×
20.05.2014
216.012.c336

Результат интеллектуальной деятельности: НАНОСТРУКТУРНОЕ ПОКРЫТИЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д. Наноструктурное покрытие выполнено из нанокомпозиционного металл-керамического материала состава (CONbTa)(SiO), полученного на ситалловой подложке ионно-лучевым распылением и имеющего структуру, состоящую из гранул металлической фазы со средним диаметром 2-4 нм, изолированных сплошной керамической фазой, при этом концентрация металлической фазы составляет 20-40 ат.%. 1 з.п. ф-лы, 1 ил.

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектроники, альтернативной энергетике и т.д.

Исследования последних лет показали, что материалы и покрытия с ультрамелкодисперсной структурой и наноструктурными упрочняющими элементами обладают улучшенными физико-химическими и механическими свойствами. Поэтому в последние годы во всем мире проводятся работы по разработке способов получения материалов с наноструктурой.

Как правило, получаемые покрытия представляют собой металлические сплавы и поэтому улучшают свойства защищаемой поверхности лишь по одному из параметров, например твердость или прочность, в то время как по другим параметрам обнаруживают значительно более низкие показатели. Традиционные способы формирования упрочняющих покрытий являются различными вариантами методов наплавки, таких как плазменное, электронно-лучевое, лазерное, аргонодуговое, электродуговое, электрошлаковое и др., и это позволяет при наплавлении покрытий использовать присадочные материалы для повышения прочности за счет создания гетерофазной, а не однофазной, структуры.

Известны различные методы формирования наноструктурных поверхностных слоев и наноструктурных покрытий, например, методом лазерно-плазменной обработки [В.В.Мелюков, А.В.Частиков, А.А.Чирков, А.М.Чирков, А.В.Окатов. Формирование наноструктурных поверхностных слоев методом лазерно-плазменной обработки при атмосферных условиях. Сб.: Сварка и контроль. - 2005. Материалы докладов 24-й научно-технической конференции сварщиков Урала и Сибири 16-18 марта 2005 г., Челябинск, 2005, с.125-131], или методом абразивной обработки [Zhang Shu-lan, Chen Huai-ning, Lin Quanhong, Liu Gang (Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, КНР). Hanjie xuebao=Trans. China Weld. Inst. 2005.26, №3, c.73-76].

Однако эти методы и покрытия, полученные этими методами, обладают рядом недостатков.

Внешняя поверхность формируемых покрытий характеризуется значительной шероховатостью, что требует последующей дополнительной обработки, уменьшающей толщину покрытия и влияющей на структурное состояние покрытия, что, в свою очередь, снижает его упрочняющие характеристики. Кроме того, размеры зерен в получаемых слоях покрытия составляют сотни и более нанометров, что не является оптимальным для упрочнения получаемого наружного слоя.

Известен способ и материал, получаемый этим способом, получения наплавленного покрытия с применением в качестве присадочного материала смеси порошков исходных компонентов, включающей карбид вольфрама WC [С.Ф.Гнюсов, Д.А.Маков, В.Г.Дураков. Получение износостойких композиционных покрытий с мультимодальным распределением упрочняющей фазы. - Сб.: Сварка и контроль. - Материалы докладов 24-й научно-технической конференции сварщиков Урала и Сибири 16-18 марта 2005 г. - Челябинск, 2005. С.74-82].

Указанный способ реализуется следующим образом.

При аргонодуговой наплавке неплавящимся электродом по прототипу за один проход формировалось покрытие толщиной 3-4 мм. Размер зерна матрицы составлял 8,0-60,0 мкм, а средний размер частиц упрочняющей фазы составлял 3,3 мкм. При этом в полученных покрытиях находившийся в смеси порошков монокарбид вольфрама в результате воздействия сварочной дуги и значительного перегрева ванны в зоне ее действия в процессе наплавки полностью растворялся в жидкой металлической ванне, а при последующем охлаждении упрочняющая фаза выделялась в виде равноосных зерен или в виде дендритов размерами от 4 до 15 мкм.

Недостатком известного способа и материала является то, что при его использовании невозможно получить металл покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне, т.к. к началу кристаллизации в жидком металле отсутствует необходимое количество центров кристаллизации для получения металла покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне.

Недостатком известного способа и материала является то, что при его использовании невозможно получить металл покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне, т.к. к началу кристаллизации в жидком металле отсутствует необходимое количество центров кристаллизации для получения металла покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне.

Задачей предложенного технического решения является устранение указанных недостатков и создание наноструктурного покрытия из гранулированного композита «металл-керамика», обеспечивающего повышенную твердость, высокую стабильность параметров с одновременным снижением себестоимости.

Решение указанной задачи достигается за счет того, что в предложенном наноструктурном покрытии согласно изобретению выполнено из нанокомпозиционного металл-керамического материала состава (CO86Nb12Ta2)x(SiOn)100-x, полученного на ситалловой подложке ионно-лучевым распылением и имеющего структуру, состоящую из гранул металлической фазы со средним диаметром 2-4 нм, изолированных сплошной керамической фазой, при этом концентрация металлической фазы в нанокомпозиционном материале составляет 20-40 ат.%.

В варианте исполнения концентрация металлической фазы в нанокомпозиционном материале составляет 25 ат.%.

Указанные пределы выбраны исходя из следующих соображений.

Максимальная твердость реализуется в композите, в котором сплошной фазой является оксидная керамика, а металлическая фаза представлена в виде изолированных друг от друга наногранул размером 2-3 нм. При возникновении в нанокомпозите механических напряжений металлические гранулы пластически деформируются, не давая, тем самым, деформироваться и разрушаться керамике, сохраняя при этом ее сплошность, и обеспечивая, таким образом, целостность материала покрытия. Максимум микротвердости обусловлен оптимальным объемным сочетанием двух фаз, одна из которых более пластична, а другая - более хрупкая. Учитывая вышеизложенное, нижнее значение указанного соотношения выбрано исходя из того, что при дальнейшем уменьшении концентрации металла Hv твердость покрытия снижается, поскольку начинает преобладать естественная хрупкость диэлектрика.

Верхнее значение указанного соотношения выбрано исходя того, что при его дальнейшем увеличении происходит падение твердости покрытия, связанное с пластическим деформированием пленки.

Сущность изобретения иллюстрируется чертежом, где на фиг.1 показана концентрационная зависимость микротвердости нанокомпозита (CO86Nb12Ta2)x(SiOn)100-x, полученная экспериментальным путем.

Пример конкретного выполнения.

Композиты (CO86Nb12Ta2)x(SiOn)100-x получены методом ионно-лучевого распыления составных мишеней.

Совместное осаждение компонентов материала производилось на ситалловые подложки СТ-60, на поверхности которых, в результате процессов самоорганизации, происходило формирование двухфазной структуры. Навески пластин из диэлектрика были распределены на поверхность основы мишени неравномерно, что позволило получить за один цикл напыления образцы в широком диапазоне концентрации металла. Температура подложки не превышала 100…120°С, поэтому диффузионная подвижность адсорбирующих атомов была невысока. Химический состав образцов контролировался рентгеновским электронно-зондовым микроанализом. Морфология изучалась с помощью растровой электронной микроскопии и оптического микроскопа.

Для исследования твердости покрытий из композитов использовались покрытия толщиной 5…6 мкм, нанесенные на ситалловые подложки и содержащие различное количество металлической фазы: 23, 30, 36, 55 и 65 ат.%.

На фиг.1 показана зависимость микротвердости нанокомпозита (CO86Nb12Ta2)x(SiOn)100-x от концентрации металлической фазы в нанокомпозите, полученная экспериментальным путем. Из полученных экспериментальных данных следует, что нанокомпозит имеет максимальную твердость при 20-40 ат.%, преимущественно 25 ат.%, т.е. в указанных пределах.

Использование предложенного технического решения позволит создать наноструктурное покрытие из гранулированного композита «металл-керамика», обеспечивающего повышенную твердость, высокую стабильность параметров с одновременным снижением себестоимости.


НАНОСТРУКТУРНОЕ ПОКРЫТИЕ
Источник поступления информации: Роспатент

Показаны записи 31-32 из 32.
25.08.2017
№217.015.a735

Способ получения нанокомпозитного металл-керамического покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике, машиностроении и т.д. Способ получения нанокомпозитного металл-керамического покрытия с заданным значением микротвердости на поверхности полированной...
Тип: Изобретение
Номер охранного документа: 0002608156
Дата охранного документа: 16.01.2017
19.01.2018
№218.016.058c

Способ термостабилизации электронной аппаратуры

Изобретение относится к электронике и может быть использовано для обеспечения требуемых тепловых режимов элементов радиоэлектронной аппаратуры, в частности электронных плат. Способ термостабилизации электронной аппаратуры, основанный на пропускании предварительно охлажденного или нагретого...
Тип: Изобретение
Номер охранного документа: 0002630948
Дата охранного документа: 14.09.2017
Показаны записи 131-140 из 285.
27.04.2015
№216.013.46a9

Закрылок самолета короткого взлета и посадки

Изобретение относится к авиационной технике. Закрылок самолета короткого взлета и посадки содержит основное звено, дефлектор, каретки с опорными роликами, направляющие рельсы перемещения закрылка. В верхней части основного звена подвижно установлены жесткие панели, к которым шарнирно закреплены...
Тип: Изобретение
Номер охранного документа: 0002549593
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.49f4

Способ электрохимической обработки отверстий форсунки из токопроводящего материала

Изобретение относится к электрохимической обработке и может быть использовано для электрохимической доводки форсунок из токопроводящих материалов преимущественно для жидкостных ракетных двигателей. Способ включает доводку геометрических размеров отверстий электрохимической обработкой с...
Тип: Изобретение
Номер охранного документа: 0002550439
Дата охранного документа: 10.05.2015
20.06.2015
№216.013.56c7

Установка для наводораживания тонкопленочных композитов в водородной плазме и способ наводораживания тонкопленочных композитов в водородной плазме с ее помощью

Группа изобретений относится к вакуумно-плазменной обработке композитов. Установка для наводораживания тонкопленочных композитов в водородной плазме содержит СВЧ-печь и установленный внутри нее кварцевый реактор. Реактор состоит из корпуса в виде полого цилиндра и установленных на его торцах...
Тип: Изобретение
Номер охранного документа: 0002553745
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56cb

Способ термоэрозионной обработки

Способ относится к области машиностроения, в частности к термоэрозионной обработке металлических материалов, и может быть использован при электроэрозионной и комбинированной электроэрозионно-химической обработке металлических материалов в жидкой среде. В способе термоэрозионную обработку...
Тип: Изобретение
Номер охранного документа: 0002553749
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.573d

Способ очистки газового потока и устройство для его реализации

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Устройство для очистки содержит трубчатый корпус, имеющий входной канал, несколько конденсационных секций, каждая из которых снабжена средством для вдувания...
Тип: Изобретение
Номер охранного документа: 0002553863
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.5743

Способ очистки газового потока и устройство для его реализации

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Устройство для очистки газового потока содержит трубчатый корпус, имеющий входной канал для входа запыленного газового потока, несколько последовательно...
Тип: Изобретение
Номер охранного документа: 0002553869
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.5860

Статор электрогенератора

Изобретение относится к области ветроэнергетики. У статора электрогенератора, функционирующего при вращении роторных элементов на лопастях ветроколес, содержащего магнитопроводы, источник магнитного поля, катушку и крепежные элементы, согласно изобретению магнитопровод выполнен в виде трех...
Тип: Изобретение
Номер охранного документа: 0002554165
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a78

Устройство ориентации гелиоустановки

Изобретение относится к области гелиотехники, а именно к приводным устройствам для ориентации гелиоустановки, и может быть использовано для ориентации любого коллектора лучевой энергии, облучаемого перемещаемым источником тепловой радиации. В устройстве ориентации гелиоустановки, содержащем...
Тип: Изобретение
Номер охранного документа: 0002554701
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a7c

Безредукторный ветроэлектроагрегат

Изобретение относится к ветроэнергетике. Безредукторный ветроэлектроагрегат содержит башню, поворотное основание, тихоходное колесо, быстроходные колеса, роторные элементы, статор и направляющее устройство. Быстроходные колеса закреплены на концах лопастей тихоходного ветроколеса. Статор...
Тип: Изобретение
Номер охранного документа: 0002554705
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5c7c

Способ испытания образцов листового материала на растяжение

Изобретение относится к испытательной технике и может быть использовано при определении характеристик механических свойств листовых материалов в условиях плоской деформации. Способ испытания конструкционного листовых материалов на растяжение заключается в том, что по всей противолежащей рабочей...
Тип: Изобретение
Номер охранного документа: 0002555217
Дата охранного документа: 10.07.2015
+ добавить свой РИД