×
10.06.2014
216.012.d13e

Результат интеллектуальной деятельности: КОРРОЗИОННОСТОЙКАЯ ВЫСОКОПРОЧНАЯ СТАЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к коррозионно-стойким аустенитным хромоникелевым сталям, применяемым при производстве высокопрочного сортового проката. Сталь содержит компоненты при следующем соотношении, мас.%: углерод 0,01-0,1, кремний 0,5-1,0, марганец 1,0-5,0, хром 17,0-24,0, никель 10,5-22,0, молибден 1,0-4,0, азот 0,51-0,7, вольфрам 0,2-2,5, кобальт 0,1-1,0, железо и неизбежные примеси - остальное. Повышается предел текучести и твердость, а также термическая структурная стабильность, характеризующаяся сохранением высоких значений ударной вязкости при повышенных температурах (565°C) после длительной выдержки при сохранении стойкости против питтинговой коррозии в хлорид- и сероводородсодержащих средах, а также аустенитной немагнитной структуры с магнитной проницаемостью не более 1,00 г/э. 2 табл.
Основные результаты: Коррозионно-стойкая высокопрочная сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, азот, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит вольфрам и кобальт при следующем соотношении компонентов, мас.%: при выполнении следующих соотношений:

Изобретение относится к области металлургии, а именно к коррозионностойким аустенитным хромоникелевым сталям, применяемым при производстве высокопрочного сортового проката, листа, труб, крепежа, в том числе для ответственных деталей затворных и регулирующих органов (шиберов, штоков и седел) трубопроводной арматуры АЭС, ТЭС, ГРЭС и нефтегазового комплекса.

От работы последних зависит герметичность перекрытия потоков воды, пара или другой рабочей среды. Разрушение конструктивных элементов арматуры обусловлено воздействием на нее агрессивных сред, содержащих органические кислоты, хлориды, сероводород и углекислый газ, при этом давление может достигать 300 и более атмосфер, а температура более 500°С. В связи с этим металл помимо общей коррозии подвергается и локальным видам коррозии (щелевой, питтинговой, коррозионному растрескиванию) и эрозии.

Известна высокопрочная немагнитная коррозионностойкая сталь и способ ее термической обработки, при этом сталь содержит следующее соотношение компонентов, мас.%:

углерод 0,03-0,06
кремний 0,10-0,40
марганец 14,00-16,00
хром 19,00-20,50
никель 8,25-9,00
молибден 0,80-1,25
ванадий 0,08-0,15
ниобий 0,02-0,12
азот 0,57-0,65
титан 0,004-0,03
церий 0,005-0,02
кальций 0,005-0,02
алюминий 0,005-0,02
железо и примеси остальное,

в частном случае для стали может дополнительно выполняться следующее соотношение:

;

для получения высокой прочности сталь подвергается ступенчатой термообработке, включающей нагрев до 850°C, после чего до 950°C и затем до 1100-1150°C, с охлаждением в воде.

(Патент РФ №2447185, МПК C22C 38/58, С38/44, С21D 6/00, опубл. 10.04.2012 г.)

Несмотря на то, что сталь имеет высокие значения предела текучести σ0,2≥510 МПа, она не будет обладать достаточной коррозионной стойкостью в хлорид- и сероводородсодержащих средах, из-за пониженного содержания молибдена и высокого марганца, а карбидообразующие элементы ванадий и ниобий приводят к структурной нестабильности после длительного термического старения при температурах эксплуатации трубопроводной арматуры (свыше 500°C).

Кроме того, для получения высокой прочности требуется довольно сложная и длительная термообработка, состоящая из трех разных высокотемпературных режимов нагрева, что является процессом трудоемким, связанным с энерго- и временными затратами, и дополнительно удорожает сталь. Применение этого способа проблематично для серийного производства деталей арматуры.

Известна аустенитная коррозионно-стойкая высокопрочная сталь, содержащая, мас.%:

углерод 0,02-0,06
хром 20,0-24,0
марганец 4,0-8,0
никель 7,0-12,0
молибден 2,0-4,0
ниобий 0,10-0,30
азот 0,40-0,70
бор 0,001-0,003
церий 0,001-0,050
железо и неизбежные примеси остальное,

при этом в частном случае содержание ниобия, церия, бора и азота должно регулироваться соотношением:

;

(Патент РФ №22,8446, МПК7 C22C 38/58, C22C 38/40, опубл. 10.12.2003).

Сталь, предназначенная для крепежа, листовых и трубных деталей, арматуры и других высоконагруженных деталей нефтегазодобывающего оборудования, обладает высокой стойкостью в сероводородсодержащих средах и имеет σ0,2≥725 МПа и KCV-60≥34 Дж/см2. Однако высокая прочность, как следует из описания, может быть получена только на деформированных прутках (после ковки и прокатки слитков). Эти свойства будут значительно ниже после закалки и тем более при температуре эксплуатации выше 500°C и длительной выдержке.

Наиболее близким аналогом предложенной стали по его технической сущности и совокупности свойств является коррозионно-стойкая высокопрочная аустенитная сталь следующего химического состава, мас.%:

углерод 0,01-0,10
кремний 0,05-2,0
марганец 0,1-3,0
хром 17,0-26,0
никель 11,0-24,5
молибден 1,0-5,0
азот 0,05-0,40
ванадий 0,01-0,25
церий 0,01-0,05
кальций 0,001-0,150
железо и неизбежные примеси остальное,

при выполнении следующих соотношений:

,

,

%Ni+16(%C+%Ni)-(%Cr+1,5%Mo-20)2/12=14-24,

при этом сульфиды в стали не превышают 2 балла; а строчечные и точечные нитриды и карбонитриды не более 3 балла по каждому виду (Патент РФ №2409687 С1, МПК C22C 38/58, 38/46, опубл. 20.01.2011 г. - прототип).

Сталь предназначена для газоперерабатывающих предприятий и обустройства нефтегазовых месторождений с высоким содержанием хлоридов, сероводорода, углекислого газа, а также для эксплуатации в морской воде.

Прототип обладает повышенными механическими характеристиками ( Н/мм2, %, KCVcp=369 Дж/см2) и стойкостью против питтинговой коррозии в хлоридах ( г/м2·ч) и в сероводородной среде NACE ( г/м2·ч), а также стабильной аустенитной немагнитной структурой с магнитной проницаемостью не более 1,00 г/э.

Однако для изготовления ответственных конструктивных элементов трубопроводной арматуры, работающих при высоких давлениях, температурах (см. выше) и подвергающихся эрозии, эта сталь не имеет достаточную прочность, и, как следствие, твердость, а также не обладает структурной стабильностью при длительной эксплуатации при рабочих температурах свыше 500°C.

Задача, решаемая изобретением, заключается в создании высокопрочной коррозионно-стойкой аустенитной стали (для трубопроводной арматуры) с более высокими прочностными характеристиками и структурной стабильностью при повышенных температурах для эксплуатации в средах, содержащих хлориды, сероводород и углекислый газ.

Технический результат изобретения состоит в увеличении предела текучести и твердости, а также в термической структурной стабильности, характеризующейся сохранением высоких значений ударной вязкости при повышенных температурах (565°C) после длительной выдержки при сохранении стойкости против питтинговой коррозии в хлорид- и сероводородсодержащих средах, а также аустенитной немагнитной структуры с магнитной проницаемостью не более 1,00 г/э.

Указанный технический результат изобретения достигается тем, что коррозионно-стойкая высокопрочная сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, азот, железо, согласно изобретению дополнительно содержит вольфрам и кобальт при следующем соотношении компонентов, мас.%:

углерод 0,01-0,1
кремний 0,5-1,0
марганец 1,0-5,0
хром 17,0-24,0
никель 10,5-22,0
молибден 1,0-4,0
азот 0,51-0,70
вольфрам 0,2-2,5
кобальт 0,1-1,0
железо и неизбежные примеси остальное,

при выполнении следующих соотношений:

Сущность изобретения состоит в том, что выбранное содержание компонентов по отдельности, а основных феррито- и аустенитообразующих элементов в совокупности при дополнительном введении соотношений обеспечивают получение немагнитной (µ не более 1,00 г/э) стали со структурой стабильного аустенита в горячекатаном, термообработанном и холоднодеформированном состояниях, обладающей существенно более высокими прочностными свойствами и термической структурной стабильностью, а также стойкостью к питтинговой коррозии в хлоридах и сероводородсодержащих средах.

Пределы содержания легирующих элементов определены, исходя из результатов испытаний стали разных вариантов химического состава, а также на основании структурных диаграмм, с учетом роли отдельных составляющих в структурообразовании стали.

Пределы по содержанию углерода и азота установлены, исходя из их влияния в стали данного состава на процесс образования σ-фазы (уменьшения склонности к ее образованию при увеличении концентрации азота и углерода), а также с их влиянием на прочность и стойкость против локальных видов коррозии. Ограничением содержания углерода в пределах 0,01-0,10% при увеличении содержания азота до 0,7% достигается повышение прочности термообработанной, горячекатаной и холоднодеформированной стали, а благодаря легированию азотом и приведенному соотношению легирующих элементов достигается увеличение ее коррозионной стойкости в хлоридах и сероводородсодержащих средах.

Верхний предел по содержанию углерода 0,1% ограничен, чтобы исключить снижение уровня ударной вязкости стали. При содержании углерода менее 0,01% не реализуется уровень прочности стали и снижается ее рентабельность из-за повышения стоимости шихты.

Ограничение верхнего предела по содержанию азота до 0,70% определяется пределом его растворимости при кристаллизации стали данной композиции. При содержании азота менее 0,51% не достигается требуемый уровень прочности и твердости стали.

Количество кремния ограничено 0,5-1,0% исходя из того, что при его более низком содержании сталь может быть недостаточно раскисленной, что приведет к повышенной концентрации кислорода в металлической ванне при выплавке стали и отрицательно скажется на ее деформируемости, пластичности и коррозионной стойкости; при содержании кремния выше 1,0% увеличивается количество силикатов, снижающих технологичность стали при горячей и холодной деформации, а также пластичность и ударную вязкость металла.

Содержание марганца в пределах 1,0-5,0% определяется его количеством, необходимым для достаточного усвоения повышенного содержания азота. При более высокой концентрации марганца снижается стойкость стали против локальной коррозии в связи с усилением депассивирующего влияния хлор-иона на поверхность металла.

Установленные пределы содержания хрома и молибдена, соответственно 17,0-24,0% и 1,0-4,0%, обеспечивают стойкость стали против питтинговой коррозии. Ограничение верхних пределов по содержанию хрома и молибдена, соответственно 24,0 и 4,0%, связано с необходимостью предупреждения появления сигма-фазы, а также с образованием при высокотемпературных нагревах в аустенитной структуре стали дельта-феррита, оказывающего отрицательное влияние на ее технологичность в процессе горячей деформации (ковки и прокатки). При содержании хрома и молибдена менее, соответственно 17,0% и 1,0%, сталь становится восприимчивой к локальным видам коррозии.

Содержание никеля в пределах 10,5-22,0% обусловлено необходимостью обеспечения стабильной аустенитной структуры стали, ее высокой стойкости против растрескивания в сероводородсодержащей среде и высокой ударной вязкостью. Однако чрезмерное увеличение концентрации никеля в стали приведет к ее удорожанию.

Легирование вольфрамом и кобальтом дополнительно упрочняет аустенитную структуру стали и обеспечивает термическую стабильность свойств при температурах свыше 500°C и длительной выдержке. Введение вольфрама менее 0,2% и кобальта менее 0,1% не эффективно, а легирование этими элементами в количествах свыше 2,5% и 1,0%, соответственно, удорожает металл.

Для получения структуры стабильного аустенита (µ не более 1,00 г/э) после термической обработки и деформации стали, для увеличения ее термической стабильности, коррозионной стойкости в хлоридах и сероводородсодержащих средах, а также с целью экономии никеля и хрома должны выполняться следующие соотношения между аустенито- и ферритообразующими элементами

Ниже приведены примеры осуществления изобретения.

Были выплавлены следующие варианты предлагаемой стали и прототипа (таблица 1).

Стали предложенных составов (№1-3) и прототипа выплавляли в вакуумной индукционной печи и разливали в слитки по 7,5 кг. Слитки ковали на прутки диаметром 18 мм или со стороной квадрата 15 мм. Температурный интервал горячей деформации составлял 1160-900°C. Из кованых прутков после термообработки по режиму 1100°C, вода (часть образцов термообрабатывалась дополнительно при 565°C, 5000 часов) изготавливали образцы, которые подвергали стандартным механическим, а также магнитным и коррозионным испытаниям в сероводород- и хлоридсодержащих средах по следующим методикам:

- испытания на стойкость против питтинговой коррозии в хлоридах проводили в растворе 10% FeCl3·6H2O (ГОСТ 9.912-89);

- испытания на стойкость против питтинговой коррозии в сероводородсодержащей среде и сероводородному растрескиванию проводили в растворе NACE (5 мас.% NaCl+0,5% CH3COOH, насыщенном сероводородом при давлении 0,1 МПа, рН=3,0) в течение 1440 ч при комнатной температуре. При испытаниях на коррозионное растрескивание образцы подвергали растяжению при напряжении, равном 0,8 σ0,2;

- испытания по методу АМУ (ГОСТ 6032-2003) с применением провоцирующего отпуска образцов при температуре 650°C в течение 1 ч;

- стабильность аустенита (магнитная проницаемость которого близка к 1,00 г/э) оценивали по магнитной проницаемости образцов стали, которую определяли при помощи баллистической установки дифференциальным методом в магнитном поле, равном 39,8·103 А/м (500 эрстед).

Результаты испытаний образцов после термической обработки при 1100°C (таблица 2) показали, что по сравнению с прототипом предел текучести и твердость составов предложенной стали выше, а значения ударной вязкости и скорость питтинговой коррозии находятся на том же уровне.

Определение ударной вязкости на образцах предложенных составов после длительного, в течение 5000 часов, старения при температуре 565°C показало, что полученные значения не отличаются от исходного закаленного состояния, что свидетельствует о термической структурной стабильности новой стали, в отличие от прототипа, где ударная вязкость стали значительно меньше.

Результаты коррозионных испытаний (таблица 2) показали, что скорости питтинговой коррозии стали предлагаемых составов и прототипа находятся на одинаковом уровне и составляют, соответственно: в хлорном железе 0,005-0,0045 г/м2·ч, в среде NACE - 0,0002 г/м2·ч и 0,00025, что свидетельствует о высокой стойкости предлагаемой стали против питтинговой корроизии в хлоридах и сероводородсодержащей среде.

Испытания образцов на стойкость против сероводородного коррозионного растрескивания и межкристаллитной коррозии показали отсутствие склонности предлагаемой стали, как и прототипа, к указанным видам локальной коррозии.

Магнитная проницаемость в термообработанном состоянии предлагаемой стали и прототипа равняется 1,00 г/э, что свидетельствует об отсутствии превращений, связанных с образованием δ- и σ-фазы, и о стабильности аустенитной структуры, которая обеспечивает более высокую коррозионную стойкость.

Таким образом, предложенная сталь обладает существенно более высокой прочностью, твердостью и, следовательно, износостойкостью, стабильной аустенитной структурой при повышенных температурах и длительной выдержке при равной коррозионной стойкости в хлоридах и сероводородсодержащих средах, и остается немагнитной.

Следовательно, применение новой стали, в том числе для ответственных деталей трубопроводной арматуры, увеличит срок службы и надежность изготавливаемого из нее оборудования.

Таблица 1
Химический состав исследованных сталей
№ варианта предложенной стали Содержание элементов, мас.% Соотношения
С Si Mn Cr Ni Mo W Со Са N Fe и неизбежные примеси (1) (2)
1 0,022 0,98 1,10 23,96 20,45 2,01 2,30 0,98 - 0,51 Ост. 1,27 0,43
2 0,036 0,66 3,60 20,35 16,27 2,96 1,05 0,61 - 0,58 Ост. 1,39 0,58
3 0,061 0,86 4,94 18,12 14,01 3,61 0,23 0,22 - 0,65 Ост. 1,48 0,96
4 (прототип) 0,35 0,38 1,54 22,31 19,50 3,27 V Се 0,064 0,29 Ост. 1,07 -
0,069 0,018

Коррозионно-стойкая высокопрочная сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, азот, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит вольфрам и кобальт при следующем соотношении компонентов, мас.%: при выполнении следующих соотношений:
Источник поступления информации: Роспатент

Показаны записи 141-150 из 278.
20.09.2015
№216.013.7d75

Крупногабаритная воздухоприемная решетка с обогреваемыми жалюзи

Изобретение относится к области защиты судовых устройств от обледенения. Решетка с обогреваемыми жалюзи выполнена из модулей-ршеток, заполненных теплопроводным компаундом и объединенных общей рамой. Греющие кабели проложены в разных модулях, объедены в общую электрическую сеть и запитаны от...
Тип: Изобретение
Номер охранного документа: 0002563714
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d76

Способ защиты воздухозаборных решеток с жалюзи от обледенения и устройство для его осуществления

Изобретение относится к устройствам для защиты вентиляционных решеток с жалюзи от обледенения. Устройство содержит полые жалюзи для прокладки внутри них греющего кабеля и заполнения теплопроводящим веществом частей полости жалюзи. Торцы элементов ребер жесткости выполнены вогнутыми...
Тип: Изобретение
Номер охранного документа: 0002563715
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7f07

Способ двухступенчатого преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение относится к способу преобразования энергии ионизирующего излучения в ультрафиолетовое излучение. В заявленном способе предусмотрено использование диссоциирующего газа и преобразование ультрафиолетового излучения в электрическую энергию с помощью полупроводникового алмаза. Источник...
Тип: Изобретение
Номер охранного документа: 0002564116
Дата охранного документа: 27.09.2015
10.10.2015
№216.013.811a

Жаропрочная экономнолегированная сталь

Изобретение относится к области металлургии, а именно к жаропрочным хромоникелевым сталям, предназначенным для длительной эксплуатации при температурах до 1100°C. Сталь содержит углерод, кремний, марганец, хром, никель, ниобий, азот, фосфор, серу, железо и неизбежные примеси при следующем...
Тип: Изобретение
Номер охранного документа: 0002564647
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.818f

Способ легирования стали

Изобретение относится к области металлургии и может быть использовано при получении быстрорежущей стали из отходов изношенного режущего инструмента. В способе осуществляют расплавление отходов в индукционной тигельной печи с последующим проведением химанализа полученного расплава и...
Тип: Изобретение
Номер охранного документа: 0002564764
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.86f2

Способ получения пенополиуретанового нанокомпозита

Изобретение относится к производству полимерных композитов на основе пенополиуретанов, которые могут быть использованы для теплоизоляции конструкций в судостроении, авиастроении и автомобильной промышленности. Способ получения пенополиуретанового нанокомпозита включает предварительную...
Тип: Изобретение
Номер охранного документа: 0002566149
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87f8

Пьезоэлектрический акселерометр

Изобретение относится к области измерительной техники и может быть использовано для измерения параметров ускорения в виброметрии, сейсмологии и акустики. Пьезоэлектрический акселерометр содержит предусилитель и концентрично расположенные кольцевые инерционную массу, корпус и первый...
Тип: Изобретение
Номер охранного документа: 0002566411
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.9047

Лигатура для титановых сплавов

Изобретение относится к области металлургии и может быть использовано при производстве титановых сплавов. Лигатура для титановых сплавов содержит, мас.%: ванадий 30-50, углерод 1-4, молибден 5-25, титан 5-20, алюминий 20-50, примеси - остальное. Изобретение позволяет за счет добавки в титановый...
Тип: Изобретение
Номер охранного документа: 0002568551
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.904b

Способ получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напыления

Изобретение относится к получению наноструктурированного конгломерированного порошкового материала для нанесения износо-коррозионностойких покрытий гизодинамическим и газотермическим напылением. Проводят диспергирование наноструктурного материала в жидкую среду посредством ультразвука и сушку...
Тип: Изобретение
Номер охранного документа: 0002568555
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90fe

Устройство для получения и хранения атомарного водорода

Изобретение относится к энергетическому оборудованию и может быть использовано в водородной энергетике для получения, хранения и транспортировки водорода. Устройство для получения атомарного водорода содержит реактор 1, работающий на разложении воды твердым реагентом, анод 3, катод 4 и...
Тип: Изобретение
Номер охранного документа: 0002568734
Дата охранного документа: 20.11.2015
Показаны записи 141-150 из 233.
10.08.2015
№216.013.6be8

Способ активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового летательного аппарата

Изобретение относится к активной тепловой защите теплонапряженных элементов конструкции летательного аппарата (ЛА), управлению его обтеканием и работой силовой установки. Способ включает формирование защитного слоя из продуктов разложения метангидрата (смеси паров воды и метана). Последние...
Тип: Изобретение
Номер охранного документа: 0002559182
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cec

Состав эпоксиполиуретанового компаунда и способ его получения

Изобретение относится к составу двухкомпонентного эпоксиполиуретанового заливочного электроизоляционного компаунда и способу его получения. Компонента «А» состоит из мономерно-олигомерной смеси полиэпоксидов, состоящей из диглицидилового эфира бисфенола А, моноглицидилового эфира бисфенола А и...
Тип: Изобретение
Номер охранного документа: 0002559442
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.70e6

Способ получения многослойного материала

Изобретение может быть использовано для получения крупногабаритных многослойных материалов, используемых в атомной, нефтегазовой, химической отраслях промышленности, а также в судостроении. Для повышения прочности сцепления металлических плит из разнородных материалов применяют нанесение...
Тип: Изобретение
Номер охранного документа: 0002560472
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7558

Способ получения композиционного плакированного порошка для нанесения покрытий

Изобретение относится к получению композиционных порошков для защитных износостойких покрытий. Готовят смесь неметаллической керамической компоненты и металлического порошка при массовом соотношении 1:(1-4). Неметаллическую компоненту используют с размером фракций, составляющим 1/100 размера...
Тип: Изобретение
Номер охранного документа: 0002561615
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.777c

Установка для сварки трением с перемешиванием

Установка может быть использована при сварке трением прессованных или катаных тонкостенных полуфабрикатов неограниченной длины из алюминиевых сплавов. Сварочный инструмент закреплен на корпусе, имеющем привод его поступательного перемещения вдоль линии сварки по горизонтальной поверхности...
Тип: Изобретение
Номер охранного документа: 0002562177
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7888

Стенд для измерения стато - динамических характеристик физических объектов

Изобретение относится к области измерительной техники и может быть использовано для измерения массы, координат центра масс и моментов инерции объектов машиностроения. Устройство состоит из динамометрической платформы для измерения массы изделия, пятикомпонентного динамометрического элемента,...
Тип: Изобретение
Номер охранного документа: 0002562445
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d02

Устройство для контроля подводного плавсредства с самого плавсредства

Использование: изобретение относится к области гидроакустики и может быть использовано для оперативного контроля параметров подводного шума плавсредства с помощью гидроакустического рабочего средства измерений (РСИ) с самого плавсредства. Сущность: с самого плавсредства в режиме стабилизации...
Тип: Изобретение
Номер охранного документа: 0002563599
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d71

Способ контроля обледенения жалюзи воздухоприемной решетки

Изобретение предназначено для определения начала обледенения жалюзи воздухоприемной решетки при исследовании тепловых процессов, осуществляемых в целях защиты от обледенения. Обледенение решетки жалюзи определяют по образованию инея на влажном марлевом бинте, который предварительно укладывают...
Тип: Изобретение
Номер охранного документа: 0002563710
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d75

Крупногабаритная воздухоприемная решетка с обогреваемыми жалюзи

Изобретение относится к области защиты судовых устройств от обледенения. Решетка с обогреваемыми жалюзи выполнена из модулей-ршеток, заполненных теплопроводным компаундом и объединенных общей рамой. Греющие кабели проложены в разных модулях, объедены в общую электрическую сеть и запитаны от...
Тип: Изобретение
Номер охранного документа: 0002563714
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d76

Способ защиты воздухозаборных решеток с жалюзи от обледенения и устройство для его осуществления

Изобретение относится к устройствам для защиты вентиляционных решеток с жалюзи от обледенения. Устройство содержит полые жалюзи для прокладки внутри них греющего кабеля и заполнения теплопроводящим веществом частей полости жалюзи. Торцы элементов ребер жесткости выполнены вогнутыми...
Тип: Изобретение
Номер охранного документа: 0002563715
Дата охранного документа: 20.09.2015
+ добавить свой РИД