×
20.05.2014
216.012.c516

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОИЗДЕЛИЯ С ЗАДАННЫМ СТРУКТУРНЫМ СОСТОЯНИЕМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области термомеханической обработки для изготовления стального проката с требуемыми свойствами. Для обеспечения требуемого уровня потребительских свойств металлопроката получают заготовку из стали, содержащей, мас.%: C 0,05-0,18, Si 0,05-0,6, Mn 1,30-2,05, S не более 0,015, P не более 0,020, Cr 0,02-0,35, Ni 0,02-0,45, Cu 0,05-0,30, Ti не более 0,050, Nb 0,010-0,100, V не более 0,120, N не более 0,012, Al не более 0,050, Mo не более 0,45, железо и неизбежные примеси остальное. Заготовку нагревают и осуществляют черновую прокатку при температурах, превышающих температуру рекристаллизации аустенита, с междеформационной паузой, обеспечивающей требуемое снижение температуры металла, затем проводят чистовую прокатку, правку и ускоренное охлаждение проката, при этом температуру нагрева под прокатку Т устанавливают с обеспечением требуемой растворимости карбидов и нитридов микролегирующих элементов и определяют по зависимости: t+280°C

Изобретение относится к области термомеханической обработки металлов и может быть применено для изготовления стальных изделий с требуемыми свойствами, обуславливаемыми их структурным состоянием.

Известен способ изготовления тонкой высокопрочной горячекатаной листовой стали толщиной не более 3,5 мм, которая имеет высокую однородность и хорошие механические свойства стальных листов, а также способ горячей прокатки листовой стали (US 6364968 [1]). Сталь содержит C: 0,05-0,30 мас.%, Si: 0,03-1,0 мас.%, Mn: 1,5-3,5 мас.%, P: не более 0,02 мас.%, S: не более 0,005 мас.%, Al, не более 0,150 мас.%, N: не более 0,0200 мас.%, и один или два из Nb: 0,003-0,20 мас.% и Ti: 0,005-0,20 мас.%. Заготовку нагревают до температуры не выше 1200°C. Осуществляют горячую прокатку с температурой конца чистовой стадии не ниже 800°C. Начало чистовой прокатки осуществляют при температуре 950-1050°C. Горячекатаный лист ускоренно охлаждают в течение двух секунд после окончания прокатки, а затем непрерывно охлаждают до температуры смотки со скоростью охлаждения 20-150°C/сек. Горячекатаный лист сматывается при температуре 300-550°C, предпочтительно выше 400°C. В результате получают лист с тонкой структурой бейнита, в которых размер среднего зерна не более 3,0 мкм с соотношением осей зерна не более чем 1,5, при этом размер большей оси не превышает 10 мкм.

Недостатком известного способа является то, что он не учитывает обеспечения растворимости карбонитридов легирующих элементов и не дает рекомендаций по оптимальному режиму нагрева заготовок.

Известен способ получения холоднокатаного и отожженного стального листа с прочностью более 1200 МПа (RU 2437945 [2]). Для реализации способа выплавляют сталь состава, в мас.%: 0,10≤C≤0,25, 1≤Mn≤3, Al≥0,010, Si≤2,990, S≤0,015, P≥0,1, N≤0,008, при этом 1≤Si+Al≤3, в случае необходимости состав содержит: 0,05≤V≤0,15, B≤0,005, Mo≤0,25, Cr≤1,65, при этом Cr+(3×Mo)≥0,3, Ti≤0,040, при этом Ti/N≥4, железо и неизбежные примеси, получаемые при выплавке - остальное. Отливают заготовку из стали и нагревают до температуры более 1150°C, производят горячую прокатку для получения горячекатаного листа, сматывают лист, очищают поверхность листа, производят холодную прокатку листа с коэффициентом обжатия от 30 до 80%, холоднокатаный лист нагревают со скоростью Vc от 5 до 15°C/с до температуры T1, находящейся в пределах от Ac3 до Ac3+20°C, в течение времени t1 от 50 до 150 с, затем указанный лист охлаждают со скоростью VR1, превышающей 40°C/с и меньшей 100°C/с, до температуры T2, находящейся в пределах от Ms-30°C до Ms+30°C, выдерживают при указанной температуре Т2 в течение времени t2 от 150 до 350 с и проводят охлаждение со скоростью VR2 менее 30°C/с до температуры окружающей среды. Микроструктура стального листа содержит от 15 до 90% бейнита, а остальную часть составляют мартенсит и остаточный аустенит.

Недостатком известного способа является сложность реализации и большие энергозатраты для получения заданного структурного состояния в листе, поскольку требует повторного нагрева и многоступенчатого охлаждения.

Наиболее близким к изобретению по своей технической сущности является способ получения толстостенного высокопрочного горячекатаного стального листа, известный из RU 2011107730 [3]. Способ получения толстостенного высокопрочного горячекатаного стального листа, предусматривает нагревание материала стали, содержащего в расчете на мас.%:

0,02%-0,08% C,

0,01%-0,50% Si,

0,5%-1,8% Mn,

0,025% или менее P,

0,005% или менее S,

0,005%-0,10% Al,

0,01%-0,10% Nb,

0,001%-0,05% Ti,

0,01% до 1,0% Cr

остальное - Fe и неизбежные примеси, при этом содержание C, Ti и Nb удовлетворяет соотношению (Ti+Nb/2))/C<4.

Затем проводят горячую прокатку, включающую черновую прокатку и чистовую прокатку, ускоренное охлаждение при средней скорости охлаждения в середине стального листа в направлении толщины 10°C/с или более до достижения температуры прекращения охлаждения, отвечающей в середине стального листа в направлении толщины величине BFS или ниже, где BFS определяется выражением: BFS (°C)=770-300C-70Mn-70Cr-170Mo-40Cu-40Ni-1,5CR и сматывание в рулон при температуре намотки, равной в середине стального листа в направлении толщины величине BFSO или ниже, где BFSO определяется выражением: BFSO (°C)=770-300C-70Mn-70Cr-170Mo-40Cu-40Ni, где в приведенных выражениях каждый из C, Mn, Cr, Mo, Cu и Ni представляют доли их содержания (мас.%), а показатель CR представляет скорость охлаждения (°C/с) в середине стального листа в направлении толщины. Ускоренное охлаждение выполняют при средней скорости охлаждения, составляющей на расстоянии 1 мм от поверхности стального листа в направлении толщины 100°C/с или более, а сматывание в рулон проводят при температуре намотки, составляющей в середине стального листа в направлении толщины 300°C или выше.

Недостатком известного способа являются большие энергозатраты для получения заданного структурного состояния в листе, обусловленные не оптимальным режимом нагрева.

Заявляемый способ получения металлоизделия с заданным структурным состоянием направлен на достижение требуемого уровня потребительских свойств металлопроката.

Указанный результат достигается тем, что способ получения металлоизделия с заданным структурным состоянием из стали, имеющей в своем составе в мас.%:

C 0,05-0,18 Cu 0,05-0,30
Si 0,05-0,6 Ti не более 0,050
Mn 1,30-2,05 Nb 0,010-0,100
S не более 0,015 V не более 0,120
P не более 0,020 N не более 0,012
Cr 0,02-0,35 Al не более 0,050
Ni 0,02-0,45 Mo не более 0,45
Fe и неизбежные примеси - остальное

включает нагрев под прокатку, черновую прокатку при температурах, превышающих температуру рекристаллизации аустенита, междеформационную паузу, обеспечивающую требуемое снижение температуры металла, чистовую прокатку, правку и ускоренное охлаждение проката, при этом, температуру нагрева под прокатку T устанавливают обеспечивающей требуемую растворимость карбидов и нитридов микролегирующих элементов и определяют из t+280°C<T<t+310°C,

где t=883-313,95C+37,88Si-9,58Mn-2,79Cr-15,99Ni-2,55Cu+110,18Ti+5,5Nb+76,74V-142,53N+71,45Al+23,67Mo, °C,

где вместо химического обозначения каждого элемента подставляется содержание этого элемента, мас.%,

а теплоотвод с поверхности проката в процессе его ускоренного охлаждения задают обеспечивающим формирование требуемой объемной доли бейнита в сечении металлоизделия.

Указанный результат достигается также тем, что теплоотвод с поверхности проката в процессе его ускоренного охлаждения контролируют путем измерения температуры его поверхности.

Указанный результат достигается также тем, что измерение температуры поверхности проката осуществляют перед началом и в конце ускоренного охлаждения.

Приведенный диапазон концентраций элементов в стали обусловлен марочным сортаментом сталей, к которому, прежде всего, относятся марки для производства труб большого диаметра, судовые и конструкционные стали.

Нагрев заготовки осуществляется до температур растворения карбидов и нитридов таких микролегирующих элементов, как Ti, Nb, V. Это необходимо для того, чтобы обеспечить требуемую концентрацию этих элементов в аустените с целью реализации механизмов упрочнения этими элементами в процессе дальнейшей обработки.

Проведенные авторами исследования показали, что температурный диапазон нагрева под прокатку [t+280°C; t+310°C], где t=883-313,95C+37,88Si-9,58Mn-2,79Cr-15,99Ni-2,55Cu+110,18Ti+5,5Nb+76,74V-142,53N+71,45Al+23,67Mo, °C, является оптимальным для обеспечения растворения карбидов и нитридов указанных микролегирующих элементов.

Температура нагрева под прокатку меньше (t+280°C) не обеспечит перехода необходимого количества микролегирующих элементов в состав твердого раствора на основе ГЦК железа. Впоследствии это приведет к недостаточному упрочнению проката по механизму дисперсионного твердения и, соответственно, не позволит достичь требуемого уровня механических свойств. Кроме того, пониженная температура нагрева под прокатку ведет к повышению энергосиловых параметров процесса прокатки и увеличению нагрузок на прокатное оборудование.

Проводить нагрев заготовки под прокатку выше температуры (t+310°C) нецелесообразно, так как это приводит к чрезмерному росту зерна аустенита и избыточному расходу энергоносителя.

Черновую прокатку необходимо вести при температурах, превышающих температуру рекристаллизации аустенита, для того, чтобы обеспечить протекание процессов рекристаллизации аустенитных зерен с целью формирования мелкозернистой структуры перед чистовой прокаткой. Междеформационную паузу проводят для того, чтобы обеспечить охлаждение металла до температур начала чистовой прокатки. Предварительную правку необходимо проводить для обеспечения необходимой плоскостности проката перед ускоренным охлаждением.

Ускоренное охлаждение проката необходимо для того, чтобы обеспечить формирование в процессе фазовых превращений требуемой объемной доли бейнита из аустенита в сечении металлоизделия.

При этом необходимый теплоотвод с поверхности металла зависит от теплофизических параметров самой стали, определяемых ее химическим составом, и технических характеристик установки ускоренного охлаждения в потоке стана.

Для крупногабаритного металлоизделия формирование однородной по объему металла структуры представляет собой сложную инженерную задачу. В связи с этим целесообразно оперировать понятием требуемой объемной доли бейнита в сечении металлоизделия, достаточной для обеспечения заданных потребительских свойств.

На практике контролировать теплоотвод с поверхности удобно по соответствующей средней скорости изменения температуры поверхности в соответствующем температурном диапазоне.

При этом в частных случаях реализации измерение температуры поверхности проката целесообразно осуществлять перед началом и в конце ускоренного охлаждения.

Теплоотвод с поверхности проката в процессе его ускоренного охлаждения, обеспечивающий формирование требуемой объемной доли бейнита в сечении металлоизделия, можно определить путем проведения предварительных экспериментов.

Для этого образцы исследуемой стали подвергались охлаждению из аустенитной области, реализуя различные условия теплоотвода с поверхности металла в диапазоне температур протекания бейнитного превращения. При этом процесс теплоотвода контролировали путем измерения температуры поверхности образца.

Затем образцы исследовались с помощью оптического и электронного микроскопа и микротвердомера, и устанавливалась объемная доля бейнита в сечении металлоизделия.

Определить требуемые режимы охлаждения возможно также по экспериментально-расчетной методике, описанной в RU 2413777 [4], согласно которой соответствующие параметры теплового воздействия в процессе охлаждения находят путем решения системы уравнений, включающей в себя уравнение теплопроводности в общем виде

dQ=L·∇T·dS·dt, где dQ - поток тепла через поверхность dS в м2 за время dt в секундах, измеряемый в Дж, L - коэффициент теплопроводности в Дж/К*м*с, ∇T - градиент температуры в К/м;

уравнение сохранения энергии, учитывающее энерговыделение за счет изменения химического и фазового состава материала обрабатываемого металлоизделия , где H и H0 - начальные энтальпии фаз в Дж, H′ и - начальные энтальпии фаз в Дж через время Δt в секундах, q - удельное энерговыделение при фазовом превращении в Дж/кг, Δm - изменение массы фаз в кг в течение заданного промежутка времени, Q - приток тепла из окружающей среды в Дж/с,

и кинетические уравнения, описывающие фазовые превращения в объеме изделия вида для случая, когда не произошло столкновения границ зерен растущей фазы или фронтов концентрационных возмущений и для случая, когда столкновение уже произошло, где η - безразмерное локальное относительное содержание растущей фазы, ki=ki(Т, ΔT) - кинетические коэффициенты в с-1, T - локальная температура, a ΔT - отклонение локальной температуры от температуры фазового равновесия, измеряемые в градусах Кельвина, при этом период охлаждения разбивают на интервалы, тепловое воздействие на поверхность изделия на выбранном интервале определяют итерациями до совпадения результатов расчетного и заданного значения температуры. В результате определяется тепловой поток в момент фазового превращения, что дает возможность рассчитать целевое значение потока тепла с поверхности (теплоотвод) и среднюю скорость изменения температуры в соответствующем температурном диапазоне, обеспечивающую формирование требуемой объемной доли бейнита в сечении металлоизделия с учетом теплопроводности металла и тепловых эффектов фазовых превращений.

При этом, как температура нагрева под прокатку, так и необходимый теплоотвод с поверхности проката в процессе его ускоренного охлаждения являются технологическими параметрами, соблюдение которых необходимо для достижения требуемых свойств продукции.

Оптимальный нагрев под прокатку не допускает чрезмерного роста зерна аустенита и обеспечивает возможность реализации механизмов упрочнения микролегирующих элементами в процессе дальнейшей прокатки и ускоренного охлаждения. Однако, если осуществляемый в процессе ускоренного охлаждения теплоотвод является недостаточным для формирования требуемой доли бейнита в сечении, то заданные свойства не будут достигнуты.

Если реализован необходимый для формирования требуемой объемной доли бейнита в сечении металлоизделия теплоотвод с поверхности, но при нагреве сформировалось крупное зерно аустенита или концентрация микролегирующих элементов в аустените ниже необходимой, то заданные потребительские свойства также не будут обеспечены.

Сущность заявляемого способа поясняется примерами реализации.

Пример 1. В самом общем случае способ получения металлоизделия с заданным структурным состоянием осуществляют следующим образом.

Предварительно определяют необходимый теплоотвод с поверхности проката в процессе его ускоренного охлаждения для обеспечения образования требуемой объемной доли бейнита в сечении металлоизделия по методам, описанным выше. Дополнительно определяют среднюю скорость изменения температуры поверхности металла при реализации требуемого теплоотвода в соответствующем температурном диапазоне.

Заготовку (сляб) нагревают до температуры, обеспечивающей требуемую растворимость карбидов и нитридов микролегирующих элементов. Значение температуры нагрева определяют из интервала значений t+280°C<T<t+310°C, исходя из ее химического состава, где t=883-313,95C+37,88Si-9,58Mn-2,79Cr-15,99Ni-2,55Cu+110,18Ti+5,5Nb+76,74V-142,53N+71,45Al+23,67Mo, °C,

После нагрева осуществляют черновую прокатку при температурах, превышающих температуру рекристаллизации, затем междеформационную паузу, обеспечивающую требуемое снижение температуры металла под чистовую прокатку, чистовую прокатку, правку и ускоренное охлаждение проката, обеспечивающее теплоотвод с поверхности, требуемый для формирования заданной объемной доли бейнита в сечении металлоизделия.

Пример 2. Была поставлена задача из стали следующего состава, мас.%: 0,05% C; 0,28% Si; 1,37% Mn; 0,001% S; 0,007% P; 0,02% Cr; 0,38% Ni; 0,29% Cu; 0,038% Al; 0,006% N; 0,004% V; 0,015% Ti; 0,038% Nb; 0,15% Mo; остальное Fe и неконтролируемые примеси получить раскат размерами 40×2560×15000 мм с объемной долей бейнита в сечении металлоизделия 20%.

Для этого заготовку весом 11,96 т размерами 300×2000×2640 мм из стали указанного химического состава, полученную после разливки на машине непрерывного литья заготовок, передавали на толстолистовой стан горячей прокатки.

Предварительно определили необходимый теплоотвод с поверхности проката в процессе его ускоренного охлаждения для обеспечения образования 20% объемной доли бейнита в сечении металлоизделия экспериментальным путем, описанным выше. Установили, что необходимый теплоотвод с поверхности достигается при средней скорости изменения температуры поверхности в диапазоне 730-530°C, составляющей 16-20°C/с.

Исходя из химического состава стали, пользуясь уравнением t=883-313,95C+37,88Si-9,58Mn-2,79Cr-15,99Ni-2,55Cu+110,18Ti+5,5Nb+76,74V-142,53N+71,45Al+23,67Mo, °C, определили значение параметра t=865°C температуры нагрева T из диапазона t+280°C<T<t+310°C, равное 1170°C, и осуществили нагрев заготовки до этого значения.

После этого проводили черновую прокатку за 6 проходов в реверсивной клети в температурном диапазоне 1070-1010°C, что выше температуры рекристаллизации аустенита, с суммарной степенью деформации 51% в течение 80 с.

Затем осуществляли междеформационное охлаждение раската на воздухе (междеформационную паузу) до достижения температуры поверхности металла 750°C.

Чистовую прокатку проводили за 19 проходов в реверсивной клети в температурном диапазоне 750-730°C с суммарной степенью деформации 73% в течение 170 с.

После чистовой прокатки полученный прокат подвергали ускоренному охлаждению в установке спрейерного и ламинарного охлаждения с использованием технической воды в температурном диапазоне 730-530°C со средней скоростью изменения температуры поверхности металла 17°C/с.

Структурные исследования готового проката показали, что объемная доля бейнита в сечении металлоизделия составила 20%. Требуемый технический результат достигнут.

Пример 3. Была поставлена задача из стали следующего состава, мас.%: 0,10% C; 0,34% Si; 1,62% Mn; 0,002% S; 0,009% P; 0,03% Cr; 0,02% Ni; 0,05% Cu; 0,04% Al; 0,007% N; 0,047% V; 0,025% Ti; 0,042% No; 0,01% Mo; остальное Fe и неконтролируемые примеси получить раскат размерами 16,8×4530×38500 мм с объемной долей бейнита в сечении металлоизделия 15%.

Для этого заготовку весом 23,24 т размерами 300×2600×3900 мм из стали указанного химического состава, полученную после разливки на машине непрерывного литья заготовок, передавали на толстолистовой стан горячей прокатки.

Предварительно определили необходимый теплоотвод с поверхности проката в процессе его ускоренного охлаждения для обеспечения образования 15% объемной доли бейнита в сечении металлоизделия расчетным путем, описанным выше. Установили, что необходимый теплоотвод с поверхности достигается при средней скорости изменения температуры поверхности в диапазоне 715-620°C, составляющей 12-26°C/с.

Исходя из химического состава стали, пользуясь уравнением t=883-313,95C+37,88Si-9,58Mn-2,79Cr-15,99Ni-2,55Cu+110,18Ti+5,5Nb+76,74V-142,53N+71,45Al+23,67Mo, °C, определили значение параметра t=855°C температуры нагрева T из диапазона t+280°C<T<t+310°C, равное 1150°C, и осуществили нагрев заготовки до этого значения.

После этого проводили черновую прокатку за 12 проходов в реверсивной клети в температурном диапазоне 1090-1000°C, что выше температуры рекристаллизации аустенита, с суммарной степенью деформации 73% в течение 130 с.

Затем осуществляли междеформационное охлаждение раската на воздухе (междеформационную паузу) до достижения температуры поверхности металла 830°C.

Чистовую прокатку проводили за 15 проходов в реверсивной клети в температурном диапазоне 830-740°C с суммарной степенью деформации 79% в течение 140 с.

После чистовой прокатки полученный прокат подвергали ускоренному охлаждению в установке ламинарного охлаждения с использованием технической воды в температурном диапазоне 715-620°C со средней скоростью изменения температуры поверхности металла 15°C/с.

Структурные исследования готового проката показали, что объемная доля бейнита в сечении металлоизделия составила 15%. Требуемый технический результат достигнут.

Пример 4. Была поставлена задача из стали следующего состава, мас.%: 0,15% C; 0,4% Si; 1,70% Mn; 0,003% S; 0,012% P; 0,35% Cr; 0,25% Ni; 0,22% Cu; 0,035% Al; 0,008% N; 0,08% V; 0,025% Ti; 0,045% Nb; 0,02% Mo; остальное Fe и неконтролируемые примеси получить раскат размерами 30×2550×29200 мм с объемной долей бейнита 30% в сечении металлоизделия.

Для этого заготовку весом 17,05 т размерами 300×2400×3100 мм из стали указанного химического состава, полученную после разливки на машине непрерывного литья заготовок, передавали на толстолистовой стан горячей прокатки.

Предварительно определили необходимый теплоотвод с поверхности проката в процессе его ускоренного охлаждения для обеспечения образования 30% объемной доли бейнита в сечении металлоизделия экспериментальным путем, описанным выше. Установили, что необходимый теплоотвод с поверхности достигается при средней скорости изменения температуры поверхности в диапазоне 770-650°C, составляющей 23-28°C/с.

Исходя из химического состава стали, пользуясь уравнением t=883-313,95C+37,88Si-9,58Mn-2,79Cr-15,99Ni-2,55Cu+110,18Ti+5,5Nb+76,74V-142,53N+71,45Al+23,67Mo, °C, определили значение параметра t=840°C температуры нагрева T из диапазона t+280°C<T<t+310°C, равное 1150°C, и осуществили нагрев заготовки до этого значения.

После этого проводили черновую прокатку за 10 проходов в реверсивной клети в температурном диапазоне 1080-990°C, что выше температуры рекристаллизации аустенита, с суммарной степенью деформации 70% в течение 105 с.

Затем осуществляли междеформационное охлаждение раската на воздухе (междеформационную паузу) до достижения температуры поверхности металла 840°C.

Чистовую прокатку проводили за 15 проходов в реверсивной клети в температурном диапазоне 840-790°C с суммарной степенью деформации 63% в течение 160 с.

После чистовой прокатки полученный прокат подвергали ускоренному охлаждению в установке спрейерного и ламинарного охлаждения с использованием технической воды в температурном диапазоне 770-650°C со средней скоростью изменения температуры поверхности металла 27°C/с.

Структурные исследования готового проката показали, что объемная доля бейнита в сечении металлоизделия составила 30%. Требуемый технический результат достигнут.

Литература

1. US 6364968.

2. RU 2437945.

3. RU 2011107730.

4. RU 2413777.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 188.
27.02.2015
№216.013.2e9c

Арматурный канат и способ его изготовления

Изобретение может быть использовано при производстве преднапряженной и закладной канатной арматуры. Арматурный канат состоит из центральной проволоки и расположенных вокруг нее по спирали повивочных проволок внутреннего слоя и повивочных проволок внешнего слоя, каждая из которых имеет участок...
Тип: Изобретение
Номер охранного документа: 0002543400
Дата охранного документа: 27.02.2015
10.09.2015
№216.013.799a

Прокат круглого поперечного сечения для изготовления высокопрочного крепежа

Изобретение относится к металлургии стали и может быть использовано при производстве сортового проката круглого сечения для изготовления высокопрочного крепежа холодной осадкой. Для повышения пластических характеристик при сохранении высоких прочностных свойств получают сталь, содержащую,...
Тип: Изобретение
Номер охранного документа: 0002562719
Дата охранного документа: 10.09.2015
10.05.2016
№216.015.3bb2

Способ производства толстолистовой трубной стали

Изобретение относится к области металлургии, конкретнее к прокатному производству и может быть использовано при изготовлении толстых листов из низколегированных трубных сталей. Для повышения прочностных свойств листов толщиной 14-20 мм из трубной стали класса прочности К60 при сохранении...
Тип: Изобретение
Номер охранного документа: 0002583973
Дата охранного документа: 10.05.2016
10.08.2016
№216.015.538d

Способ производства толстолистовой трубной стали, микролегированной бором

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении толстых листов из низколегированных трубных сталей. Для повышения прочностных свойств листов из стали класса прочности К56 при сохранении пластичности и ударной вязкости...
Тип: Изобретение
Номер охранного документа: 0002593803
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.90f8

Система автоматизации предприятий сферы торговли, общественного питания и услуг

Изобретение относится к оборудованию для систем автоматизации предприятий сферы торговли, общественного питания и услуг. Технический результат, на получение которого направлено заявляемое техническое решение, состоит в повышении надежности работы системы автоматизации предприятия сферы услуг за...
Тип: Изобретение
Номер охранного документа: 0002605674
Дата охранного документа: 27.12.2016
29.05.2018
№218.016.5757

Устройство для измерения теплопроводности твердых материалов

Изобретение относится к тепловым испытаниям, а именно к устройствам для определения теплопроводности материалов, и может быть применено для определения теплотехнических свойств материалов, например, при проектировании режимов термообработки металлоизделий. Предложено устройство для измерения...
Тип: Изобретение
Номер охранного документа: 0002654826
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.5759

Устройство для определения тепловых параметров фазового превращения

Изобретение относится к области исследования кинетики структурных и фазовых превращений в металлах. Предложено устройство для определения тепловых параметров фазового превращения, которое содержит печь с управляемым нагревателем со средством измерения его температуры, средства измерения...
Тип: Изобретение
Номер охранного документа: 0002654822
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.5779

Способ измерения теплопроводности твердых материалов

Изобретение относится к тепловым испытаниям, а именно к определению теплопроводности материалов. Предложен способ измерения теплопроводности твердых материалов, который включает изготовление образца из исследуемого материала в виде стержня постоянного сечения, создание заданного перепада...
Тип: Изобретение
Номер охранного документа: 0002654823
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.57bc

Устройство для измерения теплоемкости материалов

Изобретение относится к тепловым испытаниям, а именно к устройствам для определения теплоемкости материалов, и может быть применено для определения их теплотехнических свойств. Предложено устройство для измерения теплоемкости материалов, которое содержит две калориметрические ячейки,...
Тип: Изобретение
Номер охранного документа: 0002654824
Дата охранного документа: 22.05.2018
09.06.2018
№218.016.5a72

Способ производства проката

Изобретение относится к области обработки металлов давлением. Способ включает предварительное задание списка подлежащих контролю технологических параметров производства и допустимых диапазонов их значений, нагрев заготовки, последующую ее прокатку в одну или несколько стадий, охлаждение,...
Тип: Изобретение
Номер охранного документа: 0002655398
Дата охранного документа: 28.05.2018
Показаны записи 31-40 из 110.
27.02.2015
№216.013.2e9c

Арматурный канат и способ его изготовления

Изобретение может быть использовано при производстве преднапряженной и закладной канатной арматуры. Арматурный канат состоит из центральной проволоки и расположенных вокруг нее по спирали повивочных проволок внутреннего слоя и повивочных проволок внешнего слоя, каждая из которых имеет участок...
Тип: Изобретение
Номер охранного документа: 0002543400
Дата охранного документа: 27.02.2015
10.09.2015
№216.013.799a

Прокат круглого поперечного сечения для изготовления высокопрочного крепежа

Изобретение относится к металлургии стали и может быть использовано при производстве сортового проката круглого сечения для изготовления высокопрочного крепежа холодной осадкой. Для повышения пластических характеристик при сохранении высоких прочностных свойств получают сталь, содержащую,...
Тип: Изобретение
Номер охранного документа: 0002562719
Дата охранного документа: 10.09.2015
10.05.2016
№216.015.3bb2

Способ производства толстолистовой трубной стали

Изобретение относится к области металлургии, конкретнее к прокатному производству и может быть использовано при изготовлении толстых листов из низколегированных трубных сталей. Для повышения прочностных свойств листов толщиной 14-20 мм из трубной стали класса прочности К60 при сохранении...
Тип: Изобретение
Номер охранного документа: 0002583973
Дата охранного документа: 10.05.2016
10.08.2016
№216.015.538d

Способ производства толстолистовой трубной стали, микролегированной бором

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении толстых листов из низколегированных трубных сталей. Для повышения прочностных свойств листов из стали класса прочности К56 при сохранении пластичности и ударной вязкости...
Тип: Изобретение
Номер охранного документа: 0002593803
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.90f8

Система автоматизации предприятий сферы торговли, общественного питания и услуг

Изобретение относится к оборудованию для систем автоматизации предприятий сферы торговли, общественного питания и услуг. Технический результат, на получение которого направлено заявляемое техническое решение, состоит в повышении надежности работы системы автоматизации предприятия сферы услуг за...
Тип: Изобретение
Номер охранного документа: 0002605674
Дата охранного документа: 27.12.2016
29.05.2018
№218.016.5757

Устройство для измерения теплопроводности твердых материалов

Изобретение относится к тепловым испытаниям, а именно к устройствам для определения теплопроводности материалов, и может быть применено для определения теплотехнических свойств материалов, например, при проектировании режимов термообработки металлоизделий. Предложено устройство для измерения...
Тип: Изобретение
Номер охранного документа: 0002654826
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.5759

Устройство для определения тепловых параметров фазового превращения

Изобретение относится к области исследования кинетики структурных и фазовых превращений в металлах. Предложено устройство для определения тепловых параметров фазового превращения, которое содержит печь с управляемым нагревателем со средством измерения его температуры, средства измерения...
Тип: Изобретение
Номер охранного документа: 0002654822
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.5779

Способ измерения теплопроводности твердых материалов

Изобретение относится к тепловым испытаниям, а именно к определению теплопроводности материалов. Предложен способ измерения теплопроводности твердых материалов, который включает изготовление образца из исследуемого материала в виде стержня постоянного сечения, создание заданного перепада...
Тип: Изобретение
Номер охранного документа: 0002654823
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.57bc

Устройство для измерения теплоемкости материалов

Изобретение относится к тепловым испытаниям, а именно к устройствам для определения теплоемкости материалов, и может быть применено для определения их теплотехнических свойств. Предложено устройство для измерения теплоемкости материалов, которое содержит две калориметрические ячейки,...
Тип: Изобретение
Номер охранного документа: 0002654824
Дата охранного документа: 22.05.2018
09.06.2018
№218.016.5a72

Способ производства проката

Изобретение относится к области обработки металлов давлением. Способ включает предварительное задание списка подлежащих контролю технологических параметров производства и допустимых диапазонов их значений, нагрев заготовки, последующую ее прокатку в одну или несколько стадий, охлаждение,...
Тип: Изобретение
Номер охранного документа: 0002655398
Дата охранного документа: 28.05.2018
+ добавить свой РИД