×
20.05.2014
216.012.c637

Результат интеллектуальной деятельности: ВАКУУМНО-ДУГОВОЙ ГЕНЕРАТОР С ЖАЛЮЗИЙНОЙ СИСТЕМОЙ ФИЛЬТРАЦИИ ПЛАЗМЫ ОТ МИКРОЧАСТИЦ

Вид РИД

Изобретение

Аннотация: Изобретение относится к плазменным технологиям нанесения пленочных покрытий и предназначено для очистки плазменного потока дуговых ускорителей от микрокапельной фракции. Вакуумно-дуговой генератор с жалюзийной системой фильтрации плазмы от микрочастиц содержит охлаждаемый катод 1 в виде усеченного конуса, поджигающий электрод 3, установленный на конической поверхности катода 1, цилиндрический охлаждаемый анод 4, установленный коаксиально с катодом 1, источник питания 5 вакуумной дуги, включенный между катодом 1 и анодом 4, источник питания 6 поджигающего электрода 3, подключенный отрицательным выходом к катоду 1, осесимметричную жалюзийную систему вставленных друг в друга конических электродов 7, электрически соединенных между собой последовательно и встречно и подключенных к источнику тока 9 и к положительному выводу источника напряжения 8, вторым выводом подключенного к аноду дугового испарителя, над анодом, до жалюзийной системы и после нее установлена, по меньшей мере, одна электромагнитная катушка 10, 11, 12 и перед жалюзийной системой электродов, соосно с ней, установлен дополнительный охлаждаемый анод 13. В центре катода 1 выполнено отверстие в виде встречного, по отношению к внешней поверхности катода, усеченного конуса, а электроды 7 жалюзийной системы выполнены в форме конической многовитковой винтовой линии. В центральной части катода, в плоскости малого диаметра усеченного конуса, установлен диск 2 из тугоплавкого материала. Жалюзийная система выполнена двухэлектродной. Электроды 7 жалюзийной системы и дополнительный анод 13 выполнены так, чтобы не было прямой видимости рабочей поверхности катода, включая его конические поверхности, из любой точки пространства, расположенного за жалюзийной системой. Электроды 7 выполнены с зазорами между соседними витками конической винтовой линии и разной длины. Технический результат - увеличение эффективности прохождения плазмы через жалюзийную систему электродов и ионного тока на выходе. 5 з.п. ф-лы, 1 ил.

Изобретение относится к плазменным технологиям нанесения пленочных покрытий и предназначено для очистки плазменного потока дуговых ускорителей от микрокапельной фракции.

Формирование плазмы вакуумным дуговым разрядом или дуговым разрядом при пониженном давлении различных газов сопровождается появлением микрокапельной фракции и нейтральной атомарной и молекулярной компоненты продуктов эрозии материала катода. Процентное содержание микрокапельной фракции, размеры микрочастиц зависят от материала катода и тока дуги генератора-испарителя и могут изменяться от нескольких процентов для тугоплавких катодов из вольфрама и молибдена, в частности до более чем 50% для легкоплавких материалов, таких как алюминий, цинк и т.п. Наличие микрокапельной фракции в плазменном потоке резко снижает качество осаждаемых покрытий, особенно тонких, толщиной, сравнимой с размерами микрокапель.

Известно устройство для формирования плазмы и ее очистки от микрокапельной и нейтральной фракции [RU 2107968, опубл. 27.03.1998 г.], содержащее охлаждаемый катод в виде усеченного конуса, поджигающий электрод, установленный на конической поверхности катода, коаксиально с катодом установленный цилиндрический охлаждаемый анод, источник питания вакуумной дуги, включенный между катодом и анодом, источник питания поджигающего электрода, подключенный отрицательным выходом к катоду, жалюзийную систему аксиально-симметричных коаксиальных, имеющих коническую форму электродов, установленных по оси дугового испарителя так, что поверхностью электродов полностью перекрывается сечение поперек этой оси. Электроды жалюзийной системы электрически соединены последовательно и встречно и подключены к источнику тока, а между жалюзийной системой и анодом дугового испарителя подключен источник напряжения положительным выводом к жалюзийной системе. Пропускание тока по электродам жалюзийной системы приводит к формированию вокруг них магнитного поля, обеспечивающего замагниченность электронов плазмы, что резко уменьшает ток электронов (отрицательной компоненты плазмы) на жалюзи. Подача положительного потенциала на жалюзийные электроды относительно анода испарителя формирует вблизи их поверхности приэлектродное падение напряжения, электрическое поле которого является отражающим для ионов плазменного потока.

Устройство имеет следующие недостатки. В соседних промежутках между жалюзийными электродами магнитное поле направлено в противоположные стороны. В одном из промежутков магнитное поле жалюзийной системы суммируется с магнитным полем внешних электромагнитных катушек. В соседнем промежутке эти поля вычитаются, что приводит к нарушению условия замагниченности электронов, увеличению электронного тока на жалюзийную систему и, как следствие, к увеличению мощности источника питания и тепловой нагрузки на электроды жалюзийной системы, Уменьшается эффективность прохождения плазмы через жалюзийную систему. Наличие центрального конического электрода приводит к тому, что вся плазма, формируемая на центральной части катода, попадает внутрь конуса и не проходит через зазоры жалюзийной системы. Это существенно снижает эффективность прохождения плазмы через жалюзийную систему и эффективность устройства в целом. Для магнитной изоляции жалюзийных электродов по ним пропускается большой (1000 - 1500 А) ток, что существенно усложняет источник питания, устройство в целом и снижает его надежность.

Известно устройство с более высоким коэффициентом прозрачности жалюзийной системы, выбранное за прототип [RU 2364003]. Устройство для формирования плазмы и ее очистки от микрокапельной и нейтральной фракции содержит охлаждаемый катод в виде усеченного конуса, поджигающий электрод, установленный на конической поверхности катода, коаксиально с катодом установленный цилиндрический охлаждаемый анод, источник питания вакуумной дуги, включенный между катодом и анодом, источник питания поджигающего электрода, подключенный отрицательным выходом к катоду, осесимметричную жалюзийную систему вставленных друг в друга конических электродов, электрически соединенных между собой последовательно и встречно и подключенных к источнику тока и к положительному выводу источника напряжения, вторым выводом подключенного к аноду дугового испарителя, над анодом, до жалюзийной системы и после нее установлена, по меньшей мере, одна электромагнитная катушка. Перед жалюзийной системой электродов соосно с ней расположен охлаждаемый рассекающий элемент, который является дополнительным анодом. Электрод жалюзийной системы набран из параллельно включенных и спаянных между собой изогнутых трубок, подключенных к системе подачи охлаждающего агента.

Устройство-прототип имеет следующие недостатки. В соседних промежутках между жалюзийными электродами магнитное поле направлено в противоположные стороны. В одном из промежутков магнитное поле жалюзийной системы суммируется с магнитным полем внешних электромагнитных катушек. В соседнем промежутке эти поля вычитаются, что приводит к нарушению условия замагниченности электронов, увеличению электронного тока на жалюзийную систему и, как следствие, к увеличению мощности источника питания и тепловой нагрузки на электроды жалюзийной системы. Уменьшается эффективность прохождения плазмы через жалюзийную систему. Наличие перед жалюзийной системой электродов соосно с ней рассекающего элемента приводит к тому, что значительная часть плазмы, формируемой на центральной части катода, не проходит через зазоры жалюзийной системы. Это существенно снижает эффективность прохождения плазмы через жалюзийную систему и эффективность устройства в целом. Для магнитной изоляции жалюзийных электродов по ним пропускается большой (350 А) ток, что усложняет источник питания, устройство в целом и снижает его надежность. Значительное количество жалюзийных электродов (больше двух) приводит к тому, что часть плазмы теряется на торцевых частях жалюзийных электродов, снижая эффективность системы.

Задачей изобретения является создание надежного простого в изготовлении и более эффективного устройства для формирования очищенной от микрочастиц плазмы вакуумной дуги.

Технический результат заключается в увеличении эффективности прохождения плазмы через жалюзийную систему электродов и ионного тока на выходе.

Указанный технический результат достигается тем, что в вакуумно-дуговом генераторе с жалюзийной системой фильтрации плазмы от микрочастиц, содержащем как и прототип охлаждаемый катод в виде усеченного конуса, поджигающий электрод, установленный на конической поверхности катода, коаксиально с катодом установленный цилиндрический охлаждаемый анод, источник питания вакуумной дуги, включенный между катодом и анодом, источник питания поджигающего электрода, подключенный отрицательным выходом к катоду, осесимметричную жалюзийную систему вставленных друг в друга конических электродов, электрически соединенных между собой последовательно и встречно и подключенных к источнику тока и к положительному выводу источника напряжения, вторым выводом подключенного к аноду дугового испарителя, над анодом, до жалюзийной системы и после нее установлена, по меньшей мере, одна электромагнитная катушка и перед жалюзийной системой электродов, соосно с ней, установлен дополнительный охлаждаемый анод, в отличие от прототипа в центре катода выполнено отверстие в виде встречного, по отношению к внешней поверхности катода, усеченного конуса, а электроды жалюзийной системы выполнены в форме конической многовитковой винтовой линии.

В центральной части катода, в плоскости малого диаметра усеченного конуса установлен диск из тугоплавкого материала, препятствующий функционированию катодного пятна и вакуумно-дугового разряда в целом на центральной части катода.

Целесообразно жалюзийную систему выполнить двухэлектродной.

Для увеличения эффективности очистки плазмы от микрочастиц электроды жалюзийной системы и дополнительный анод выполнены так, чтобы не было прямой видимости рабочей поверхности катода, включая его конические поверхности, из любой точки пространства, расположенного за жалюзийной системой.

Целесообразно, чтобы электроды жалюзийной системы выполнить с зазорами между соседними витками конической винтовой линии.

Электроды жалюзийной системы могут быть выполнены разной длины.

На фиг.1 представлен общий вид устройства. Охлаждаемый катод 1 (охлаждение не показано) в виде усеченного конуса установлен по оси устройства. В центральной части катода сделано отверстие в виде обратного, по отношению к внешней поверхности, усеченного конуса. На дне отверстия в плоскости малого диаметра усеченного конуса катода 1 установлен диск 2 из тугоплавкого материала (например, из вольфрама). На внешней боковой поверхности катода 1 установлен поджигающий электрод 3. Коаксиально с катодом 1 установлен цилиндрический охлаждаемый анод 4 (система охлаждения на фиг. не показана). Источник питания 5 вакуумной дуги электрически включен между катодом 1 и анодом 4. Источник питания 6 поджигающего электрода подключен отрицательным выходом к катоду 1, а положительным выходом - к поджигающему электроду 3. Коаксиально с катодом 1 и анодом 4 установлена осесимметричная жалюзийная система вставленных друг в друга двух конических электродов 7. Электроды 7 электрически соединены между собой последовательно и встречно и подключены к положительному выходу источника напряжения 8 и к источнику тока 9. Отрицательный выход источника напряжения 8 подключен к аноду 4. Над анодом 4 коаксиально, до жалюзийной системы, установлены одна или две электромагнитные катушки 10, 11. После жалюзийной системы коаксиально установлена, по крайней мере, одна электромагнитная катушка 12. Перед жалюзийной системой электродов 7 соосно с ней установлен дополнительный охлаждаемый анод 13.

Работает устройство следующим образом. При подаче импульса напряжения от источника 6 на поджигающий электрод 3 происходит электрический пробой между поджигающим электродом 3 и катодом 1. На поверхности катода 1 формируется катодное пятно, являющееся источником плазмы и микрочастиц. Под действием электрического поля между катодом 1 и анодом 4 и магнитного поля электромагнитных катушек 10 и 11 катодное пятно постепенно перемещается с боковой на торцевую поверхность катода 1. В дальнейшем формируемый плазменный поток распространяется вдоль магнитного поля в направлении жалюзийной системы электродов. При прохождении плазменного потока через промежуток между электродами 7 жалюзийной системы микрокапельная фракция и нейтральная компонента осаждаются на поверхностях жалюзийных электродов 7. Основные процессы прохождения заряженных частиц плазмы через жалюзийную систему такие же, как и в прототипе. Ионная компонента плазменного потока под влиянием положительного потенциала жалюзийных электродов 7 отражается от последних. Положительный потенциал на электродах удерживается за счет снижения поперечной проводимости плазмы вследствие замагничивания электронной компоненты магнитным полем, возникающим вблизи электродов 7 в результате суперпозиции магнитных полей от электромагнитных полей катушек 10, 11, 12 и магнитного поля жалюзийных электродов при пропускании по ним электрического тока. После прохождения плазмы через жалюзийную систему электродов 7 за счет осесимметричной геометрии их расположения плазменный поток направлен к оси системы.

В отличие от прототипа в двухэлектродной жалюзийной системе направление магнитного поля во всем зазоре совпадает с направлением поля катушек 10, 11 и 12. В прототипе невозможно согласовать направления магнитных полей из-за двух причин. Во-первых, в соседних промежутках многоэлектродной жалюзийной системы магнитные поля имеют противоположное направление, что не позволяет согласовать их с направлением полей электромагнитных катушек. Во-вторых, в случае согласованного включения электромагнитных катушек 10 и 11 в прототипе приводит к тому, что силовые линии магнитного поля пересекают электроды жалюзийной системы. Это нарушает условие замагниченности плазменных электронов и не позволяет удержать положительный потенциал смещения на электродах. Встречное же включение катушек 10 и 11 в прототипе приводит к появлению поперечного магнитного поля, ухудшающего транспортировку плазмы. Согласование направлений магнитного поля в предлагаемом устройстве обеспечивает хорошую замагниченность электронов плазмы, эффективное отражение ионов от электродов жалюзийной системы и, соответственно, улучшает транспортировку плазмы вдоль оси и увеличивает эффективность прохождения плазмы через жалюзийную систему. Выполнение электродов 7 в форме конической многовитковой винтовой линии обеспечивает пропорциональное количеству витков винтовой линии уменьшение тока источника. Так например, если в прототипе через параллельно соединенные полые трубки пропускался электрический ток 390 А, в случае конструкции электродов в виде винтовой линии с тринадцатью витками, как показано на Фиг. 1, для создания магнитного поля такой же напряженности потребуется источник тока всего на 30 А. Это упрощает конструкцию жалюзийных электродов, источника тока и повышает их надежность.

Наличие в центральной части катода отверстия в виде обратного, по отношению к внешней поверхности, усеченного конуса затрудняет формирование на катоде плазмы, распространение которой вдоль магнитного поля не обеспечивает ее вхождение в зазор жалюзийной системы. Для почти полного исключения вероятности формирования плазмы в центральной части катода на дне отверстия в плоскости малого диаметра усеченного конуса катода установлен диск из тугоплавкого материала. В случае спонтанного перехода дугового разряда на диск он гаснет. Формирование плазмы только на заданной поверхности катода увеличивает эффективность прохождения плазмы через жалюзийную систему электродов.

Для исключения свободного пролета микрочастиц с рабочей поверхности катода через пространство между жалюзийными электродами эти электроды, выполненные в виде винтовой линии, имеют наклон относительно оси так, чтобы не было прямой видимости торцевой поверхности катода из любой точки пространства, расположенного за жалюзийной системой. Дополнительный анод 13 облегчает зажигание дугового разряда и способствует его стабильному горению, одновременно исключая пролет микрочастиц через центральное отверстие жалюзийного электрода.

Поскольку при инициировании дугового разряда, а иногда и в процессе его функционирования, а также по мере выработки катода, катодное пятно может находиться на внешней или внутренней конусных поверхностях катода, то для исключения свободного пролета микрочастиц с любой точки обеих конусных поверхностей катода через жалюзийную систему без столкновения с электродами жалюзийной системы эти электроды и дополнительный анод выполнены так, чтобы не было прямой видимости рабочей поверхности катода, включая его конические поверхности, из любой точки пространства, расположенного за жалюзийной системой. Таким образом, обеспечивается высокое качество очистки плазмы от микрочастиц.

Предложенное устройство с двумя жалюзийными электродами позволяет обеспечить не только согласованное включение всех элементов магнитной системы, но и значительно уменьшить угол наклона по отношению к оси жалюзийных электродов, что увеличивает эффективность прохождения плазмы.

Для исключения межвиткового электрического замыкания в жалюзийных электродах, особенно после продолжительной работы и осаждения покрытия, электроды выполняют с зазорами между соседними витками конической винтовой линии.

В предлагаемом устройстве электроды жалюзийной системы могут быть выполнены как с одинаковой, так и с разной длиной. Выполнение электродов с разной длиной позволяет оптимизировать конструкцию жалюзийных электродов, уменьшая их угол наклона к оси системы и, соответственно, уменьшая угол подлета ионов плазмы вакуумной дуги к жалюзийным электродам.

Пример. Катод выполнен из титана, размеры катода: усеченный конус длиной 4,5 см, диаметр основания 10,4 см, усеченная часть диаметром 9,2 см. В центральной части конуса со стороны малого диаметра имеется конусное углубление глубиной 3 см и диаметром в основании 4,8 см. Диск 2 толщиной 0,3 см и диаметром 4,8 см выполнен из вольфрама. Жалюзийные электроды выполнены из медной водоохлаждаемой трубки диаметром 0,8 см. Оба жалюзийных электрода выполнены в форме конической многовитковой винтовой линии с тринадцатью витками и углом конуса 15°. Длина малого конуса составила14,5 см, а большого 17,5 см. Электромагнитные катушки 10, 11, 12 и электроды жалюзийной системы создают согласованные по направлению магнитные поля вдоль оси генератора. Для создания магнитного поля и замагничивания электронов плазмы по жалюзийным электродам пропускают ток, равный 30 А (в аналоге - 1500 А, а в прототипе 350 А). На жалюзийную систему электродов подают положительный потенциал смещения, равный 15 В. Ток в электромагнитных катушках 10, 11 и 12 составил 0.9 А, 0.5 А, 0,6 А соответственно. Ток вакуумно-дугового разряда был выбран 120 А. Вакуумно-дуговой разряд инициируется при подаче высоковольтного импульса напряжения положительной полярности от источника питания 6 на поджигающий электрод 3. После пробоя на катоде 1 формируется катодное пятно, являющееся источником металлической плазмы. Под влиянием магнитного поля электромагнитных катушек 10, 11 и электрического поля между катодом 1 и анодом 4 катодное пятно постепенно перемещается на торцевую поверхность катода, обращенную в сторону жалюзийной системы. В дальнейшем плазма распространяется вдоль магнитного поля, созданного электромагнитными катушками 10, 11 и 12 и жалюзийными электродами, выполненными в форме конической многовитковой винтовой линии. Ток ионов из плазмы, измеренный на расстоянии 3 см от выхода жалюзийной системы, составил 5 А, что более чем в 2 раза превысило ток на выходе жалюзийной системы прототипа.


ВАКУУМНО-ДУГОВОЙ ГЕНЕРАТОР С ЖАЛЮЗИЙНОЙ СИСТЕМОЙ ФИЛЬТРАЦИИ ПЛАЗМЫ ОТ МИКРОЧАСТИЦ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 145.
20.03.2014
№216.012.ad0f

Способ определения аскорбата лития в лекарственной форме методом вольтамперометрии

Изобретение относится к области количественного определения аскорбата лития в лекарственной форме с целью контроля качества выпускаемых на рынок препаратов на основе аскорбата лития. Способ определения аскорбата лития в лекарственной форме включает стадию пробоподготовки и вольтамперометическое...
Тип: Изобретение
Номер охранного документа: 0002510018
Дата охранного документа: 20.03.2014
10.05.2014
№216.012.c128

Способ иммобилизации биомолекул на поверхности магнитоуправляемых наночастиц железа покрытых углеродной оболочкой

Изобретение относится к cпособу иммобилизации белковых молекул на поверхности магнитоуправляемых наночастиц железа, покрытых углеродной оболочкой. Способ включает взаимодействие порошка с растворенным в воде 4-карбоксибензолдиазоний тозилатом для формирования ковалентной связи органических...
Тип: Изобретение
Номер охранного документа: 0002515197
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c311

Интерференционный переключатель резонансного свч компрессора

Изобретение относится к области радиотехники и может быть использовано в резонансных СВЧ компрессорах в качестве устройства вывода энергии для формирования мощных СВЧ импульсов наносекундной длительности. Технический результат - увеличение рабочей мощности переключателя при неизменной...
Тип: Изобретение
Номер охранного документа: 0002515696
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c465

Устройство для измерения температуры

Изобретение относится к технике измерения физической температуры объекта с помощью термопары и может быть использовано в области температурных измерений с использованием термопар, в частности, в литейном производстве для определения скоростей охлаждения различных зон слитка при кристаллизации...
Тип: Изобретение
Номер охранного документа: 0002516036
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c7de

Способ оценки эффективности стимуляции антиоксидантной активности

Изобретение относится к медицине и описывает способ оценки эффективности стимуляции антиоксидантной активности путем определения концентрации восстановленного глутатиона, при этом дополнительно в инкубационную среду добавляют 1,4-дитиоэритритол и аскорбиновую кислоту и при увеличении уровня...
Тип: Изобретение
Номер охранного документа: 0002516925
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c858

Способ прогнозирования течения липидемии

Изобретение относится к области медицины и может быть использовано в кардиологии и терапии для прогнозирования течения липидемии. Способ включает исследование сыворотки крови до и после лечения, где дополнительно перед исследованием проводят трехкратное замораживание и оттаивание сыворотки...
Тип: Изобретение
Номер охранного документа: 0002517054
Дата охранного документа: 27.05.2014
20.06.2014
№216.012.d280

Комплексный препарат для профилактики и лечения кишечных инфекций

Изобретение относится к медицине и ветеринарии, а именно к медицинским и ветеринарным препаратам, предназначенным для профилактики и лечения кишечных инфекций различной этиологии у человека и животных. В комплексном препарате, содержащем носитель, представляющем собой энтеросорбент,...
Тип: Изобретение
Номер охранного документа: 0002519659
Дата охранного документа: 20.06.2014
27.06.2014
№216.012.d8b5

Способ подземной газификации

Изобретение относится к горному делу и может быть применено для получения газообразного энергоносителя из угля или сланца на месте залегания. Способ включает бурение скважин с поверхности земли в обрабатываемый интервал в подземном пласте, размещение в скважинах электродов, приложение...
Тип: Изобретение
Номер охранного документа: 0002521255
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8f8

Способ оценки прогрессирования атерогенности при ишемической болезни сердца

Изобретение относится к области медицины и предназначено для оценки прогрессирования атерогенности при ишемической болезни сердца. Перед исследованием проводят трехкратное замораживание и оттаивание сыворотки по 20 и 10 минут соответственно, дезинтеграцию, перемешивание смеси при частоте 120...
Тип: Изобретение
Номер охранного документа: 0002521322
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.ddef

Способ получения нитрида циркония

Изобретение относится к области получения порошков тугоплавких соединений, которые могут быть использованы для получения высокотвердой керамики и защитных износостойких покрытий. Способ получения нитрида циркония заключается в проведении самораспространяющегося высокотемпературного синтеза...
Тип: Изобретение
Номер охранного документа: 0002522601
Дата охранного документа: 20.07.2014
Показаны записи 21-30 из 242.
27.05.2013
№216.012.45b5

Устройство управления асинхронным двигателем

Изобретение относится к области электротехники. Технический результат заключается в повышении управления электродвигателем. Для этого заявленное устройство содержит автономный инвертор напряжения, силовые выходы которого через датчики токов подключены к статорным обмоткам асинхронного...
Тип: Изобретение
Номер охранного документа: 0002483422
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.47f1

Способ управления перемещением грузов и устройство для его реализации

Изобретение относится к области транспортирования и предназначено для перемещения грузов. Устройство перемещения грузов содержит привод (1) вертикального перемещения, соединенный с грузом (5) тросом (6), датчики (8, 9) отклонения троса (6) от вертикали, датчик (7) натяжения троса (6), приводы...
Тип: Изобретение
Номер охранного документа: 0002483997
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4811

Сырьевая смесь для изготовления пеностекла

Изобретение относится к области производства теплоизоляционного пеностекла. Технический результат изобретения заключается в повышении прочности пеностекла, расширении сырьевой базы и снижении энергетических затрат при осуществлении технологического процесса. Сырьевая смесь для изготовления...
Тип: Изобретение
Номер охранного документа: 0002484029
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4871

Способ изготовления топливных брикетов из биомассы

Изобретение относится к способу получения топливных брикетов из биомассы, включающему термическую обработку биомассы при температуре 200-500°C без доступа воздуха, подготовку связующего вещества, получаемого растворением декстрина в пиролизном конденсате в соотношении 1:(5÷20), смешивание...
Тип: Изобретение
Номер охранного документа: 0002484125
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4c9b

Способ извлечения урана из руд

Изобретение относится к гидрометаллургии урана и может быть использовано для извлечения урана из руд. Способ включает выщелачивание урана и железа раствором серной кислоты с использованием в качестве окислителя трехвалентного железа, содержащегося в руде. После выщелачивания ведут извлечение...
Тип: Изобретение
Номер охранного документа: 0002485193
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fd9

Способ получения наночастиц свинца

Изобретение относится к способу получения наночастиц свинца. Способ включает получение раствора стеарата свинца в н-октаноле с последующим его кипячением при 195°C. После чего раствор охлаждают и путем декантации или фильтрации отделяют от него непрореагировавший стеарат свинца и продукты его...
Тип: Изобретение
Номер охранного документа: 0002486034
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.505f

Способ управления активностью катализатора процесса дегидрирования высших н-парафинов

Изобретение относится к способу управления активностью катализатора процесса дегидрирования высших н-парафинов. Способ включает регулирование активности катализатора за счет увеличения подачи воды в реактор и характеризуется тем, что расход воды дополнительно корректируют в зависимости от типа...
Тип: Изобретение
Номер охранного документа: 0002486168
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.51ab

Способ определения осмия инверсионно-вольтамперометрическим методом в природном и техногенном сырье

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов осмия. Способ определения осмия инверсионно-вольтамперометрическим методом в природном и техногенном сырье заключается в том, что осмий (VIII)...
Тип: Изобретение
Номер охранного документа: 0002486500
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5238

Способ формирования субнаносекундных свч импульсов и устройство для его осуществления

Изобретение относится к области радиотехники и предназначено для формирования серии мощных СВЧ импульсов субнаносекундной длительности с высокой частотой следования в пределах входного микросекундного СВЧ импульса, генерируемого в частотно-периодическом режиме. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002486641
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.554c

Сверхпроводящий размыкатель

Изобретение относится к электротехнике, в частности к сверхпроводящим размыкателям постоянного тока многократного действия. Размыкатель содержит отключающий элемент (1), выполненный в виде двух последовательно соединенных проводников (2, 3) из сверхпроводящего материала, к выводам которых...
Тип: Изобретение
Номер охранного документа: 0002487439
Дата охранного документа: 10.07.2013
+ добавить свой РИД