×
20.05.2014
216.012.c5da

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ С НАНЕСЁННЫМ ДИОКСИДОМ КРЕМНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при получении композиционных материалов. Исходные углеродные наноматериалы, например нанотрубки, нанонити или нановолокна, обрабатывают в смеси азотной и соляной кислоты при температуре 50-100°С не менее 20 мин, промывают водой и сушат. Затем пропитывают спиртовым раствором олигоорганогидридсилоксана, например олигоэтилгидридсилоксана или олигометилгидридсилоксана, выпаривают, сушат на воздухе при температуре не более 200°С не менее 20 мин. После этого прокаливают в инертной среде при температуре 600-800°С не менее 20 мин. Полученные углеродные наноматериалы с нанесенным диоксидом кремния имеют высокую стойкость к окислению. 1 з.п. ф-лы, 4 ил., 6 пр.

Настоящее изобретение относится к области создания новых материалов, а именно к «углеродные наноматериалы - оксид кремния» композиционным материалам.

Среди современных и весьма перспективных материалов важное место занимают углеродные нанотрубки (УНТ) и углеродные нанонити (УНН) или нановолокна. Эти материалы обладают богатым набором уникальных свойств: высокими прочностью и электропроводностью, коррозионной стойкостью, совместимостью с живыми тканями и др. Благодаря этому перспективы использования данных материалов в разных областях достаточно широки.

Однако еще более широкому использованию углеродных наноматериалов мешает их способность окисляться при средних и высоких температурах в окислительной среде. Этот недостаток может быть преодолен посредством защиты УНТ керамической матрицей, которая действует как диффузионный барьер между кислородом и поверхностью углерода.

Известно [1-7], что нанесение тонкой пленки диоксида кремния SiO2 на поверхность углеродных наноматериалов существенно замедляет окисление углерода. Наиболее часто используемый метод нанесения оксида кремния на углеродные наноматериалы включает гидролиз тетраэтоксисилана и нанесение полученного золя на поверхность углеродных материалов. Для нанесения SiO2 на поверхность различных углеродных материалов (сажу, активированный уголь, СИБУНИТ, углеродные нанонити (УНН)) в работе [8] был использован золь-гель метод. Авторы [8] использовали проведение гидролиза тетраэтоксисилана (ТЭС) в кислой (Н2О-HCl) среде. Для получения УНН-SiO2 полученный золь смешивали с углеродным материалом, сушили при комнатной температуре и прокаливали 300°C.

Известен способ нанесения силоксанов на поверхность углеродных нанотрубок, однако такие материалы нельзя использовать при повышенных (>200°C) температурах, т.к. силоксаны интенсивно окисляются, что сопровождается выделением дисперсного оксида кремния в газовую фазу [10]. Предметом изобретения являются аддукты (углеродные нанотрубки и ковалентно-прикрепленные к нанотрубкам силановые компоненты), а также методы их получения. Примеры силановых компонент включают: триметоксисилан; гексафенилдисилан; силилфосфин; 1,1,1,3,5,5,5-гептаметилтрисилоксан; полидиметилсилоксан; поли (N-бромбензол-1,3-дисульфоамид); N,N,N′,N′-тетрабромбензол-1,3-дисульфоамид; гексаметилдисилазан; хлортриметилсилан; трихлорметилсилан; алкил(алкиламино)силан; три(алкокси)силан; трет-бутилдиметилсилан; монохлораминосилан; дихлораминосилан; трихлораминосилан; и диметиламиносилан. Другой аспект известного решения есть метод функционализации углеродных нанотрубок силановыми соединениями. Метод состоит в контактировании дисперсии углеродных нанотрубок с силановыми соединениями для того, чтобы сформировалась смесь прекурсора. Количество весовой части дисперсии углеродных нанотрубок к количеству весовой силановой части предпочтительно составляет от 1:1 до 1:100. Смесь прекурсора после этого облучается. Предпочтительно, облучение осуществляется при температуре окружающей среды. Примеры предпочтительных источников силановой части описано выше. В зависимости от исходных кремнийсодержащих соединений в некоторых реализациях изобретения катализаторы включаются в состав дисперсии углеродных нанотрубок вместе с силановыми соединениями. Предпочтительно, катализаторами являются переходные металлы. Некоторые примеры подходящих катализаторов включают платиновый, родиевый, золотой, кобальтовый и никелевый катализаторы. При реализации изобретения, в котором триметоксисилан выбран как силансодержащее соединение, предпочтительно в качестве катализатора использовать платиновый катализатор, например, H2PtCl6·(H2O)6. Дисперсию углеродных нанотрубок можно подвергнуть действию катализатора перед экспозицией с триметоксисиланом; или дисперсию углеродных нанотрубок можно подвергнуть действию катализатора одновременно со смешением с триметоксисиланом. Предпочтительно, реакция силилирования выполняется в отсутствии воды. Вся дисперсия или часть дисперсии облучается ультрафиолетовым светом при комнатной температуре. Предпочтительная длина волны ультрафиолетового света находится в диапазоне между 200 и 350 нанометров.

В качестве прототипа настоящего изобретения является метод, приведенный в работе [9]. Метод состоял в кислотном гидролизе и поликонденсации тетроэтоксисилана (ТЭС). Для этого смешивали в мольном соотношении ТЭС:С2Н5ОН:H2O=1:2:4. PH раствора поддерживали =1,5-2, за счет добавления нескольких капель HNO3. Полученный раствор перемешивали в течение 4-х суток при температуре 25°C. Затем проводили кислотную обработку УНТ в среде азотной кислоты (1:1) при температуре 25°C в течение 1 ч. УНТ отфильтровывали и сушили при 110°C в течение 24 ч. УНТ после кислотной обработки смешивали с золем SiO2 и перемешивали в течение 24 ч при температуре 25°C. Полученный материал фильтровали и сушили при 110°C в течение 24 ч.

УНТ-SiO2 материал, полученный по прототипу, представляет собой матрицу диоксида кремния SiO2, в которую ввели углеродные нанотрубки. Кроме того, использованный метод включает проведение длительного, в течение нескольких суток гидролиза ТЭС, что делает этот метод нетехнологичным.

Изобретение решает задачу повышения стойкости к окислению углеродных наноматериалов с нанесенным диоксидом кремния - «углеродные наноматериалы - оксид кремния» УНМ-SiO2.

В настоящем изобретении задача решается способом приготовления (УНН-SiO2) или (УНТ-SiO2) материалов, заключающимся в обработке УНН или УНТ в смеси азотной и/или соляной кислоте, предпочтительно, смеси азотной и соляной кислоты («царской водке») при температуре 50-100°C не менее 20 мин, промывке дистиллированной водой и сушке при температуре 100-120°C не менее 20 мин, пропитке УНН или УНТ спиртовым раствором олигоорганогидридсилоксана (ООГС), например олигоэтилгидридсилоксана или олигометилгидридсилоксана и выпаривании раствора.

Предложен способ получения углеродных наноматериалов с нанесенным диоксидом кремния, в котором предварительно исходные углеродные наноматериалы обрабатывают в смеси азотной и соляной кислоты при температуре 50-100°C, промывают водой и сушат, затем пропитывают спиртовым раствором олигоорганогидридсилаксана, например олигоэтилгидридсилоксана или олигометилгидридсилоксана, выпаривают, сушат и прокаливают.

В качестве исходных углеродных наноматериалов используют, например, наноуглеродный компонент со структурой нанотрубки, нанонити или нановолокна. Обрабатывают в смеси азотной и соляной кислоты («царская водка» смесь концентрированных азотной HNO3 (65-68 мас.%) и соляной HCl (32-35 мас.%) кислот, взятых в соотношении 1:3 по объему (массовое соотношение, в пересчете на чистые вещества, около 1:2) при температуре 50-100°C в не менее 20 мин.

УНМ-ОМГС материал сушат на воздухе при температуре не более 200°C в течение не менее 20 мин, а затем прокаливают в инертной среде при температуре 600-800°C не менее 20 мин.

Особенностью строения и состава олигоорганогидридсилоксанов является наличие в молекулах олигомеров реакционно-способных по отношению к различным функциональным группам поверхностей твердых тел связей Si-H. Такие связи, взаимодействуя с функциональными группами поверхности, образуют на ней тонкую пленку силоксана. УНМ-ОМГС материал сушат на воздухе при температуре не более 200°C в течение не менее 20 мин, а затем прокаливают в инертной среде при температуре 600-800°C не менее 20 мин.

Органическая часть ООГС претерпевает деструкцию и удаляется в газовую фазу, оставшийся оксид кремния покрывает поверхность УНМ.

Сущность изобретения иллюстрируется следующими примерами и иллюстрациями.

Пример 1.

10 г углеродных нанотрубок заливают водным раствором (100 мл Н2О) и «царской водки» (40 мл) и подвергают нагреву до температуры 50-100°C и одновременному перемешиванию на магнитной мешалке с подогревом в течение 30 мин. Затем УНТ отфильтровывают и промывают дистиллированной воде до нейтрального pH. После кислотной обработки УНТ пропитывают спиртовым раствором олигометилгидридсилоксана (40 мл спирта, 8 мл ОМГС) и выпаривают раствор при нагреве до 90-100°C. УНТ-ОМГС материал сушат на воздухе при температуре 180°C в течение 30 мин, а затем прокаливают в инертной среде при температуре 720°C в течение 40 мин.

Пример 2.

10 г углеродных нанотрубок заливают водным раствором (100 мл H2O) и, «царской водки» (40 мл) и подвергают нагреву до температуры 50-100°C и одновременному перемешиванию на магнитной мешалке с подогревом в течение 30 минут. Затем УНТ отфильтровываются и промываются дистиллированной воде до нейтрального pH. После кислотной обработки УНТ пропитывают спиртовым раствором олигометилгидридсилоксана (40 мл спирта, 4 мл ОМГС) и выпаривают раствор при нагреве до 90-100°C. УНТ-ОМГС материал сушат на воздухе при температуре 180°C в течение 30 минут, а затем прокаливают в инертной среде при температуре 720°C в течение 30 мин.

Пример 3.

Аналогичен примеру 1, только УНТ-ОМГС материал сушат на воздухе при температуре 180°C в течение 30 мин, а затем прокаливают в инертной среде при температуре 600°C в течение 30 мин.

Пример 4.

Аналогичен примеру 1, только материал УНТ-ОМГС сушат на воздухе при температуре 180°C в течение 30 Мин, а затем прокаливают в инертной среде при температуре 800°C в течение 30 мин.

Пример 5.

Аналогичен примеру 1, только в качестве источника оксида кремния используют олигоэтилгидридсилоксан.

Пример 6.

10 г углеродных нанонитей или нановолокон заливают водным раствором (100 мл H2O) и «царской водки» (40 мл) и подвергают нагреву до температуры 50-100°C и одновременному перемешиванию на магнитной мешалке с подогревом в течение 30 мин. Затем УНН отфильтровываются и промываются дистиллированной воде до нейтрального pH. После кислотной обработки УНН пропитывают спиртовым раствором олигометилгидридсилоксана (40 мл спирта, 8 мл ОМГС) и выпаривают раствор при нагреве до 90-100°C. Материал УНН-ОМГС сушат на воздухе при температуре 180°C в течение 30 мин, а затем прокаливают в инертной среде при температуре 720°C в течение 30 мин.

Для подтверждения свойств полученных углеродных наноматериалов с нанесенным диоксидом кремния на Фиг.1-4 приведены кинетические кривые по окислению исходных углеродных наноматериалов и кривые по окислению полученных углеродных материалов с нанесенным диоксидом кремния в кислородно-аргоновой среде.

Из приведенных Фиг.1-4 видно, что нанесение оксида кремния оказывает влияние на стойкость УНМ к окислению в кислородно-аргоновой смеси. Установлено, что скорость окисления УНМ-SiO2 материала уменьшается примерно на порядок по сравнению с исходными УНМ, не имеющими покрытия SiO2.

На Фиг.1 представлены кинетические кривые окисления исходных УНН (1) и УНН-15%SiO2 материала (2) в среде кислорода, разбавленного аргоном в мольном соотношении O2:Ar=10:75, при температуре Т=600°C.

При повышении температуры до 700°C увеличивается скорость окисления как исходных УНН, так УНН-15%SiO2 иатериала (Фиг.2). Однако соотношение скоростей окисления сохраняется. УНН-15%SiO2 материал окисляется более медленно, чем исходные УНН.

На Фиг.2 представлены кинетические кривые окисления исходных УНН (1) и УНН-15%SiO2 материала (2) в среде кислорода, разбавленного аргоном в мольном соотношении O2:Ar=10:75, при температуре Т=700°C.

Аналогичные результаты получены для УНТ (Фиг.3).

На Фиг.3 представлены кинетические кривые окисления исходных УНТ (1), УНТ-10 мас.% SiO2 (2) и УНТ-13 мас.% SiO2 (3) материалов в среде кислорода, разбавленного аргоном в мольном соотношении O2:Ar=10:75, при температуре 600°C.

На Фиг.4 приведено сравнение кинетических кривых окисления УНТ-13 мас.% SiO2 материала, приготовленного через ОМГС (1), и УНТ-13 мас.% SiO2 материала, приготовленного по прототипу (2), в среде кислорода, разбавленного аргоном в мольном соотношении O2:Ar=10:75, при температуре 600°C.

Нанесение тонкой пленки оксида кремния на поверхность углеродных нанотрубок приводит к повышению их стабильности к окислению. Увеличение концентрации нанесенного оксида кремния приводит к уменьшению скорости окисления (см. Фиг.3, кривые 1 и 2).

СПИСОК ЛИТЕРАТУРЫ

1. Yang Y., Qiu S., Cui W., Zhao Q., Cheng X., Li R.K.Y., Xie X., Mai Y. - W., A facile method to fabricate silica-coated carbon nanotubes and silica nanotubes from carbon nanotubes templates, J. Mater. Sci., 2009, 44, pp.4539-4545.

2. Balazsi C., Konya Z., Weber F., Biro L.P., Arato P., Preparation and characterization of carbon nanotube reinforced silicon nitride composites, Mat. Sci. Eng. C-Bio. S., 2003, 23, pp.1133-1137.

3. Wang J., Kou H., Liu X., Pan Y., Guo J., Reinforcement of mullite matrix with multi-walled carbon nanotubes, Ceram. Int. 2007, 33, pp.719-722.

4. Ning J., Zhang J., Pan Y., Guo J., Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube, Mat. Sci. Eng. A-Struct., 2003, 357, pp.392-396.

5. Xiang C.S., Shi X.M., Pan Y.B., Guo J.K., Fabrication and dielectric properties of CNTs/SiO2 composites, Key Eng. Mater., 2005, 280/283, pp.123-127.

6. Ning J.W., Zhang J.J., Pan Y.B., Guo J.K., Surfactants assisted processing of nanotube-reinforced SiO2 matrix composites, Ceram. Int., 2004, 30, pp.63-67.

7. Guo J.K., Ning J.W., Pan Y.B., Fabrication and properties of carbon nanotube/SiO2 composites, Key Eng. Mater., 2003, 249, pp.1-4.

8. Ermakova M.A., Ermakov D.Yu., Kuvshinov G.G., Fenelonov V.B. and Salanov A.N.,

Synthesis of high surface area silica gels using porous carbon matrices J. Porous Materials 2000, 7, pp.435-441.

9. Barrena M.I., Gomez de Salazar J.M., Soria A., Matesanz L., Pre-hydrolysed ethyl silicate as an alternative precursor for SiO2-coated carbon nanofibers. Applied Surface Science, 2011, 258, pp.1212-1216.

10. Патент US 7833504, C01B 33/04, C07F 7/08, 2010.11.16.


СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ С НАНЕСЁННЫМ ДИОКСИДОМ КРЕМНИЯ
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ С НАНЕСЁННЫМ ДИОКСИДОМ КРЕМНИЯ
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ С НАНЕСЁННЫМ ДИОКСИДОМ КРЕМНИЯ
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ С НАНЕСЁННЫМ ДИОКСИДОМ КРЕМНИЯ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 112.
26.08.2017
№217.015.e878

Катализатор и способ получения сверхвысокомолекулярного полиэтилена с использованием этого катализатора

Изобретение относится к способу получения сверхвысокомолекулярного полиэтилена (СВМПЭ) с использованием нанесенного катализатора циглеровского типа, содержащего в своем составе соединение переходного металла на магнийсодержащем носителе. Катализатор для получения сверхвысокомолекулярного...
Тип: Изобретение
Номер охранного документа: 0002627501
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.ec02

Способ получения 2,3-диметокси-5-метил-1,4-бензохинона

Изобретение относится к способу получения 2,3-диметокси-5-метил-1,4-бензохинона - ключевого интермедиата в синтезе убихинонов (коферментов ряда Q), в частности кофермента Q, широко применяемого в медицинской практике и косметологии, а также его синтетического аналога - идебенона - препарата для...
Тип: Изобретение
Номер охранного документа: 0002628457
Дата охранного документа: 17.08.2017
29.12.2017
№217.015.f989

Установка для процесса очистки сероводородсодержащих газов

Изобретение относится к очистке сероводородсодержащих углеводородных газов и может быть использовано в химической промышленности. Установка для процесса очистки сероводородсодержащих углеводородных газов от сероводорода с получением элементарной серы содержит реактор 1 прямого окисления...
Тип: Изобретение
Номер охранного документа: 0002639912
Дата охранного документа: 25.12.2017
19.01.2018
№218.016.0016

Катализатор, способ его приготовления и способ очистки водородсодержащих газовых смесей от оксида углерода

Изобретение относится к катализатору очистки обогащенных водородом газовых смесей от оксида углерода путем селективного метанирования оксида углерода, при этом катализатор содержит кобальтцериевую оксидную систему, содержащую в своем составе хлор. Катализатор готовят взаимодействием соединений...
Тип: Изобретение
Номер охранного документа: 0002629363
Дата охранного документа: 29.08.2017
20.01.2018
№218.016.13f5

Способ получения оксидных катализаторов для процесса окислительной конверсии этана в этилен

Изобретение относится к способу получения промотированных висмутом оксидных MoVTeNb катализаторов для процесса окислительной конверсии этана в этилен, являющегося важнейшим мономером для производства широкого ассортимента продуктов, в первую очередь полиэтилена. Способ получения оксидных...
Тип: Изобретение
Номер охранного документа: 0002634593
Дата охранного документа: 01.11.2017
20.01.2018
№218.016.1abe

Способ получения 5-гидроксиметилфурфурола и этанола из целлюлозы

Изобретение относится к биотехнологии и гидролизной промышленности. Предложен способ получения этанола и 5-гидроксиметилфурфурола из целлюлозы. Способ включает каталитическую гидролиз-дегидратацию механически активированной микроскопической целлюлозы с использованием модифицированного...
Тип: Изобретение
Номер охранного документа: 0002636004
Дата охранного документа: 17.11.2017
13.02.2018
№218.016.22df

Способ получения n-(фосфонометил)-глицина

Изобретение относится к способу получения N-(фосфонометил)-глицина, используемого в качестве пестицида, арборицида, гербицида с широким спектром активности. Предложенный способ получения N-(фосфонометил)-глицина путем каталитического окисления N-алкильных-производных-N-(фосфонометил)-глицина в...
Тип: Изобретение
Номер охранного документа: 0002641897
Дата охранного документа: 23.01.2018
18.05.2018
№218.016.51a1

Способ приготовления катализатора

Изобретение относится к области приготовления катализаторов, которые могут быть использованы в процессах окислительной конверсии углеводородов и селективного окисления кислородсодержащих органических соединений, гидрирования оксидов углерода и ненасыщенных углерод-углеродных и...
Тип: Изобретение
Номер охранного документа: 0002653360
Дата охранного документа: 08.05.2018
09.06.2018
№218.016.6022

Катализатор для окислительной конверсии этана в этилен и способ его получения

Изобретение относится к катализаторам для окислительных превращений углеводородов, а также к способу получения данных катализаторов. Более конкретно изобретение относится к оксидным промотированным MoVTeNb катализаторам для окислительной конверсии этана в этилен, наиболее многотоннажный продукт...
Тип: Изобретение
Номер охранного документа: 0002656849
Дата охранного документа: 07.06.2018
Показаны записи 101-110 из 138.
26.08.2017
№217.015.e878

Катализатор и способ получения сверхвысокомолекулярного полиэтилена с использованием этого катализатора

Изобретение относится к способу получения сверхвысокомолекулярного полиэтилена (СВМПЭ) с использованием нанесенного катализатора циглеровского типа, содержащего в своем составе соединение переходного металла на магнийсодержащем носителе. Катализатор для получения сверхвысокомолекулярного...
Тип: Изобретение
Номер охранного документа: 0002627501
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.ec02

Способ получения 2,3-диметокси-5-метил-1,4-бензохинона

Изобретение относится к способу получения 2,3-диметокси-5-метил-1,4-бензохинона - ключевого интермедиата в синтезе убихинонов (коферментов ряда Q), в частности кофермента Q, широко применяемого в медицинской практике и косметологии, а также его синтетического аналога - идебенона - препарата для...
Тип: Изобретение
Номер охранного документа: 0002628457
Дата охранного документа: 17.08.2017
29.12.2017
№217.015.f989

Установка для процесса очистки сероводородсодержащих газов

Изобретение относится к очистке сероводородсодержащих углеводородных газов и может быть использовано в химической промышленности. Установка для процесса очистки сероводородсодержащих углеводородных газов от сероводорода с получением элементарной серы содержит реактор 1 прямого окисления...
Тип: Изобретение
Номер охранного документа: 0002639912
Дата охранного документа: 25.12.2017
19.01.2018
№218.016.0016

Катализатор, способ его приготовления и способ очистки водородсодержащих газовых смесей от оксида углерода

Изобретение относится к катализатору очистки обогащенных водородом газовых смесей от оксида углерода путем селективного метанирования оксида углерода, при этом катализатор содержит кобальтцериевую оксидную систему, содержащую в своем составе хлор. Катализатор готовят взаимодействием соединений...
Тип: Изобретение
Номер охранного документа: 0002629363
Дата охранного документа: 29.08.2017
20.01.2018
№218.016.13f5

Способ получения оксидных катализаторов для процесса окислительной конверсии этана в этилен

Изобретение относится к способу получения промотированных висмутом оксидных MoVTeNb катализаторов для процесса окислительной конверсии этана в этилен, являющегося важнейшим мономером для производства широкого ассортимента продуктов, в первую очередь полиэтилена. Способ получения оксидных...
Тип: Изобретение
Номер охранного документа: 0002634593
Дата охранного документа: 01.11.2017
20.01.2018
№218.016.1abe

Способ получения 5-гидроксиметилфурфурола и этанола из целлюлозы

Изобретение относится к биотехнологии и гидролизной промышленности. Предложен способ получения этанола и 5-гидроксиметилфурфурола из целлюлозы. Способ включает каталитическую гидролиз-дегидратацию механически активированной микроскопической целлюлозы с использованием модифицированного...
Тип: Изобретение
Номер охранного документа: 0002636004
Дата охранного документа: 17.11.2017
13.02.2018
№218.016.22df

Способ получения n-(фосфонометил)-глицина

Изобретение относится к способу получения N-(фосфонометил)-глицина, используемого в качестве пестицида, арборицида, гербицида с широким спектром активности. Предложенный способ получения N-(фосфонометил)-глицина путем каталитического окисления N-алкильных-производных-N-(фосфонометил)-глицина в...
Тип: Изобретение
Номер охранного документа: 0002641897
Дата охранного документа: 23.01.2018
10.05.2018
№218.016.43c0

Способ сжигания топлива

Изобретение относится к области энергетики, способам сжигания топлива в псевдоожиженном слое твердого теплоносителя для нагрева газов, жидкостей и твердых тел, а также обезвреживания газообразных, жидких и твердых отходов. Способ сжигания топлива в псевдоожиженном слое дисперсных частиц...
Тип: Изобретение
Номер охранного документа: 0002649729
Дата охранного документа: 04.04.2018
09.06.2018
№218.016.6022

Катализатор для окислительной конверсии этана в этилен и способ его получения

Изобретение относится к катализаторам для окислительных превращений углеводородов, а также к способу получения данных катализаторов. Более конкретно изобретение относится к оксидным промотированным MoVTeNb катализаторам для окислительной конверсии этана в этилен, наиболее многотоннажный продукт...
Тип: Изобретение
Номер охранного документа: 0002656849
Дата охранного документа: 07.06.2018
10.08.2018
№218.016.7b2c

Электроуправляемый пробоотборник для газового хроматографа

Изобретение относится к аналитическому приборостроению, в частности к устройствам ввода проб в хроматограф, а именно к технике микродозированных проб. Пробоотборник включает линию подвода газа-носителя, линию подвода исследуемого газа, линию подачи газа-носителя в хроматографическую колонку,...
Тип: Изобретение
Номер охранного документа: 0002663697
Дата охранного документа: 08.08.2018
+ добавить свой РИД