×
27.05.2014
216.012.cb2e

Результат интеллектуальной деятельности: СПОСОБ ПОИСКА УГЛЕВОДОРОДОВ НА ШЕЛЬФЕ СЕВЕРНЫХ МОРЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области сейсморазведки и может быть использовано для поиска углеводородов под дном морей и океанов, в том числе и в ледовых условиях на шельфе Северных морей. Согласно изобретению применяют сейсмогидроакустические приемные системы с нулевой плавучестью, которые размещают не на дне, а в водном слое над поверхностью дна. Сейсмогидроакустические приемные системы дают полную информацию о сейсмогидроакустическом поле в точке измерений. С их помощью производится прием сигналов для аппаратурного анализа амплитудных спектров всех составляющих колебательной скорости по трем осям координат и гидроакустического давления, что позволяет вычислить амплитудные спектры, а также активную и реактивную составляющие спектра мощности этих составляющих. Технический результат - увеличение точности определения расположения месторождений углеводородов. 1 з.п.ф-лы, 7 ил.

Изобретение относится к области сейсморазведки и может быть использовано для поиска углеводородов под морским дном, в том числе и в ледовых условиях на шельфе Северных морей.

В настоящее время разрабатываются способы сейсморазведки с применением невзрывных источников сейсмической энергии. Развитию такого способа посвящено настоящее изобретение. В качестве источников сейсмической энергии рассматриваются колебания морского дна от воздействия природных факторов - микросейсмы (см. Дозоров и др. «О связи низкочастотного шума в океане с сейсмическими колебаниями дна». // «Океанология», 1991, Том 31, №3, с.514-519).

Микросейсмы на частотах 0,3 Гц и ниже распространяются в виде поверхностных волн на расстояния в сотни и тысячи км от своих источников. Микросейсмы возникают при воздействии удаленных землетрясений, вследствие ветрового воздействия на поверхность океана и зыби, при прямом воздействии флуктуации атмосферного давления в окрестности крупных атмосферных вихрей на поверхность акваторий и территорию суши, а также по причине зарождения внутренних гравитационных волн в слоях океанических вод, особенно в районах с протяженным шельфом.

К числу аналогов изобретения относится патент РФ №2434250, «Способ регистрации сейсмических сигналов на акватории моря при поиске подводных залежей углеводородов», в котором с помощью сейсмических приемников, установленных на дне моря, производится регистрация и анализ микросейсмических волн, а суждение о наличии или отсутствии углеводородов выполняют для поперечных микросейсмических волн.

Недостатком данного изобретения является отсутствие информации о гидроакустическом поле в сейсмической волне, которая позволяет отстроиться от помех и выделить полезный сигнал, несущий информацию о наличии месторождений углеводородов.

Наиболее близким аналогом, выбранным в качестве прототипа, является патент РФ №2386984, «Способ поиска углеводородов».

Сущность способа, изложенного в этом патенте, состоит в следующем.

Сейсмоприемники располагают на дне моря, производят спектрально-временной анализ зарегистрированных информационных сигналов на дискретных участках моря, расположенных на расстоянии 50-1000 м друг от друга, в диапазоне частот 0,1-20 Гц в течение времени измерения не менее 60 мин, удаляют участки с техногенными помехами. Анализируют сейсмические сигналы, однородные по мощности, определяют спектр дисперсий спектральных линий спектров мощности. О наличии залежи углеводородов судят по увеличению амплитуды спектральных линий в спектре дисперсии. Учитывают суточные вариации микросейсмического волнового поля с помощью стационарной сейсмической станции.

Недостатком данного изобретения является отсутствие информации о гидроакустическом поле в сейсмической волне, которая позволяет отстроиться от помех и качественнее выделить полезный сигнал, несущий информацию о наличии месторождений углеводородов. Одновременно возможно засасывание сейсмической станции в глубокие слои ила, что препятствует ее подъему.

Целью предлагаемого изобретения является увеличение достоверности обнаружения залежей углеводородов при увеличении надежности подъема сейсмогидроакустической приемной системы.

Сущность заявляемого изобретения состоит в том, что применяют сейсмогидроакустические приемные системы с нулевой плавучестью, которые размещают не на дне, а в водном слое над поверхностью дна. Сейсмогидроакустические приемные системы дают полную информацию о сейсмогидроакустическом поле в точке измерений. С их помощью производится прием сигналов для аппаратурного анализа амплитудных спектров всех составляющих колебательной скорости по трем осям координат X, Y, Z и гидроакустического давления P, что позволяет вычислить амплитудные спектры, а также активную и реактивную составляющие спектра мощности этих составляющих.

Техническим эффектом является увеличение точности определения расположения месторождений углеводородов, так как при распространении квазипоперечной волны, вызванной микросейсмами, наибольшие соотношения сигнал/помеха наблюдаются в водном слое вблизи дна. Нулевая плавучесть дополнительно увеличивает соотношение сигнал/шум. Введение канала гидроакустического давления позволяет более достоверно определять полезный сигнал. Одновременно увеличивается надежность съема приемников с илистого грунта в ряде районов Северных морей.

Поставленная задача достигается тем, что в способе поиска углеводородов на шельфе Северных морей, включающем регистрацию сейсмических волн на исследуемом участке шельфа, проведение расчета спектрально-временных характеристик, анализ временных записей сигналов и их спектров на каждом измеряемом участке на наличие сейсмической помехи и исключение этих интервалов записей из дальнейшего рассмотрения, учитывают суточные вариации микросейсмического волнового поля, анализируют сейсмические сигналы, однородные по мощности, определяют спектр дисперсий спектральных линий и по увеличению амплитуды спектральных линий в спектре дисперсии судят о наличии залежи углеводородов, отличающийся тем, что, используют сейсмогидроакустические приемные системы с нулевой плавучестью и располагают их в водном слое над поверхностью дна, осуществляют регистрацию и анализ амплитудного спектра составляющих колебательной скорости по трем осям координат и гидроакустическое давление, при этом выделяют и анализируют активную и реактивную части спектра мощности микросейсмических волн, по которым затем определяют вертикальный разрез структуры морского дна в исследуемом районе, наличие и глубину залегания углеводородов.

Нулевая плавучесть сейсмогидроакустических приемных систем совместно с подводными аппаратами позволяет создавать подводные аппараты (необитаемые или обитаемые), перемещающиеся в толще воды или зависающие над дном, и производить измерения в Северных морях под толщей льда.

Проведенными исследованиями установлено, что спектральные характеристики микросейсмического поля идентичны как в грунте морского дна, так и в придонном водном слое.

На Фиг.1 приведены спектры микросейсмического шума в диапазоне частот 0,1-0,4 Гц, записанные при расположении сейсмоприемника на берегу.

На Фиг.2 приведены спектры микросейсмического шума в диапазоне частот 0,01-1,0 Гц, записанные при расположении сейсмогидроакустической приемной системы вблизи дна подо льдом.

На Фиг.3 приведены спектры микросейсмического шума в диапазоне частот 0,1-0,4 Гц, записанные при расположении сейсмогидроакустической приемной системы вблизи дна.

На всех фигурах приведены спектры вертикального сейсмического канала.

Приведенные спектры записаны при испытаниях 21 марта 2012 г. с 13 ч 40 мин до 13 ч 45 мин в ледовых условиях в бухте Владимировская Ладожского озера на расстоянии примерно 0,5 м от дна. Спектры практически совпадают на фиг.1 и фиг.3, в то время как на фиг.2 то же приемное устройство, расположенное в придонном слое, при спектральном анализе в диапазоне частот 0,01-1 Гц имеет выбросы на частотах ниже 0,025 Гц, которые вызваны колебаниями ледового покрова.

Эти результаты подтверждают возможность сейсморазведки по анализу микросейсм в ледовых условиях, учитывая частотное отличие их спектра от спектра колебаний ледового покрова, а также то, что для сейсморазведки путем анализа микросейсмических колебаний можно использовать технологию сейсморазведки строения залежей морского дна по их спектральным характеристикам, записанным в придонном слое, что для ряда районов Северных морей с илистым грунтом является принципиальным для обеспечения подъема приемной системы.

Нами произведены измерения не только колебательной скорости, но и синхронно с ней гидроакустического давления.

Использование приемника гидроакустического давления в сейсмических измерениях является новым признаком изобретения. Также новым признаком является совместная регистрация и анализ амплитудных спектров Р и V, которые нами используются для получения спектров мощности Р2 и V2.

Ниже приводятся результаты измерений сигналов, вызванных промышленным взрывом в карьере за пределами водоема, удаленном от места измерений примерно на 60 км. Эти измерения выполнены в том же районе Ладожского озера в придонном слое глубиной 18 м. Частотный диапазон измерений выбран 1-10 Гц.

На фиг.4а приведены спектры мощности вертикальной составляющей колебательной скорости Vz, а на фиг.4б. - гидроакустического давления Р. На фиг.4в - активная, а на фиг.4г - реактивная части взаимного спектра мощности Р и Vz.

Использование активной и реактивной частей взаимного спектра мощности Р и Vz также является новым признаком. Его существенное значение раскроем ниже. Алгоритм и аппаратура для измерения взаимного спектра электрических сигналов приведено в книге: Новиков А.К.. Корреляционные измерения в корабельной акустике. Л., «.Судостроение», 1971., на стр.42, 49, 101 и 216. В ней не рассматриваются сейсмические измерения. В настоящее время для построения спектров и взаимного спектра используются компьютерные программы.

Микросейсмические волны (спектры их приведены на фиг.4а, 4б) скорее всего возбуждаются волной Рэлея, так как при большом удалении источника взрыва (на расстояние 60 км) все другие типы волн в водном слое малой высоты уже затухли. Остаются сомнения, может быть эти микросейсмы вызваны какой-либо помехой ближнего поля, например, от колебаний льда или воды от проплывающих вблизи морских (озерных) животных, а не волной Релея.

Из фиг.4в видно, что активная часть взаимного спектра мощности положительна. При выбранных нами полярностях приемников Р и V это говорит о приеме сигналов со стороны грунта, а не от поверхности, то есть от волны Рэлея, распространяющейся вдоль поверхности дна. Указание направления прихода волны (от дна) - это новый и существенный результат от использования активной и реактивной частей взаимного спектра мощности Р и Vz. Ранее он не приводился сейсмологами, так как для этого требуется применение сейсмогидроакустической станции с вертикальным каналом Vz и каналом Р.

Кроме того, в спектрах на фиг.4а и 4б видны максимально 2-3 спектральные линии. В то же время на фиг.4в и 4г при измерении взаимного спектра мощности хорошо видны 7-8 спектральных линий (максимумов), из чего следует, что при измерении взаимных спектров улучшается соотношение сигнал/помеха. Это также подтверждает сущесвенность этого признака заявки на изобретение, соответствующего цели изобретения: увеличение достоверности обнаружения отражающих слоев. Использование, кроме вертикального канала Z, горизонтальных каналов X, Y необходимо для классификации звуковых волн сигналов и помех.

Далее рассмотрим вопросы построения вертикальных разрезов выявленных отражений.

Рассмотрим спектры на фиг.4а и 4б. Из них видно, что в спектре колебательной скорости имеются частоты 4 Гц и 5,5 Гц, а в спектре сейсмоакустического давления частота 2,9 Гц. Спектральные составляющие колебательной скорости на частоте 4 Гц (основная частота) и 5,5 Гц связаны с отражением от более звукомягкой границы, то есть это слои наиболее перспективные для обнаружения углеводородов. Отражение на частоте 2,9 Гц в спектре акустического давления можно рассматривать как отражение от жесткого основания. Видимо он служит основанием для размещения на нем звукомягкого слоя. Изучение всех остальных отражений акустического давления от акустически жестких слоев можно отбросить, так как нет пар звукомягкого и звукожесткого слоев. Таким образом, использование приемника гидроакустического давления Р позволяет повысить достоверность обнаружения залежей углеводородов, так как позволяет разделить отражения сигналов, принимаемых приемниками Р и V.

Определив основные частоты спектральных составляющих колебательной скорости микросейсм fсп и зная тип волны - волны Релея, определяем глубину залегания отражающего слоя на частоте fсп. Сначала определяют длину волны λ по формуле λ=с/fсп, где с - скорость волны Рэлея в соответствии с патентом [Горбатиков А.В. Патент на изобретение RU 2271554 С1 от 25.03.2005 г.: «Способ сейсморазведки»] и статьей [Горбатиков А.В., Собисевич А.Л., Собисевич Л.Е. и др. Технология глубинного зондирования Земной коры с использованием естественного низкочастотного микросейсмического поля. «Природные и связанные с ними техногенные катастрофы». Том 1. «Сейсмические процессы и катастрофы». М., ИФЗ РАН, 2008 г.]. Она в первом приближении равна с=1700-2000 м/с. Далее в соответствии с указанной литературой определяют глубину залегания отражающей границы Н по формуле: H=0,5 λ, приняв скорость волны Рэлея с=1700 м/с.

Произведем расчет для основной частоты звукомягкого слоя 4,3 Гц:

длина волны λ=1700/4,3=380 м,

глубина залегания звукомягкого слоя Н=0,5*380 м=190 м.

Произведем расчет для частоты 2,9 Гц подстилающего жесткого слоя, соответствующего отражению от дна волны акустического давления Р:

длина волны λ=1700/2,9=590 м;

глубина залегания подстилающего звукожесткого слоя Н=0,5*590 м=295 м.

Таким образом, обнаружен на глубинах от 190 до 295 м звукомягкий слой под мелководной прибрежной частью Ладожского озера. Так как примерно в 40 км от места измерений в Ладожском озере имеются глубины 200 м, то, возможно, это подземный слой воды или подземное озеро, из которого во многих местах Карельского перешейка обеспечено снабжение питьевой водой из скважин на таких глубинах. Полученный результат подтверждает возможность поиска не только нефтегазовых месторождений, но и подземных водных запасов, весьма перспективных в зонах дефицита пресной воды.

Продолжая измерения в выбранном географическом направлении вплоть до исчезновения исследуемого отражения от этого звукомягкого слоя, можно найти границу исчезновения этого слоя. Повторяя эти измерения по параллельным курсам (удаленным на расстояние 0,5 длины волны на исследуемой частоте), находим контуры (границы) этого слоя, предположительно содержащего углеводороды или воду. Более точное заключение о залежах углеводородов или воды (обладающей близкими к нефти плотностью и скоростью звука) можно сделать при обследовании контуров всего района залежей и рассмотрении научных предположений об их природе.

Так же, как и при других вышеупомянутых пассивных способах исследования залежей углеводородов рекомендуется уточнение скорости звука приемниками, разнесенными на большое расстояние, а затем бурение пробной скважины.

Из фиг.4в (активная часть взаимного спектра) видно, что благодаря увеличению соотношения сигнал/помеха определяется большее число отражений от отражающих донных слоев, чем отдельно в спектрах Р и V. Благодаря этому можно определить все наиболее характерные частоты отражений: 1,2; 1,4; 2.1; 2,9; 3,4; 4,3; 5,6 Гц. Выполнение расчетов для этих спектральных составляющих волны Релея по приведенной формуле позволяет построить вертикальный разрез морского дна для всех отражающих границ Н. Рассчитанные глубины отражающих слоев (вертикальный разрез) следующие: 150; 190; 250; 300; 400; 600; 700 м.

Представленный способ направлен на увеличение достоверности разведки залежей углеводородов для промышленно используемых методов, приведенных выше источников, основанных на изучении частотных спектров микросейсм. Это подтверждает промышленную применимость предлагаемого изобретения.

Согласно 2-му пункту формулы заявки на изобретение сейсмогидроакустические приемные системы размещают в мобильной подводной станции (необитаемой или обитаемой), имеющей нулевую плавучесть. Использование подводных станций снижает помехи от кабелей связи с обеспечиваемым судном, то есть повышает достоверность измерений. Нулевая плавучесть обеспечивает надежность подъема станции.

Использование не менее трех сейсмогидроакустических приемных систем позволяет одну из них использовать при синхронных измерениях в качестве опорной станции, а две другие - в качестве перемещающихся станций.


СПОСОБ ПОИСКА УГЛЕВОДОРОДОВ НА ШЕЛЬФЕ СЕВЕРНЫХ МОРЕЙ
СПОСОБ ПОИСКА УГЛЕВОДОРОДОВ НА ШЕЛЬФЕ СЕВЕРНЫХ МОРЕЙ
СПОСОБ ПОИСКА УГЛЕВОДОРОДОВ НА ШЕЛЬФЕ СЕВЕРНЫХ МОРЕЙ
СПОСОБ ПОИСКА УГЛЕВОДОРОДОВ НА ШЕЛЬФЕ СЕВЕРНЫХ МОРЕЙ
Источник поступления информации: Роспатент

Показаны записи 1-8 из 8.
10.05.2014
№216.012.c10d

Подвижная подводная автономная сейсмогидроакустическая станция разведки углеводородов на акватории арктического шельфа

Использование: изобретение относится к устройствам для сейсморазведки месторождений углеводородов на акватории Арктического шельфа. Сущность: подвижная подводная автономная сейсмогидроакустическая станция разведки углеводородов на акватории Арктического шельфа имеет прочный корпус обтекаемой...
Тип: Изобретение
Номер охранного документа: 0002515170
Дата охранного документа: 10.05.2014
27.05.2014
№216.012.cb32

Способ определения коэффициента вязкости крови с использованием капиллярных трубок

Изобретение относится к области биомедицинских технологий, касается способа определения коэффициента вязкости крови с использованием стандартного медицинского лабораторного оборудования, которое может быть использовано для гемореологического экспресс-анализа, непосредственно во время процедуры...
Тип: Изобретение
Номер охранного документа: 0002517784
Дата охранного документа: 27.05.2014
20.07.2014
№216.012.df39

Способ определения вязкости крови в процессе венепункции

Изобретение относится к области биомедицинских технологий и может быть использовано для измерения вязкости крови в процессе забора крови из кровеносного сосуда для проведения анализов крови. Для этого в кровеносный сосуд вводят медицинскую иглу, соединенную с вакуумированной пробиркой. В ходе...
Тип: Изобретение
Номер охранного документа: 0002522931
Дата охранного документа: 20.07.2014
10.12.2014
№216.013.0e8d

Способ определения аполипопротеина а1 и аполипопротеина в сыворотки крови

Изобретение относится к медицине, а именно к лабораторной диагностике, и может применяться для определения аполипопротеина А1 и аполипопротеина В сыворотки крови с целью выявления факторов риска атеросклероза коронарных артерий при скрининге у населения. Способ включает пропускание ультразвука...
Тип: Изобретение
Номер охранного документа: 0002535142
Дата охранного документа: 10.12.2014
10.05.2015
№216.013.47ec

Способ определения пеленга источника звука при размещении акустической антенны акустического локатора на наклонных площадках поверхности земли

Изобретение относится к акустическим пеленгаторам (АП), акустическим локаторам (АЛ) и может быть использовано для определения пеленга источника звука (ИЗ). Задачей изобретения является повышение точности пеленгования ИЗ при наклонных к плоскости горизонта поверхностях Земли, где размещается...
Тип: Изобретение
Номер охранного документа: 0002549919
Дата охранного документа: 10.05.2015
10.05.2016
№216.015.3aac

Гидроакустический широкополосный преобразователь

Изобретение относится к гидроакустике, а именно к конструкциям стержневых широкополосных пьезокерамических преобразователей, предназначенных для работы в составе антенн гидроакустических приемоизлучающих систем. Сущность: гидроакустический преобразователь содержит стержневой пьезокерамический...
Тип: Изобретение
Номер охранного документа: 0002583131
Дата охранного документа: 10.05.2016
20.08.2016
№216.015.4cde

Трехкомпонентный велосиметр

Изобретение относится к измерительной технике и может быть использовано в гидроакустике, акустике, сейсмологии для регистрации трех пространственных компонент любых упругих возмущений. Сущность: трехкомпонентный велосиметр состоит из прочного водонепроницаемого корпуса 1 из немагнитного...
Тип: Изобретение
Номер охранного документа: 0002594663
Дата охранного документа: 20.08.2016
04.04.2018
№218.016.36a3

Способ поиска полезных ископаемых на шельфе морей, покрытых льдом

Изобретение относится к области геофизики и может быть использовано для осуществления мониторинга состояния геологической среды при разработке шельфовых и глубоководных месторождений полезных ископаемых, для локализации крупных неоднородных образований, таких как различного рода заиленные...
Тип: Изобретение
Номер охранного документа: 0002646528
Дата охранного документа: 05.03.2018
Показаны записи 1-10 из 24.
10.01.2013
№216.012.1913

Способ получения окрашенной бумаги

Настоящее изобретение относится к способу получения окрашенной бумаги, включающему приготовление водной дисперсии целлюлозных волокон и раствора натурального красителя - продукта экстракции древесины лиственницы, содержащего 65-75 мас.% кверцетина и 25-35 мас.% веществ лигноуглеводного...
Тип: Изобретение
Номер охранного документа: 0002471911
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.274b

Бумажная масса для получения стерилизационной упаковочной бумаги

Изобретение относится к технологиям получения специальных видов бумаги для упаковки изделий медицинского назначения с последующей их стерилизацией различными способами, в т.ч. термическим (воздушным, паровым), и может быть использовано в целлюлозно-бумажной и медицинской отраслях...
Тип: Изобретение
Номер охранного документа: 0002475579
Дата охранного документа: 20.02.2013
20.11.2013
№216.012.828a

Способ получения бумажной массы

Изобретение относится к производству наполненных видов бумаги для печати, например, типографской, офсетной, газетной и может быть использовано в целлюлозно-бумажной промышленности. Способ получения бумажной массы для изготовления наполненных видов бумаги с использованием в качестве наполнителя...
Тип: Изобретение
Номер охранного документа: 0002499094
Дата охранного документа: 20.11.2013
27.02.2014
№216.012.a5ad

Медицинское фиксирующее средство

Изобретение относится к химико-фармацевтическим производствам и медицинской технике и может быть использовано при изготовлении полифункциональных биологически активных конструкций для фиксации перевязочных средств и предметов. Фиксирующее средство состоит из бумаги-основы, изготовленной из...
Тип: Изобретение
Номер охранного документа: 0002508128
Дата охранного документа: 27.02.2014
10.05.2014
№216.012.c10d

Подвижная подводная автономная сейсмогидроакустическая станция разведки углеводородов на акватории арктического шельфа

Использование: изобретение относится к устройствам для сейсморазведки месторождений углеводородов на акватории Арктического шельфа. Сущность: подвижная подводная автономная сейсмогидроакустическая станция разведки углеводородов на акватории Арктического шельфа имеет прочный корпус обтекаемой...
Тип: Изобретение
Номер охранного документа: 0002515170
Дата охранного документа: 10.05.2014
27.05.2014
№216.012.cb32

Способ определения коэффициента вязкости крови с использованием капиллярных трубок

Изобретение относится к области биомедицинских технологий, касается способа определения коэффициента вязкости крови с использованием стандартного медицинского лабораторного оборудования, которое может быть использовано для гемореологического экспресс-анализа, непосредственно во время процедуры...
Тип: Изобретение
Номер охранного документа: 0002517784
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cec8

Горелка

Изобретение относится к фитильным горелкам. Горелка содержит концентрично расположенные наружную и внутреннюю фитильные трубки, которые верхними горючими торцами обращены в окружающее пространство, а в нижней части сообщены между собой через каналы в разделяющей их изолирующей трубке, при этом...
Тип: Изобретение
Номер охранного документа: 0002518707
Дата охранного документа: 10.06.2014
10.07.2014
№216.012.dcdc

Способ защиты от волнового воздействия одиночного гидротехнического сооружения и устройство для его осуществления

Способ защиты от волнового воздействия одиночного гидротехнического сооружения заключается в том, чтонабегающие на гидротехническое сооружение волны разводят по обе стороны вокруг сооружения путем создания расходящихся в обе стороны поперек направления волн горизонтальных приповерхностных...
Тип: Изобретение
Номер охранного документа: 0002522318
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.ddfa

Способ обработки бумаги с поверхности

Изобретение относится к целлюлозно-бумажной промышленности и может быть использовано при производстве антиоксидантных и антибактериальных видов бумаги. Способ включает обработку бумаги с поверхности водным раствором кверцетина, содержащим карбонат и тетраборат натрия, трилон Б и глицерин....
Тип: Изобретение
Номер охранного документа: 0002522612
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df39

Способ определения вязкости крови в процессе венепункции

Изобретение относится к области биомедицинских технологий и может быть использовано для измерения вязкости крови в процессе забора крови из кровеносного сосуда для проведения анализов крови. Для этого в кровеносный сосуд вводят медицинскую иглу, соединенную с вакуумированной пробиркой. В ходе...
Тип: Изобретение
Номер охранного документа: 0002522931
Дата охранного документа: 20.07.2014
+ добавить свой РИД