×
10.06.2014
216.012.cfdb

Результат интеллектуальной деятельности: СИСТЕМА ОХЛАЖДЕНИЯ

Вид РИД

Изобретение

Аннотация: Система охлаждения относится к области теплотехники, а именно к тепломассообмену, и может быть использована для охлаждения различных тепловыделяющих элементов путем отвода от них тепла по тепловой трубе к охладителю любого типа. Система охлаждения содержит тепловую трубу и установленные на противоположных ее концах, в тепловом контакте с ней, тепловыделяющий элемент и охладитель. Тепловыделяющий элемент и охладитель расположены со смещением к середине тепловой трубы в соответствии с требуемым тепловым сопротивлением и передаваемой тепловой мощностью системы охлаждения. Предлагаемое решение позволяет за счет незначительного смещения указанных элементов заметно уменьшить тепловое сопротивление системы охлаждения и увеличить передаваемую ею мощность. В конкретном примере реализации при смещении тепловыделяющего элемента и охладителя на 10% длины тепловой трубы тепловое сопротивление уменьшилось на 22%, а передаваемая тепловая мощность увеличилась со 180 Вт до 220 Вт. 3 ил.
Основные результаты: Система охлаждения, содержащая тепловую трубу и установленные на противоположных ее концах, в тепловом контакте с ней, тепловыделяющий элемент и охладитель, отличающаяся тем, что тепловыделяющий элемент и охладитель расположены со смещением к середине тепловой трубы в соответствии с требуемым тепловым сопротивлением и передаваемой тепловой мощностью системы охлаждения.

Предлагаемое устройство относится к области теплотехники, а именно к тепломассообмену, и может быть использовано для охлаждения различных тепловыделяющих элементов путем отвода от них тепла по тепловой трубе к охладителю любого типа.

Известны системы воздушного охлаждения («Тепловые трубы с порошковой капиллярной структурой и конструктивные элементы на их основе для систем воздушного охлаждения электропреобразовательного оборудования и радиоэлектронной аппаратуры», каталог Белорусского республиканского НПО порошковой металлургии, г.Минск.), содержащие тепловую трубу в виде цилиндрической медной трубки с порошковым капилляром и водой в качестве теплоносителя, тепловыделяющий элемент в виде радиоэлемента с пропускаемым через него электрическим током, установленный на теплопроводящую пластину (теплорастекатель), которая установлена на тепловую трубу на одном из ее концов, и охладитель в виде ряда пластин, припаянных перпендикулярно тепловой трубе на втором ее конце. Недостатком такой системы является низкая передаваемая тепловая мощность и большое тепловое сопротивление системы охлаждения.

Известен модуль охлаждения, выбранный за прототип (ШУБИ.067314.017 ТУ, дата публикации 15.12.2008 г., РосАтом), который содержит тепловую трубу в виде алюминиевого профиля с продольными капиллярными канавками и аммиаком в качестве теплоносителя, тепловыделяющий элемент в виде транзистора, устанавленного на тепловую трубу на одном конце, и охладитель в виде радиатора, установленного на другом конце тепловой трубы и обдуваемого холодным воздухом с помощью вентилятора, при этом тепловыделяющий элемент и радиатор охладителя находятся в тепловом контакте с тепловой трубой, как и показано на габаритном чертеже ШУБИ.067314.017 ГЧ.

Недостатком прототипа является низкая передаваемая тепловая мощность и большое тепловое сопротивление системы охлаждения.

Технической задачей заявляемого изобретения является уменьшение теплового сопротивления системы охлаждения и увеличение максимальной передаваемой тепловой мощности.

Для решения технической задачи разработана конструкция системы охлаждения, содержащая тепловую трубу и установленные на противоположных ее концах, в тепловом контакте с ней, тепловыделяющий элемент и охладитель, причем тепловыделяющий элемент и охладитель расположены со смещением к середине тепловой трубы в соответствии с требуемым тепловым сопротивлением и передаваемой тепловой мощностью системы охлаждения.

На фигуре 1 схематически изображена система охлаждения и контур циркуляции теплоносителя в тепловой трубе.

На фигуре 2 приведена зависимость теплового сопротивления системы охлаждения Rсист в зависимости от одновременного смещения тепловыделяющего элемента и охладителя относительно соответствующих концов тепловой трубы на величину Lсм.

На фигуре 3 приведена зависимость передаваемой тепловой мощности системы охлаждения РТ в зависимости от одновременного смещения тепловыделяющего элемента и охладителя относительно соответствующих концов тепловой трубы на величину Lсм.

Система охлаждения содержит тепловую трубу 1 и находящиеся в тепловом контакте с ней тепловыделяющий элемент 2 и охладитель 3, причем тепловыделяющий элемент 2 смещен относительно одного конца тепловой трубы на расстояние Lсм.ТВ, а охладитель 3 смещен относительно второго конца трубы на расстояние Lсм.охл в сторону середины тепловой трубы 1. Внутри тепловой трубы расположены по ее периметру капиллярные каналы 4 и в центре трубы паровой канал 5.

Система работает следующим образом. В исходном состоянии теплоноситель в герметично закрытой тепловой трубе 1 находится в жидком состоянии, полностью заполняет капиллярные каналы 4 и частично паровой канал 5. При нагреве тепловыделяющего элемента 2 теплоноситель испаряется в зоне расположения этого элемента и отбирает при этом тепло от стенок тепловой трубы 1, а через них и от тепловыделяющего элемента 2, находящегося в тепловом контакте с тепловой трубой 1. В результате этого тепловыделяющий элемент 2 охлаждается. После испарения теплоноситель в виде пара поступает в паровой канал 5, по нему перемещается в зону установки охладителя 3, как показано на фиг.1, там конденсируется на холодных стенках тепловой трубы 1 и удерживается в капиллярных каналах 4, перемещаясь к испарителю за счет сил поверхностного натяжения и разности давлений пара в зоне испарения и зоне конденсации тепловой трубы.

Тепловое сопротивление системы охлаждения содержит три составляющие

Rсист=RТВ-ТТ+RТТ+RТТ-ОХЛ, град/Вт,

где RТВ-ТТ - тепловое сопротивление между тепловыделяющим элементом и тепловой трубой;

RTT - тепловое сопротивление тепловой трубы;

RТТ-ОХЛ - тепловое сопротивление между тепловой трубой и охладителем.

В то же время

где Т - температура тепловыделяющего элемента;

ТОХЛ - температура охладителя;

РТ - тепловая мощность, выделяемая на тепловыделяющем элементе.

Исходя из физики процессов переноса тепла количество переносимого в единицу времени тепла, численно равное тепловой мощности, выделяемой на тепловыделяющем элементе РТ, пропорционально скорости циркуляции теплоносителя в тепловой трубе. Следовательно, необходимо эту скорость увеличивать, изменяя контур циркуляции теплоносителя до достижения максимального значения скорости циркуляции, а значит и максимального значения передаваемой тепловой мощности. Контур циркуляции теплоносителя в тепловой трубе, кроме того, должен проходить через зону расположения тепловыделяющего элемента (зону испарения) и зону расположения охладителя (зону конденсации), замыкаясь через паровой канал и капиллярные каналы тепловой трубы между этими элементами, а также в промежутках между этими элементами и соответствующими концами трубы. Если промежуток между концом трубы и указанным элементом отсутствует, то контур циркуляции будет проходить через соответствующий элемент только частично, площадь теплового контакта уменьшается, соответствующее тепловое сопротивление RТВ-ТТ или RТТ-ОХЛ растет. Кроме того, скорость потока пара или жидкости у стенки конца трубы равна нулю (стенка неподвижна) и лишь постепенно растет до максимальной скорости потока по мере удаления от конца трубы. Это приводит к уменьшению скорости потока на этом участке, а значит и в целом по тепловой трубе, при этом растут RTT, RТВ-ТТ, RТТ-ОХЛ и уменьшается максимальная передаваемая тепловая мощность, что является следствием проявления краевого эффекта.

Для уменьшения такого влияния необходимо увеличивать расстояние места разворота потока теплоносителя от конца трубы. При этом будет расти средняя скорость потока по тепловой трубе, что приведет к снижению RTT, RТВ-ТТ, RТТ-ОХЛ, а значит и их суммы Rсист,и росту PT, и кроме того, поток теплоносителя будет проходить через всю площадь нагрева тепловой трубы тепловыделяющим элементом и всю площадь отбора тепла от тепловой трубы охладителем, что приведет к уменьшению RТВ-ТТ, RТТ-ОХЛ и теплового сопротивления системы охлаждения в целом.

Кроме того, скорость движения жидкого теплоносителя под действием сил поверхностного натяжения уменьшается за счет препятствующей движению жидкости разности давлений пара в зоне испарения и зоне конденсации. В предлагаемой системе эта разность меньше, так как давление пара в зоне испарения частично сбрасывается в сторону конца тепловой трубы и препятствующее движению жидкости давление уменьшается. В области конденсации созданы условия для прохода пара в зону между охладителем и концом тепловой трубы, его давление в направлении движения жидкости ускоряет ее перемещение по капиллярам в зону испарения.

Таким образом, смещением тепловыделяющего элемента и охладителя от концов тепловой трубы к ее середине решаются обе задачи изобретения - уменьшение теплового сопротивления Rсист и увеличение передаваемой тепловой мощности RT.

Были изготовлены и испытаны опытные образцы системы охлаждения, содержащей следующие элементы:

- тепловая труба в виде алюминиевой трубки ⌀12,5 мм, длиной 360 мм с капилляром в форме ряда продольных канавок по периметру трубки и теплоносителем в виде аммиака;

- тепловыделяющий элемент - транзистор типа IRFP150 на теплорастекателе в виде медной пластины;

- охладитель в виде радиатора с обдувающим его вентилятором.

Система охлаждения испытана при различных значениях Lсм.ТВ и Lсм.охл от нулевого значения до величин, при которых изменение теплового сопротивления Rсист и увеличение передаваемой тепловой мощности РT при дальнейшем росте Lсм.TB или Lсм.охл ужe не наблюдается. Нулевые смещения соответствуют системе-прототипу, все остальные - предлагаемой системе охлаждения. Максимальные значения достигаемого эффекта получены при установке тепловыделяющего элемента на расстояние Lсм.ТВ=40 мм и охладителя на расстояние Lcм.охл=40 мм, что и видно из графиков фиг.2 и фиг.3. Установлено, что для конкретной системы охлаждения при фиксированной разности температур между тепловыделяющим элементом и охладителем, равной 18,5°, тепловое сопротивление системы охлаждения Rсист может быть уменьшено в 1,22 раза, с 0,103 град/Вт до 0,084 град/Вт, передаваемая тепловая мощность РT может быть увеличена со 180 Вт до 220 Вт, то есть в 1,22 раза. Конкретные значения Lсм.ТВ и Lсм.охл выбираются исходя из требуемых значений Rcист и PT и конструктивных требований к элементам системы охлаждения, таким, например, как общая длина и конфигурация тепловой трубы и др.

Система охлаждения, содержащая тепловую трубу и установленные на противоположных ее концах, в тепловом контакте с ней, тепловыделяющий элемент и охладитель, отличающаяся тем, что тепловыделяющий элемент и охладитель расположены со смещением к середине тепловой трубы в соответствии с требуемым тепловым сопротивлением и передаваемой тепловой мощностью системы охлаждения.
СИСТЕМА ОХЛАЖДЕНИЯ
СИСТЕМА ОХЛАЖДЕНИЯ
СИСТЕМА ОХЛАЖДЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-19 из 19.
27.12.2015
№216.013.9d3e

Приемо-передающий модуль активной фазированной антенной решетки

Изобретение относится к радиотехнике, в частности к средствам приема и передачи радиоволн. Приемо-передающий модуль активной фазированной антенной решетки содержит передающий и приемный каналы, первое, второе и третье направленное устройство разделения падающей и отраженной мощностей,...
Тип: Изобретение
Номер охранного документа: 0002571884
Дата охранного документа: 27.12.2015
13.01.2017
№217.015.6993

Трансверсальный аналоговый фильтр для приема лчм сигнала диапазона свч

Изобретение относится к радиотехнике и может быть использовано в устройствах радиолокации и передачи данных, для приема сигналов. Технический результат - создание системы детектирования ЛЧМ сигнала диапазона СВЧ, обеспечивающей неполную свертку принимаемого ЛЧМ сигнала с самим собой....
Тип: Изобретение
Номер охранного документа: 0002591475
Дата охранного документа: 20.07.2016
25.08.2017
№217.015.9977

Система локального позиционирования объектов

Изобретение относится к области обработки данных и может быть использовано для создания систем локального позиционирования объектов, в частности для определения местонахождения оборудования и людей в помещениях и на прилегающих площадках. Достигаемый технический результат - повышение точности...
Тип: Изобретение
Номер охранного документа: 0002609582
Дата охранного документа: 02.02.2017
25.08.2017
№217.015.ac00

Трансверсальный аналоговый фильтр диапазона свч

Изобретение относится к радиотехнике и может быть использовано в устройствах радиолокации и передачи данных. Технический результат - создание фильтра диапазона СВЧ с прогнозируемым видом получаемой АЧХ и исключением настроечных операций. Трансверсальный аналоговый фильтр диапазона СВЧ содержит...
Тип: Изобретение
Номер охранного документа: 0002612297
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.b002

Способ экстракционного разделения скандия и тория

Изобретение относится к гидрометаллургии редких и радиоактивных металлов и может быть использовано для разделения скандия и тория, содержащихся в азотнокислых растворах переработки скандий содержащего сырья. Способ экстракционного разделения скандия и тория, содержащихся в азотнокислых...
Тип: Изобретение
Номер охранного документа: 0002611001
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.cc34

Источник ионов

Изобретение относится к ионно-плазменной технологии и может быть использовано при разработке источников ионов. Технический результат - повышение эффективности работы источника ионов путем обеспечения температуры ионизируемого рабочего вещества, достаточной для получения необходимого...
Тип: Изобретение
Номер охранного документа: 0002620442
Дата охранного документа: 25.05.2017
16.06.2018
№218.016.63a5

Контактное устройство

Изобретение относится к электронной технике, к контактным устройствам, применяемым для подключения контактных элементов изделий электронной техники к установкам для измерения параметров. Технический результат - унификация конструкции контактного устройства за счет использования составных...
Тип: Изобретение
Номер охранного документа: 0002657460
Дата охранного документа: 14.06.2018
30.08.2018
№218.016.8173

Способ изготовления интегральных элементов микросхем на эпитаксиальных структурах арсенида галлия

Изобретение относится к микроэлектронике, в частности к технологии полупроводниковых приборов на эпитаксиальных структурах арсенида галлия. Техническим результатом предлагаемого способа изготовления интегральных элементов микросхемы на эпитаксиальных структурах арсенида галлия является...
Тип: Изобретение
Номер охранного документа: 0002665368
Дата охранного документа: 29.08.2018
24.01.2019
№219.016.b2e4

Радиолокационная станция с квазинепрерывным шумовым сигналом

Изобретение относится к системам для обнаружения воздушных, морских и наземных объектов, а также для определения их дальности, скорости в условиях повышенной скрытности и помехозащищенности, основанных на излучении радиоволн и регистрации их отражений от объектов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002677853
Дата охранного документа: 22.01.2019
Показаны записи 21-23 из 23.
19.06.2019
№219.017.85c3

Устройство электроискрового розжига

Изобретение относится к электрооборудованию для обеспечения поджига топливной смеси на основе газового, дизельного, бензинового и любого другого вида топлива в газообразном или жидком состоянии. Устройство электроискрового розжига содержит катушку зажигания, выводы вторичной обмотки которой...
Тип: Изобретение
Номер охранного документа: 0002342558
Дата охранного документа: 27.12.2008
19.06.2019
№219.017.877e

Фильтр подавления электромагнитных помех

Изобретение относится к электронной технике и может быть применено для подавления электромагнитных помех в цепях питания телекоммуникационной аппаратуры, ВЧ- и СВЧ- техники и в других устройствах цифровой обработки сигналов. Фильтр подавления электромагнитных помех состоит из катушек...
Тип: Изобретение
Номер охранного документа: 0002373621
Дата охранного документа: 20.11.2009
10.07.2019
№219.017.ae78

Способ и устройство управления асинхронным двигателем

Изобретение относится к преобразовательной технике, а именно к управлению асинхронными двигателями. Технический результат заключается в управлении асинхронным двигателем при изменении входного напряжения в широком диапазоне, пуске асинхронного двигателя на «выбеге» без использования датчика...
Тип: Изобретение
Номер охранного документа: 0002361356
Дата охранного документа: 10.07.2009
+ добавить свой РИД