×
10.06.2014
216.012.d024

Результат интеллектуальной деятельности: МОЩНЫЙ ТРАНЗИСТОР СВЧ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электронной технике и может быть использовано в качестве активных элементов СВЧ-устройств различного назначения. Мощный транзистор СВЧ содержит базовую подложку из кремния, теплопроводящий поликристаллический слой алмаза, эпитаксиальную структуру на основе широкозонных III-нитридов, буферный слой, исток, затвор, сток и омические контакты. При этом базовая подложка из кремния выполнена толщиной менее 10 мкм, слой теплопроводящего поликристаллического алмаза имеет толщину по меньшей мере, равную 0,1 мм, а на поверхности эпитаксиальной структуры последовательно размещены дополнительный слой теплопроводящего поликристаллического алмаза и барьерный слой из двуокиси гафния толщиной 1,0-4,0 нм, который в области затвора размещен под затвором, непосредственно на эпитаксиальной структуре в виде слоя из твердого раствора AlGaN n-типа проводимости. Технический результат заключается в повышении выходной СВЧ-мощности, эффективном отводе тепла от активной области транзистора и минимизации утечек тока. 2 з.п. ф-лы, 4 ил.

Изобретение относится к электронной технике и может быть использовано в качестве активных элементов СВЧ-устройств различного назначения.

Из уровня техники известен мощный транзистор СВЧ, который содержит полупроводниковую подложку со структурой слоев, которая выполнена в виде прямой последовательности полуизолирующего слоя, n + типа проводимости слоя, стоп-слоя, буферного слоя, активного слоя, с толщиной полуизолирующего и буферного слоев не менее 30,0 и 1,0-20,0 мкм соответственно, часть металлизированного отверстия для заземления общего электрода истока с лицевой стороны полупроводниковой подложки на глубине, равной сумме толщин активного, буферного и стоп-слоев, выполнена с металлизированным дном, а другая часть металлизированного отверстия с обратной стороны полупроводниковой подложки на глубину, равную сумме толщин полуизолирующего и n+типа проводимости слоев, выполнена глухой в виде сплошного слоя из высоко тепло- и электропроводящего материала, при этом асимметрично в сторону общего электрода стока относительно вертикальной оси металлизированного отверстия, с размером поперечного сечения, равным размеру поперечного сечения топологии элементов активной области полевого транзистора, упомянутые части металлизированного отверстия перекрываются полностью либо частично в горизонтальной плоскости места их соприкосновения, а интегральным теплоотводом одновременно является сплошной слой из высоко тепло- и электропроводящего материала другой части металлизированного отверстия (см. патент РФ №2463685, опубл. 10.10.2012).

Недостатком известного устройства является то, что выходная мощность данного мощного транзистора СВЧ является недостаточно высокой.

Кроме того, из уровня техники известно полупроводниковое устройство, которое содержит кремниевую подложку, теплопроводящий алмазный слой толщиной 0,5-30 мкм, монокристаллический кремниевый слой и эпитаксиальный GaN слой, либо кремниевую подложку, теплопроводящий алмазный слой, поликремниевый слой, монокристаллический кремниевый слой и эпитаксиальный GaN слой, а буферный слой выбран из группы, состоящей из HfN и AlN (см. патентный документ США №2006113545, опубл. 01.06.2006).

Недостатком известного устройства является то, что выходная мощность данного мощного транзистора СВЧ является недостаточно высокой из-за того, что тонкий слой алмаза ограничивает отвод тепла от полупроводниковых структур.

Задачей настоящего изобретения является устранение вышеуказанных недостатков и создание мощного транзистора СВЧ, выполненного с возможностью работы с напряжением в диапазоне от 30 В до 1,2 кВ и с токами в диапазоне от 100 мА до 50 А.

Технический результат заключается в повышении выходной СВЧ-мощности, эффективном отводе тепла от активной области транзистора и минимизации утечек тока.

Технический результат обеспечивается тем, что мощный транзистор СВЧ содержит базовую подложку из кремния, теплопроводящий поликристаллический слой алмаза, эпитаксиальную структуру на основе широкозонных III-нитридов, буферный слой, исток, затвор, сток и омические контакты. При этом базовая подложка из кремния выполнена толщиной менее 10 мкм, слой теплопроводящего поликристаллического алмаза имеет толщину, по меньшей мере равную 0,1 мм, а на поверхности эпитаксиальной структуры последовательно размещены дополнительный слой теплопроводящего поликристаллического алмаза и барьерный слой из двуокиси гафния, толщиной 1,0-4,0 нм, который в области затвора размещен под затвором, непосредственно на эпитаксиальной структуре в виде слоя из твердого раствора AlGaN n-типа проводимости.

В соответствии с частными случаями осуществления буферный слой выполнен из A1N или HfN.

Сущность настоящего изобретения поясняется чертежами:

фиг.1 отображает настоящее устройство;

на фиг.2 приведены экспериментально измеренные зависимости температуры разогрева активной области СВЧ транзистора от времени.

на фиг.3 приведены вольтамперные характеристики мощного транзистора СВЧ без дополнительных слоев на поверхности кристалла транзистора;

на фиг.4 приведены вольтамперные характеристики мощного транзистора СВЧ с дополнительными слоями из поликристаллического алмаза и двуокиси гафния.

На фиг.1 отображено устройство, содержащее следующие конструктивные элементы:

1 - фланец марки МД-40;

2 - слой припоя из AuSn;

3 - медный пьедестал;

4 - подслой из AuSn;

5 - базовая подложка из монокристаллического кремния;

6 - буферный слой AlN или HfN;

7 - теплопроводящий слой CVD поликристаллического алмаза;

8 - нелегированный слой из GaN;

9 - слой твердого раствора из AlGaN (спейс);

10 - слой твердого раствора из AlGaN n+типа проводимости;

11 - слой твердого раствора из AlGaN (крыша);

12 - исток;

13 - затвор;

14 - сток;

15 - омические контакты;

16 - дополнительный теплопроводящий слой поликристаллического алмаза;

17 - дополнительный барьерный слой из двуокиси гафния.

Настоящее устройство производят следующим образом.

На фланце марки МД-40 1 толщиной 1600 мкм размещен слой припоя из состава AuSn 2 толщиной 25 мкм, на который запаивается медный пьедестал 3 толщиной ~150 мкм. Поверх медного пьедестала 3 наносится подслой из AuSn 4 толщиной ~25 мкм, который в дальнейшем служит основой для укрепления кристалла транзистора к медному пьедесталу 3.

На поверхности базовой подложки 5 из монокристаллического кремния р-типа проводимости, ориентированного по плоскости (III), последовательно размещены: буферный слой из A1N 6 (либо из HfN) толщиной 0,1 мкм, слой CVD поликристаллического алмаза 7 толщиной ≥0,1 мм.

После размещения слоя CVD поликристаллического алмаза 7, базовая подложка 5 утоняется методами мокрого и сухого травления до толщины 10 мкм. Затем поверх буферного слоя 6 размещают эпитаксиальную структуру на основе широкозонных III-нитридов в виде слоев 8-11, состоящих из нелегированного буферного слоя GaN 8, слоя твердого раствора AlGaN (спейс) 9, слоя твердого раствора AlGaN n +- типа проводимости 10, слоя твердого раствора AlGaN (крыша) 11. Формируют исток 12, затвор 13, сток 14 и омические контакты. Кроме того, устройство снабжают дополнительными слоями, размещенными между истоком 12, затвором 13 и стоком 14. Эти слои выполняют в виде дополнительного слоя теплопроводящего поликристаллического алмаза 16 и барьерного слоя из двуокиси гафния 17, толщиной 1,0-4,0 нм. При этом слой из двуокиси гафния 17 в области затвора 13 размещен под ним, непосредственно на эпитаксиальной структуре в виде слоя 11 из твердого раствора AlGaN n-типа проводимости.

В настоящем устройстве обеспечивается оптимизация отвода тепла из активной области кристалла транзистора и минимизация утечек. Это обеспечивается с помощью использования теплопроводящего поликристаллического слоя алмаза 7, а также осуществляется через слой изолирующего поликристаллического алмаза 16 и дополнительного барьерного слоя 17 из двуокиси гафния, толщиной 1,0-4,0 нм.

Достоинством предложенного устройства является также ввод в активную область транзистора барьерного слоя из двуокиси гафния толщиной 1,0-4,0 нм под затвором, который позволяет минимизировать утечки тока и увеличить значение напряжения пробоя.

Кроме того, все слои в структурах получены с использованием хорошо известных эпитаксиальных методов и не требуются специальные технологии обработки и/или способы присоединения слоев. Полупроводниковая структура оказывается сформированной практически на поверхности подложки большой конструкционной толщины из высокотеплопроводного поликристаллического алмаза. При этом исключается необходимость в проведении трудоемкой операции полировки поверхности алмаза до состояния, пригодного для технологии термоприсоединения слоев при дальнейшем изготовлении приборов.

Использование технического решения обеспечивает дополнительный отвод тепла и снижение утечек в кристалле транзистора СВЧ через дополнительные слои теплопроводящего поликристаллического алмаза и двуокиси гафния, нанесенные на поверхность кристалла между истоком, затвором и стоком мощного транзистора СВЧ. Они уменьшают тепловое сопротивление транзисторной структуры в 1.5 раза и утечки тока. На фиг.2 приведены экспериментально измеренные зависимости температуры разогрева активной области транзистора СВЧ от времени.

Использование дополнительного слоя теплопроводящего поликристаллического алмаза на поверхности кристалла транзистора между истоком, затвором и стоком транзистора СВЧ увеличивает пробивное напряжение транзистора на более 30%. Этому содействует также изготовление под затвором (на поверхности твердого раствора AlGaN n-типа проводимости) дополнительного барьерного слоя (маски) из двуокиси гафния, который существенно снижает утечки тока.

На фиг.3 и 4 приведены вольтамперные характеристики мощного транзистора СВЧ: фиг.3 - без слоя изолирующего поликристаллического алмаза на поверхности кристалла СВЧ транзистора, между истоком, затвором и стоком; фиг.4 - со слоем изолирующего поликристаллического алмаза на поверхности кристалла транзистора, между истоком, затвором и стоком, и дополнительным барьерным слоем (маской) под затвором на поверхности твердого раствора AlGaN n-типа проводимости, изготовленным из двуокиси гафния.

Проведенное моделирование тепловых режимов СВЧ-транзисторов показало, что применение в теплопроводящих подложках на основе поликристаллического алмаза, выращенного на кремнии 5 с буферным слоем из A1N или HfN 6, обеспечивает значения теплового сопротивления транзисторной структуры меньшие, чем у СВЧ-транзисторов с теплопроводящими подложками на основе карбида кремния. Нанесение слоя изолирующего поликристаллического алмаза на поверхность кристалла СВЧ-транзистора, между истоком, затвором и стоком уменьшает тепловое сопротивление транзисторной структуры более чем в 1,5 раза. Наличие в области затвора дополнительного барьерного слоя двуокиси гафния толщиной 1,0-4,0 нм повышает величину пробивного напряжения на более 30%.

Отмеченные преимущества СВЧ-транзисторов позволяют создавать твердотельные СВЧ-блоки и модули с улучшенными параметрами, предназначенные для антенных фазированных решеток и других радиоэлектронных систем и для замены СВЧ электровакуумных приборов -передатчиков существующих средств связи и РЛС с учетом требований по минимизации массогабаритных характеристик аппаратуры при обеспечении устойчивости к внешним дестабилизирующим факторам.


МОЩНЫЙ ТРАНЗИСТОР СВЧ
МОЩНЫЙ ТРАНЗИСТОР СВЧ
МОЩНЫЙ ТРАНЗИСТОР СВЧ
МОЩНЫЙ ТРАНЗИСТОР СВЧ
Источник поступления информации: Роспатент

Показаны записи 21-24 из 24.
10.02.2016
№216.014.c398

Псевдоморфный переключатель свч

Изобретение относится к области полупроводниковых изделий, Технический результат - повышение надежности устройства путем снижения влияния DX центров, повышения плотности электронов и устранения деградации в гетероструктуре. Для этого переключатель СВЧ содержит подложку из сапфира, на которой...
Тип: Изобретение
Номер охранного документа: 0002574809
Дата охранного документа: 10.02.2016
26.08.2017
№217.015.e54d

Теплоотводящий элемент

Изобретение относится к теплоотводящим элементам. Указанный элемент состоит из пластины, выполненной из композитного материала, обладающего высокой теплопроводностью, причем на сторонах пластины нанесены электроизоляционные слои. Электроизоляционные слои покрыты слоями металлов, обладающих...
Тип: Изобретение
Номер охранного документа: 0002413329
Дата охранного документа: 27.02.2011
20.01.2018
№218.016.1d9e

Псевдоморфное коммутирующее устройство на основе гетероструктуры algan/ingan

Изобретение относится к области изготовления полупроводниковых изделий. Коммутирующее устройство является псевдоморфным, изготовленным на базе гетероструктуры AlGaN/InGaN, а емкостный элемент представляет собой конденсатор. Кроме того, коммутирующее устройство включает подложку из сапфира, на...
Тип: Изобретение
Номер охранного документа: 0002640966
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e2b

Псевдоморфный ограничитель мощности на основе гетероструктуры algan/ingan

Изобретение относится к области полупроводниковых изделий и может быть использовано при создании нового поколения СВЧ элементной базы и интегральных схем на основе гетероструктур широкозонных полупроводников. Технический результат: повышение надежности устройства и плотности носителей,...
Тип: Изобретение
Номер охранного документа: 0002640965
Дата охранного документа: 12.01.2018
Показаны записи 21-30 из 30.
10.02.2016
№216.014.c398

Псевдоморфный переключатель свч

Изобретение относится к области полупроводниковых изделий, Технический результат - повышение надежности устройства путем снижения влияния DX центров, повышения плотности электронов и устранения деградации в гетероструктуре. Для этого переключатель СВЧ содержит подложку из сапфира, на которой...
Тип: Изобретение
Номер охранного документа: 0002574809
Дата охранного документа: 10.02.2016
26.08.2017
№217.015.e54d

Теплоотводящий элемент

Изобретение относится к теплоотводящим элементам. Указанный элемент состоит из пластины, выполненной из композитного материала, обладающего высокой теплопроводностью, причем на сторонах пластины нанесены электроизоляционные слои. Электроизоляционные слои покрыты слоями металлов, обладающих...
Тип: Изобретение
Номер охранного документа: 0002413329
Дата охранного документа: 27.02.2011
20.01.2018
№218.016.1d9e

Псевдоморфное коммутирующее устройство на основе гетероструктуры algan/ingan

Изобретение относится к области изготовления полупроводниковых изделий. Коммутирующее устройство является псевдоморфным, изготовленным на базе гетероструктуры AlGaN/InGaN, а емкостный элемент представляет собой конденсатор. Кроме того, коммутирующее устройство включает подложку из сапфира, на...
Тип: Изобретение
Номер охранного документа: 0002640966
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e2b

Псевдоморфный ограничитель мощности на основе гетероструктуры algan/ingan

Изобретение относится к области полупроводниковых изделий и может быть использовано при создании нового поколения СВЧ элементной базы и интегральных схем на основе гетероструктур широкозонных полупроводников. Технический результат: повышение надежности устройства и плотности носителей,...
Тип: Изобретение
Номер охранного документа: 0002640965
Дата охранного документа: 12.01.2018
18.05.2018
№218.016.5121

Многоканальное коммутирующее устройство свч с изолированными электродами

Изобретение относится к полупроводниковым изделиям, предназначенным для СВЧ управляющих устройств. Сущность изобретения заключается в том, что коммутирующее устройство СВЧ с изолированными электродами изготовлено на графене, где в качестве подложки использован кремний, затем последовательно...
Тип: Изобретение
Номер охранного документа: 0002653180
Дата охранного документа: 07.05.2018
13.11.2018
№218.016.9ca5

Свч переключатель с изолированными электродами

Использование: для создания нового поколения СВЧ элементной базы и МИС СВЧ на основе графена. Сущность изобретения заключается в том, что переключатель СВЧ изготовлен на графене, где в качестве подложки использован кремний, затем последовательно размещены слой оксида кремния (SiO),...
Тип: Изобретение
Номер охранного документа: 0002672159
Дата охранного документа: 12.11.2018
19.04.2019
№219.017.304c

Способ изготовления полупроводникового прибора

Изобретение относится к области полупроводниковой техники и может быть использовано при изготовлении таких приборов как, например, гетеропереходные полевые транзисторы (НЕМТ), биполярные транзисторы (BJT), гетеробиполярные транзисторы (НВТ), p-i-n диоды, диоды с барьером Шотки и многие другие....
Тип: Изобретение
Номер охранного документа: 0002368031
Дата охранного документа: 20.09.2009
19.04.2019
№219.017.3305

Способ контроля дефектности и упругой деформации в слоях полупроводниковых гетероструктур

Использование: для контроля дефектности и упругой деформации в слоях полупроводниковых гетероструктур. Сущность: заключается в том, что с помощью рентгеновской дифрактометрии при использовании скользящего первичного рентгеновского пучка получают ассиметричное отражение от кристаллографических...
Тип: Изобретение
Номер охранного документа: 0002436076
Дата охранного документа: 10.12.2011
19.06.2019
№219.017.88d9

Теплоотводящий элемент

Изобретение относится к области электроники и предназначено преимущественно для использования в качестве теплоотводящей электроизолирующей подложки при изготовлении полупроводниковых приборов и электронных систем. Техническим результатом изобретения является улучшение изолирующих свойств,...
Тип: Изобретение
Номер охранного документа: 0002411609
Дата охранного документа: 10.02.2011
25.06.2020
№220.018.2b3b

Корпус полупроводникового прибора из металломатричного композита и способ его изготовления

Изобретение относится к области конструирования полупроводниковых приборов. Композитный корпус полупроводникового прибора состоит из металла, например алюминия, с концентрацией в общей массе в смеси от 15 до 60% и частиц порошка карбида кремния, при этом частицы карбида кремния в смеси двух...
Тип: Изобретение
Номер охранного документа: 0002724289
Дата охранного документа: 22.06.2020
+ добавить свой РИД