документа: 16.01.2019
20.02.2019
№219.016.bf8a

Способ производства холоднокатаной стальной ленты

Изобретение предназначено для улучшения потребительских свойств стальной ленты, используемой в автомобильной промышленности. Способ включает травление горячекатаной полосовой заготовки и ее последующую холодную прокатку на непрерывном стане. Повышение механических свойств ленты обеспечивается...
Тип: Изобретение
Номер охранного документа: 0002350407
Дата охранного документа: 27.03.2009
20.02.2019
№219.016.c329

Способ изготовления партий горячекатаного листа

Изобретение предназначено для минимизации отходов при изготовлении заданного числа листов в партии и снижения остатков беззаказной продукции на складах. Способ включает получение слябов на машинах непрерывного литья заготовок (МНЛЗ), их нагрев, прокатку и раскрой полученного раската на листы...
Тип: Изобретение
Номер охранного документа: 0002405639
Дата охранного документа: 10.12.2010
01.03.2019
№219.016.cd14

Способ производства травленых стальных полос

Изобретение относится к прокатному производству и может быть использовано при изготовлении травленой горячекатаной полосовой стали. Способ включает промасливание травленых стальных полос и смотку в рулоны, при этом перед смоткой горячекатаные полосы равномерно покрывают консервационным маслом с...
Тип: Изобретение
Номер охранного документа: 0002305719
Дата охранного документа: 10.09.2007
01.03.2019
№219.016.cd2e

Способ производства холоднокатаной полосы

Изобретение относится к области металлургии и может быть использовано в производстве полосовой низкоуглеродистой стали, в частности черной жести с нормированной твердостью. Техническим результатом изобретения является возможность получения черной жести степени твердости «В» по ГОСТ 13345-85....
Тип: Изобретение
Номер охранного документа: 0002307173
Дата охранного документа: 27.09.2007
01.03.2019
№219.016.cd2f

Способ горячей прокатки полосовой стали для эмалирования

Изобретение относится к обработке металлов давлением, в частности к технологии горячей прокатки стали для эмалирования. Технический результат изобретения - повышение выхода годного за счет улучшения микроструктуры указанной стали. Для этого горячую прокатку стали, содержащей бор и алюминий,...
Тип: Изобретение
Номер охранного документа: 0002307174
Дата охранного документа: 27.09.2007
01.03.2019
№219.016.cd5b

Способ производства холоднокатаной листовой нагартованной стали

Способ предназначен для повышения потребительских свойств низкоуглеродистой холоднокатаной листовой нагартованной стали сечением 0,43…0,63×1250 мм. Способ включает прокатку полосовой горячекатаной заготовки в валках широкополосного стана с заданными обжатиями. Получение листовой стали, имеющей...
Тип: Изобретение
Номер охранного документа: 0002369456
Дата охранного документа: 10.10.2009
+ добавить свой РИД