×
10.06.2014
216.012.cd73

Результат интеллектуальной деятельности: СКАНИРУЮЩЕЕ ИНТЕРФЕРЕНЦИОННОЕ УСТРОЙСТВО В ВИДЕ ДВУХЗЕРКАЛЬНОГО ИНТЕРФЕРОМЕТРА ФАБРИ-ПЕРО

Вид РИД

Изобретение

Аннотация: Сканирующее интерференционное устройство содержит подложки с зеркальным покрытием с регулированием положения при помощи пьезоэлемента, подключенного к источнику переменного напряжения. Поверхности подложек зеркал интерферометра между собой соединены с помощью прозрачного упругого сплошного или островкового слоя равномерной толщины с образованием механического осциллятора, имеющего частоту собственных колебаний, близкую к частоте переменного напряжения. Модуль Юнга упругого слоя меньше, чем подложек. Пьезоэлементом может быть одна из подложек. В качестве материала прозрачного упругого слоя могут использоваться полужесткие, мягкие и эластичные формы полимера, в том числе, полиимид, полиэтилен, фоторезист, кремнийорганический каучук. Оптическая толщина упругого слоя равна половине или полной длине волны модулируемого излучения. Толщины составных частей осциллятора много меньше длины упругой волны в нем. По толщине осциллятора может укладываться целое число половин длины упругой волны в нем, а по толщине подложки - нечетное число четвертей длины упругой волны. Технический результат - увеличение глубины модуляции интерферометра, быстродействия и апертуры. 5 з.п. ф-лы, 3 ил.

Изобретение относится к оптике, к оптическим устройствам, основанным на использовании явлений интерференции световых потоков, например в интерферометрах Фабри-Перо, применяемых в научных исследованиях и технике для спектрального анализа или модуляции света.

В качестве аналога рассматриваем электрооптический модулятор света на базе интерферометра Фабри-Перо [Методы модуляции и сканирования света. Мустель Е.Р., Парыгин В.Н. - М.: Гл. ред. физ.-мат. лит. «Наука». 1970 - 296 с.]. В модуляторе пространство между зеркалами заполнено электрооптической средой, при подаче напряжения между зеркальными проводящими слоями вследствие электрооптического эффекта изменяется показатель преломления среды и оптическое расстояние между зеркалами. Изменяется длина волны максимума интерференции проходящего через интерферометр излучения, то есть происходит модуляция интенсивности проходящего монохроматического света.

Недостатками модулятора являются малая глубина модуляции в связи с малостью электрооптических коэффициентов используемых сред и тот факт, что модулируется плоскополяризованное излучение.

В качестве прототипа примем сканирующий интерферометр Фабри-Перо [Арбузов В.А. и др. Оптика и атомная физика. «Наука». 1976 - 456 с.]. Основной частью прототипа являются два полупрозрачных сферических зеркала. Средой в регулируемом интерферометре является газ или вакуум. Зеркала могут быть нанесены на смежные поверхности двух сферических стеклянных подложек; расстояние между зеркалами можно изменять с помощью электрически управляемого пьезоэлемента, на котором закрепляется подложка с одним из зеркал. При изменении геометрического расстояния между зеркалами изменяется длина волны максимума интерференции проходящего через интерферометр излучения, то есть происходит модуляция интенсивности проходящего монохроматического света.

В таком интерферометре Фабри-Перо, использующем электрооптически не активную среду, например газовую, необходимости в поляризации модулируемого излучения нет.

Недостатки прототипа: малая глубина модуляции света в связи с малыми значениями пьезоэлектрических модулей, малое быстродействие.

Задачей, решаемой изобретением, является увеличение глубины модуляции интерферометра, создание модулятора с увеличенными быстродействием и апертурой.

Задача решается тем, что сканирующее интерференционное устройство в виде двухзеркального интерферометра Фабри-Перо содержит подложки с зеркальным покрытием с регулированием положения при помощи пьезоэлемента, подключенного к источнику переменного напряжения, согласно изобретению поверхности подложек зеркал интерферометра между собой соединены в нем с помощью прозрачного упругого слоя равномерной толщины с образованием механического осциллятора, имеющего частоту собственных колебаний, близкую к частоте переменного напряжения, тогда как модуль Юнга упругого слоя меньше, чем подложек.

Решается также, что пьезоэлементом является одна из подложек.

Решается также, что материалами прозрачного упругого слоя являются полужесткие, мягкие и эластичные формы полимера, в том числе полиимид, полиэтилен, фоторезист, кремнийорганический каучук.

Решается также, что оптическая толщина прозрачного упругого слоя равна половине или полной длине волны модулируемого излучения.

Решается также, что толщины составных частей осциллятора много меньше длины упругой волны в нем на частоте колебаний.

Решается также, что по толщине осциллятора укладывается целое число половин длины упругой волны в нем на частоте колебаний, тогда как по толщине подложки укладывается нечетное число четвертей длины упругой волны.

Физической основой увеличения коэффициента модуляции излучения в соответствии с изобретением является тот факт, что для изменения толщины упругого слоя используются действующие на упругий слой «силы инерции» подложек, возникающие при периодических колебаниях подложек зеркал под действием толщинных деформаций пьезоэлемента; при большой частоте колебаний эти силы могут быть существенно больше, чем, например, силы электростатического притяжения обкладок электрического конденсатора, иногда предлагаемые для изменения положения зеркал в интерферометре, и больше пьезоэлектрических сил.

Изобретение поясняется с помощью фигур 1-3.

На фиг.1, а) показано схематически устройство сканирующего интерференционного устройства в виде двухзеркального интерферометра Фабри-Перо, использующего колебания механического осциллятора; на фиг.1, б) - эквивалентная механическая схема осциллятора, включающего подложки зеркал, упругий слой между подложками и пьезоэлемент; на фиг.2, а) - устройство, сканирующее интерференционное устройство в виде двухзеркального интерферометра Фабри-Перо, использующего колебания механического осциллятора, в котором одна из подложек является пьезоэлементом; на фиг.2, б) - эквивалентная механическая схема осциллятора, состоящего из подложек зеркал, одна из которых является пьезоэлементом, и упругого слоя между подложками; на Фиг.3, а) представлен график мгновенного распределения механического напряжения в осцилляторе при возбуждении полуволновой стоячей волны; на Фиг.3, б) представлена схема структуры осциллятора в случае, когда размеры упругой волны соизмеримы с размерами элементов осциллятора.

Сканирующее интерференционное устройство в виде двухзеркального интерферометра Фабри-Перо по изобретению работает следующим образом.

Модулируемое монохроматическое излучение, показанное на фиг.1, а) стрелками, проходит прозрачные подложки 1 и 2, полупрозрачные зеркальные покрытия 3 и 4 и упругий прозрачный слой 5, скрепляющий собой поверхности подложек, на которые нанесены зеркальные покрытия. В соответствии с принципом работы многолучевого интерферометра излучение между зеркалами многократно отражается, давая после выхода из устройства интерференционную картину. На фигуре пьезоэлемент 6 имеет форму кольца, хотя может также быть прозрачным диском; при подаче между его обкладками 7 и 8 переменного напряжения в нем возникают продольные механические колебания, он периодически деформируется по толщине. При условии жесткого соединения пьезоэлемента с подложкой 1 толщинные колебания передаются ей, приводя подложку в колебательное движение вдоль направления оси симметрии устройства и возбуждая в ней упругую волну продольных колебаний. Распространяясь в подложке, упругая волна попадает в упругий прозрачный слой, далее во вторую подложку 2. В системе, включающей пьезоэлемент, первую подложку, упругий прозрачный слой и вторую подложку, возникает картина стоячих механических волн на частоте возбуждения пьезоэлемента.

Если толщины a и b подложек, толщина g пьезоэлемента и толщина d упругого слоя существенно меньше длины упругой волны в этих элементах, осциллятор можно считать состоящим из сосредоточенных элементов, и его эквивалентная механическая схема изображена на Фиг.1, б). На фигуре mП, m1, m2 - массы пьезоэлемента, первой и второй подложки соответственно, с - жесткость прозрачного упругого слоя 5. При совпадении частоты собственных колебаний указанных масс, входящих в осциллятор, с частотой возбуждения пьезоэлемента, амплитуда колебаний в сравнении с деформацией пьезоэлемента под действием постоянного напряжения возрастает в число раз, равное значению механической добротности осциллятора, порядка десятков раз, при этом в такое же число раз увеличится деформация упругого элемента и изменение оптического пути света в интерферометре, увеличится коэффициент модуляции прошедшего интерферометр света.

Если в качестве одной из подложек сканирующего интерференционного устройства в виде двухзеркального интерферометра Фабри-Перо выступает пьезоэлемент (Фиг.2, а)), ход лучей остается прежним: излучение проходит пьезоподложку 9 и прозрачные электроды 10 и 11, затем упругий слой 5 с зеркальными полупрозрачными покрытиями 3 и 4, затем подложку 2. Эквивалентная механическая схема сканирующего интерференционного устройства в виде двухзеркального интерферометра Фабри-Перо с использованием пьезоподложки на фиг.2, б) включает только две массы mП, m2 пьезоподложки и второй подложки и жесткость с прозрачного упругого слоя; здесь также при наступлении механического резонанса амплитуда колебательной деформации упругого элемента превышает статическую деформацию в число раз, равное механической добротности осциллятора.

Собственная частота колебаний осциллятора фиг.1 определяется уравнением:

где - жесткость упругого прозрачного слоя, ρП, ρ1, и ρ2 - плотности пьезоэлемента и подложек, Е - модуль Юнга упругого прозрачного слоя, S - его площадь.

Для случая пьезокерамического диска (g=5 мм, ρП=5·103 кг/м3), стеклянных подложек толщиной a=b=5 мм и плотностью ρ12=2,3·103 кг/м3, при толщине упругого слоя d=10-6 м, модуле Юнга упругого слоя E=25 МПа получим ƒ=270 кГц. Расчет для осциллятора на фигуре 2 можно проводить по этой же формуле, принимая толщину пьезоэлемента нулевой. Длина бегущей упругой продольной волны в подложках определяется по уравнению:

где модуль Юнга подложки E1=50 ГПа, и равна при вычисленной выше частоте Λ=17,3 мм, что подтверждает справедливость в данном случае эквивалентной схемы в виде модели с сосредоточенными параметрами.

В случае когда размеры элементов системы сравнимы или больше длины упругой волны, необходимо использовать закономерности систем с распределенными параметрами (Фиг.3). На фигуре 3, а) - график распределения механических напряжений σ вдоль осциллятора, длина которого равна половине длины упругой волны; на фиг.3, б) - схема осциллятора, где 12 - пьезоэлемент, 13 и 15 подложки с полупрозрачными зеркалами, 14 - упругий прозрачный слой.

Когда упругая волна проходит через систему подложек и упругий прозрачный слой, на границе подложка-слой должно выполняться условие равенства механических напряжений по сторонам границы раздела. Используя закон Гука, можно написать:

В выражении приравниваются друг другу механические напряжения по сторонам раздела сред, индексы 1 и 2 принадлежат величинам, относящимся к подложке и упругому прозрачному слою соответственно; γ - относительная деформация среды. Толщина упругого слоя мала в сравнении с длиной упругой волны в нем, поэтому

где l2 и Δl2 - толщина и абсолютная деформация упругого слоя.

Если в осцилляторе возбуждена стоячая волна упругих продольных колебаний и он представляет собой свободно расположенное тело, то на концах осциллятора механические напряжения равны нулю и распределение напряжения вдоль осциллятора определяется уравнением, справедливым при равенстве скоростей упругих волн в пьезоэлементе и подложках:

Предполагается, что можно пренебречь влиянием на распределение напряжений упругого прозрачного слоя, имеющего другое значение скорости волны, в связи с малостью толщины слоя.

Здесь ω - круговая частота колебаний в волне, Λ - длина упругой волны в пьезоэлементе и подложках, σ0 - амплитуда механического напряжения в области максимума стоячей волны (при x=Λ/4).

В произвольной точке подложки механическое напряжение равно:

Используя (3) и (6), запишем для амплитудных значений:

Если поместить упругий слой в области максимума напряжений в стоячей волне, получим:

Из уравнения следует, что деформация упругого прозрачного слоя больше деформации подложек в E12 число раз.

В случае неравенства скоростей упругой волны в пьезоэлементе и подложках расчеты можно вести в долях периода упругой волны, и для существования стоячей полуволны в осцилляторе необходимо, чтобы сумма времен прохождения волны по элементам осциллятора была равна полупериоду колебания в волне. Расположение максимума стоячей волны определится координатой в осцилляторе, которой достигнет волна за четверть периода колебаний.

При пьезовозбуждении акустических волн с плоским фронтом поперечный размер подложек практически не ограничен, размер апертуры сканирующего интерференционного устройства, примерно равный поперечным размерам подложек, также может быть увеличен практически до любых размеров.

Длина волны света λ, соответствующая максимуму пропускания интерферометра, определяется известным уравнением:

Здесь q - порядок интерференции, целое число; n - показатель преломления среды между зеркалами интерферометра.

Для диапазона необходимых изменений толщины Δd упругого прозрачного слоя, приводящих к изменению длины волны Δλ максимума пропускания интерферометра, из (9) можно получить:

Последнее уравнение показывает, что с увеличением порядка интерференции необходимо увеличивать требующееся для заданного диапазона ДА перестройки максимума пропускания интерферометра изменение толщины, иначе уменьшается коэффициент модуляции проходящего монохроматического света. Данное обстоятельство диктует использование для эффективного сканирующего интерференционного устройства в виде двухзеркального интерферометра Фабри-Перо работы интерферометра при малых значениях порядка интерференции не более q=1 или 2 (q - количество полуволн света, укладывающихся по толщине упругого прозрачного слоя).

Таким образом показано, что оптимальное значение толщины осциллятора соответствует той, при которой в нем укладывается целое число половин длины упругой волны на частоте колебаний, а оптимальная толщина подложки, когда по ее толщине укладывается нечетное число четвертей длины упругой волны.

Показано также (уравнение (8)), что деформация среды между зеркалами интерферометра, то есть коэффициент модуляции проходящего света, увеличивается с ростом отношения модуля Юнга материала подложек к модулю Юнга упругого прозрачного слоя.

Показано также, что предпочтительное значение оптической толщины прозрачного упругого слоя - половина или полная длина волны модулируемого излучения.

При изготовлении устройства применяются обычные для оптических производств материалы: стекло для пластин, пьезокерамика, полимеры; при изготовлении деталей необходимо применять шлифовку и оптическую полировку, напыление тонких пленок металлов для зеркальных слоев, оптические клеи. В качестве материала прозрачного пьезоэлемента может быть применен монокристаллический кварц или прозрачные пьезоактивные материалы, используемые в устройствах на акустических поверхностных волнах.

Таким образом, подтверждена возможность решения поставленной задачи - увеличение глубины модуляции проходящего света и увеличение быстродействия и апертуры модулятора.

Подобное сканирующее интерференционное устройство в виде двухзеркального интерферометра Фабри-Перо может найти применение в системах получения импульсов лазерного излучения, генерируемого непрерывными лазерами, а также в устройствах спектрального анализа типа монохроматоров в связи с расширенным диапазоном перестройки положения полосы пропускания устройства. Устройство может иметь модификации, работающие в ИК-диапазонах спектра.

Техническим результатом изобретения является сканирующее интерференционное устройство с быстродействием в диапазоне частот порядка сотен килогерц-мегагерц и световым диаметром несколько см. Изобретение может быть применено также при создании быстродействующих электронно-перестраиваемых монохроматоров излучений. Преимуществом устройства перед известными является его компактность - он может быть выполнен в габаритах чипа микросхемы.


СКАНИРУЮЩЕЕ ИНТЕРФЕРЕНЦИОННОЕ УСТРОЙСТВО В ВИДЕ ДВУХЗЕРКАЛЬНОГО ИНТЕРФЕРОМЕТРА ФАБРИ-ПЕРО
СКАНИРУЮЩЕЕ ИНТЕРФЕРЕНЦИОННОЕ УСТРОЙСТВО В ВИДЕ ДВУХЗЕРКАЛЬНОГО ИНТЕРФЕРОМЕТРА ФАБРИ-ПЕРО
СКАНИРУЮЩЕЕ ИНТЕРФЕРЕНЦИОННОЕ УСТРОЙСТВО В ВИДЕ ДВУХЗЕРКАЛЬНОГО ИНТЕРФЕРОМЕТРА ФАБРИ-ПЕРО
Источник поступления информации: Роспатент

Показаны записи 31-39 из 39.
10.07.2015
№216.013.5c76

Оптический пассивный затвор

Изобретение относится к оптической и оптоэлектронной технике, а именно к устройствам предохранения фоточувствительных элементов оптических и оптоэлектронных систем от разрушающего воздействия мощного излучения. Оптический пассивный затвор содержит локально плавящуюся или испаряющуюся...
Тип: Изобретение
Номер охранного документа: 0002555211
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d9a

Оптический пассивный ограничитель проходящего излучения

Изобретение относится к оптической и оптоэлектронной технике, а именно к устройствам предохранения фоточувствительных элементов оптических и оптоэлектронных систем от разрушающего воздействия мощного излучения. Оптический пассивный ограничитель проходящего излучения содержит прозрачную...
Тип: Изобретение
Номер охранного документа: 0002555503
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.603c

Способ сублимационного лазерного профилирования или сверления прозрачных подложек

Изобретение относится к способу сублимационной лазерной обработки прозрачных подложек с формированием рельефных микроструктур и может найти использование в микроэлектронике, оптике, микросистемной технике. Предварительно на поверхность подложек в местах углублений рельефа или отверстий наносят...
Тип: Изобретение
Номер охранного документа: 0002556177
Дата охранного документа: 10.07.2015
10.12.2015
№216.013.96d7

Пироэлектрический преобразователь электромагнитных волн

Изобретение относится к области оптико-электронных приборов и касается пироэлектрического преобразователя электромагнитных волн. Пироэлектрический преобразователь включает в себя теплоизолированную пластину пиродиэлектрика с проводящими тонкопленочными обкладками на противоположных поверхностях...
Тип: Изобретение
Номер охранного документа: 0002570235
Дата охранного документа: 10.12.2015
27.12.2015
№216.013.9dfd

Способ нанесения межкристаллитных коррозионных поражений на алюмиевые сплавы

Изобретение относится к области проведения коррозионных испытаний алюминиевых сплавов. Способ нанесения межкристаллитных коррозионных поражений на деталь из алюминиевого сплава, в котором деталь обрабатывают путем наложения на нее анодного тока в водном электролите, содержащем хлорид натрия....
Тип: Изобретение
Номер охранного документа: 0002572075
Дата охранного документа: 27.12.2015
20.01.2016
№216.013.9fb1

Устройство электрически управляемого оптического прибора и способ его изготовления

Изобретение относится к устройству, которое использует явление интерференции световых потоков, а именно к резонатору Фабри-Перо. Устройство содержит скрепленные между собой расположенные с регулируемым воздушным зазором пластины с тонкопленочными проводящими или диэлектрическими зеркалами и...
Тип: Изобретение
Номер охранного документа: 0002572523
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bcc6

Способ и устройство атомно-эмиссионного спектрального анализа нанообъектов

Изобретение относится к области спектрального анализа и касается способа и устройства атомно-эмиссионного анализа нанообъектов. Способ включает в себя испарение нанообъектов лазерным пучком и анализ нанообъектов по их свечению. Нанообъекты помещают на поверхность прозрачной подложки. На...
Тип: Изобретение
Номер охранного документа: 0002573717
Дата охранного документа: 27.01.2016
25.08.2017
№217.015.b147

Способ формирования тонкоплёночного рисунка на подложке

Изобретение относится к оптическим технологиям формирования топологических структур на подложках, в частности к лазерным методам формирования на подложках топологических структур нано- и микроразмеров для нано- и микромеханики, микро- и наноэлектроники. В способе формирования тонкопленочного...
Тип: Изобретение
Номер охранного документа: 0002613054
Дата охранного документа: 15.03.2017
04.04.2018
№218.016.366e

Способ упорядочения расположения наночастиц на поверхности подложки

Использование: для формирования на подложках структурных образований из микро- и наночастиц. Сущность изобретения заключается в том, что по способу упорядочения расположения наночастиц на поверхности подложки путем их перемещения с помощью лазерного излучения, в соответствии с изобретением,...
Тип: Изобретение
Номер охранного документа: 0002646441
Дата охранного документа: 05.03.2018
Показаны записи 41-50 из 50.
01.03.2019
№219.016.cef2

Оптический резонатор

Изобретение относится к оптическим устройствам, основанным на использовании явлений полного внутреннего отражения и интерференции световых потоков. Оптический резонатор содержит прозрачную плоскую пластину, ограниченную поверхностями полного внутреннего отражения света, оптический элемент ввода...
Тип: Изобретение
Номер охранного документа: 0002455669
Дата охранного документа: 10.07.2012
01.03.2019
№219.016.d032

Способ образования на подложке упорядоченного массива наноразмерных сфероидов

Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике, к нелитографическим микротехнологиям формирования на подложках тонкопленочных рисунков из наносимых на ее поверхность веществ. Сущность изобретения: способ образования на подложке упорядоченного массива...
Тип: Изобретение
Номер охранного документа: 0002444084
Дата охранного документа: 27.02.2012
04.04.2019
№219.016.fcb1

Лазерное формообразование механических микроструктур на поверхности подложки

Изобретение относится к оптическим технологиям, в частности к лазерным методам формирования на подложках структурных образований нано- и микроразмеров для нано- и микромеханики и микроэлектроники. Способ включает осаждение частиц вещества из газовой фазы с использованием локального нагрева...
Тип: Изобретение
Номер охранного документа: 0002452792
Дата охранного документа: 10.06.2012
17.04.2019
№219.017.15e4

Устройство управляемого углового дискретного позиционирования оптического луча

Устройство относится к оптоэлектронной технике, в частности к устройствам сканеров и дефлекторов для управления положением оптического луча и для его переключения из одного углового положения в другое, и может быть использовано при лазерной локации объектов. Устройство содержит сканер с...
Тип: Изобретение
Номер охранного документа: 0002383908
Дата охранного документа: 10.03.2010
13.06.2019
№219.017.81c5

Термически и оптически управляемое фокусирующее устройство

Изобретение относится к оптической отрасли техники, в частности к микрооптическим устройствам, оптическую силу которых можно изменять с помощью световых или тепловых воздействий. Устройство содержит подложку, размещенную в вакуумированном корпусе с прозрачным окном, на которой расположен массив...
Тип: Изобретение
Номер охранного документа: 0002390810
Дата охранного документа: 27.05.2010
13.06.2019
№219.017.81d5

Устройство электростатически управляемого оптического сканера

Изобретение относится к оптоэлектронной технике, в частности к устройствам для изменения углового положения оптического луча. Электростатически управляемый оптический сканер состоит из ячеек, каждая из которых содержит зеркало, деформируемый электрическим полем элемент, закрепленный на...
Тип: Изобретение
Номер охранного документа: 0002399938
Дата охранного документа: 20.09.2010
13.06.2019
№219.017.81ea

Способ изготовления перестраиваемого светофильтра с интерферометром фабри-перо

Перестраиваемый светофильтр с интерферометром Фабри-Перо содержит прозрачные пластины с зеркальными покрытиями, расположенные с зазором. При его изготовлении на одну пластину с зеркальным покрытием наносят жертвенный слой, поверх которого наносят зеркальное покрытие и прикрепляют к нему вторую...
Тип: Изобретение
Номер охранного документа: 0002388025
Дата охранного документа: 27.04.2010
13.06.2019
№219.017.828a

Устройство экспонирования при формировании наноразмерных структур и способ формирования наноразмерных структур

Изобретение относится к микроэлектронике. В устройстве, содержащем один или более источников монохроматического излучения, зону для размещения подложек или слоев подложек и совокупность оптических элементов для формирования локально освещенных областей на подложках, в качестве упомянутой...
Тип: Изобретение
Номер охранного документа: 0002438153
Дата охранного документа: 27.12.2011
10.04.2020
№220.018.13b1

Способ создания и использования в интерактивном режиме источника геопространственной информации в условиях отсутствия связи для передачи цифровых данных

Изобретение относится к области картографии, обработки и отображения геопространственной информации, компьютерным средствам преобразования, визуального восприятия получаемого изображения и может быть использовано для получения геопространственной информации об объектах местности при работе в...
Тип: Изобретение
Номер охранного документа: 0002718472
Дата охранного документа: 08.04.2020
24.07.2020
№220.018.3749

Способ создания аудиотактильного источника картографической информации с применением цифровых информационных и нанотехнологий и его использования в активном режиме незрячими или слабовидящими людьми

Изобретение относится к области обработки и отображения, компьютерным средствам преобразования, а затем чтения картографической информации незрячими или слабовидящими людьми, дающее пользователям с дефектами зрения возможность замены прямого зрительного восприятия другими видами восприятия, а...
Тип: Изобретение
Номер охранного документа: 0002727558
Дата охранного документа: 22.07.2020
+ добавить свой РИД