×
20.05.2014
216.012.c323

СПОСОБ НАНЕСЕНИЯ НАНОКОМПОЗИТНОГО ПОКРЫТИЯ НА ПОВЕРХНОСТЬ СТАЛЬНОГО ИЗДЕЛИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области машиностроения, в частности к способам нанесения защитных покрытий. Может использоваться в энергетическом машиностроении для защиты деталей, подверженных механическим нагрузкам, высоким температурам и воздействию агрессивной рабочей среды. Перед нанесением покрытия на поверхность изделия проводят откачку воздуха из вакуумной камеры, очистку поверхности изделия и вакуумной камеры в среде инертного газа, ионное травление и ионно-плазменное азотирование поверхности изделия. Покрытие формируют путем нанесения микрослоя из нанослоев титана и алюминия толщиной 1-100 нм и микрослоя из нанослоев нитрида титана и нитрида алюминия толщиной 1-100 нм. После нанесения каждого из микрослоев проводят ионную очистку поверхности аргоном в течение 10 мин при давлении 1,5 Па и напряжении смещения 1150 В. Нанесение микрослоев с последующей ионной очисткой осуществляют в N этапов, где N - целое число и N ≥ 1, до формирования защитного покрытия общей толщиной 5,8-7,2 или более. Обеспечивается повышение срока службы покрытия в условиях эрозии, коррозии и высоких температур. 3 з.п. ф-лы, 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к области машиностроения, в частности к методам образования защитных покрытий на деталях, подверженных механическим нагрузкам, высоким температурам, воздействию агрессивной рабочей среды. Изобретение может быть использовано в энергетическом машиностроении для защиты лопаток турбин и компрессоров, валов, золотников, а также элементов запорно-регулирующей арматуры от эрозии, коррозии и теплового воздействия.

В настоящее время широкое распространение получили методы нанесения защитных покрытий в вакууме путем физического осаждения на защищаемую поверхность с образованием соединений, устойчивых к разрушающему воздействию - механическому, химическому, тепловому. Такие покрытия наносятся в несколько слоев с использованием электродугового источника распыляемого материала (см. пат. RU №2373302, МПК8 С23С 14/06, опубл. 20.11.2009).

Однако покрытие, получаемое известным способом, не обеспечивает необходимого качества подготовки поверхности.

Наиболее близким по технической сущности к изобретению является способ нанесения нанокомпозитного покрытия на поверхность стального изделия (пат. RU №2437963, МПК8 С23С 14/06, опубл. 27.21.2011), в котором защищается способ нанесения нанокомпозитного покрытия. Способ заключается в том, что после механической обработки изделия и помещения его в вакуумную камеру производят очистку изделия и вакуумной камеры в среде инертного газа, ионное травление и ионно-плазменное азотирование поверхностей изделия, нанесение покрытия методом физического осаждения из паровой фазы.

Однако механическая обработка поверхности изделия, очистка аргоном, азотирование и нанесение покрытия не обеспечивают требуемой плотности и беспористости покрытия, что снижает его качество и не обеспечивает необходимый срок службы при работе изделия в условиях эрозии, коррозии и высоких температур.

Технической задачей изобретения является повышение срока службы покрытия в условиях эрозии, коррозии и высоких температур.

Техническим результатом изобретения является получение износостойкой структуры покрытия, который достигается тем, что в известном способе нанесения нанокомпозитного покрытия на поверхность изделия, включающем обработку изделий в вакуумной камере в среде инертного газа, ионное травление и ионно-плазменное азотирование поверхностей изделий, при этом нанесение нанокомпозитного покрытия осуществляют способом физического осаждения из паровой фазы, после формирования микрослоев покрытия дополнительно проводят ионную очистку поверхности изделия, при этом ионную очистку осуществляют в N этапов, где N - целое число и N≥1.

Кроме того, проводят предварительный нагрев вакуумной камеры с одновременной откачкой воздуха.

Нанесение нанокомпозитного покрытия может осуществляться при последовательном прохождении изделия перед магнетронами с мишенями из титана, алюминия с образованием на поверхности микрослоя общей толщиной 0,4-0,6 мкм, причем указанный микрослой состоит из нанослоев этих материалов толщиной 1-100 нм.

Нанесение нанокомпозитного покрытия может осуществляться при подаче в камеру азота и последовательном прохождении изделия перед магнетронами с мишенями из титана, алюминия с образованием на поверхности микрослоя из нитридов этих элементов общей толщиной 0,4-0,6 мкм, причем указанный микрослой состоит из нанослоев нитридов этих материалов толщиной 1-100 нм.

Способ нанесения нанокомпозитных покрытий осуществляется следующим образом.

Изделия полируют, обезжиривают в ультразвуковой ванне, обрабатывают бензиноспиртовой смесью, подвергают термообработке в сушильном шкафу. Подготовленные таким образом изделия размещают на карусели в вакуумной камере. Нагрев вакуумной камеры и откачку воздуха из нее производят одновременно. Помимо ускорения процесса одновременное проведение нагрева камеры и создание в ней вакуума целесообразно для десорбции ранее адсорбированных поверхностью изделий паров воды и рабочих жидкостей вакуумных насосов, а также растворителей, которыми обрабатывали изделия.

Проводят очистку поверхности изделий и вакуумной камеры в тлеющем разряде от адсорбированных паров воды, растворителей и т.п., для чего на карусель подают напряжение от 1000 до 1200 В, а в вакуумную камеру впускают инертный газ, например, аргон. Далее осуществляют ионное травление поверхности. Для травления очищенной поверхности увеличивают плотность потока ионов на изделии. Для этого включают магнетроны, которые в данном случае играют роль генераторов плазмы, однако выбирают такой режим их работы, чтобы скорость осаждения распыленного металла была меньше скорости его стравливания. При этом для удаления стравленного материала с поверхности изделия давление аргона должно быть низким, таким, чтобы длина свободного пробега частицы была сравнима с расстоянием от изделия до стенки камеры. Наиболее интенсивное травление происходит, когда изделия проходят между магнетронами. Применение магнетронов в процессе травления позволяет избежать нанесения капель металла на поверхность изделия, что характерно при использовании электродуговых распылителей. Травление производят до появления на поверхности изделия характерного рисунка зерен металла и в результате получают ненарушенную механической и химической обработкой поверхность изделия.

Протравленную таким образом поверхность изделия подвергают ионно-плазменному азотированию. Азотирование поверхности заключается в диффузионном насыщении азотом приповерхностного слоя металла глубиной до 500 мкм, в результате чего образуется раствор азота в металле. Твердость поверхности может возрасти в четыре и более раз от исходной величины, уменьшаясь с глубиной до твердости исходного материала. Это необходимо для исключения резкого изменения твердости на границе «нанокомпозитное покрытие - основной материал», что дает снижение максимальных напряжений в пограничной зоне материалов покрытия и основы. Травление поверхности перед азотированием позволяет обеспечить диффузию азота на большую глубину и образование более однородного и насыщенного раствора азота в металле. Азотирование осуществляют путем подачи в камеру газообразного азота и нагрева изделия при поддержке магнетронным разрядом, который повышает интенсивность диффузии азота. По окончании ионно-плазменного азотирования проводят дополнительное ионное травление для удаления образованных на поверхности изделий соединений азота, которые в дальнейшем препятствуют высокой адгезии материала нанокомпозитного покрытия. Проведение азотирования осуществляется в N этапов, где N - целое число и выбрано из условия N≥1, чередующихся с ионным травлением, поскольку образующиеся на поверхности изделия соединения азота уменьшают скорость проникновения азота в материал. В результате формируется чистая поверхность металла с твердым приповерхностным слоем, готовая к нанесению нанокомпозитного покрытия.

Нанокомпозитное покрытие наносят методом физического осаждения из паровой фазы посредством магнетронов, последовательно чередуя слои различных материалов. Первым наносят микрослой из титана, алюминия общей толщиной 0,4-0,6 мкм, который в свою очередь состоит из нанослоев этих материалов толщиной от 1 до 100 нм. Эти нанослои образуются при последовательном прохождении изделия перед магнетронами с мишенями из различных распыляемых материалов - титана, алюминия. По окончании формирования микрослоя проводят дополнительную ионную очистку для обеспечения требуемой плотности и беспористости покрытия. В результате формируется плотный беспористый слой. Ионная очистка поверхности покрытия позволяет регулировать морфологию, характеристики зародышеобразования, микроструктуру и напряжение в покрытии, потому что высокая энергетика бомбардирующих ионов приводит к увеличению мобильности осаженных атомов и/или повторному распылению слабо связанных частиц. Такая промежуточная ионная очистка позволяет получать плотные беспористые пленки с высокими напряжениями сжатия. Затем наносят второй микрослой из нитридов титана, алюминия общей толщиной 2,5-3 мкм. Этот микрослой также состоит из нанослоев толщиной от 1 до 100 нм и образуется при последовательном прохождении изделия перед магнетронами с мишенями из титана, алюминия при подаче в камеру азота. По окончании формирования микрослоя проводят дополнительную ионную очистку для обеспечения требуемой плотности и беспористости покрытия. В результате формируется плотный беспористый слой. Далее операции повторяют и в результате получают нанокомпозитное защитное покрытие общей толщиной 5,8-7,2 мкм или более. Толщина нанослоев регулируется изменением скорости вращения карусели и мощности магнетронного разряда. Толщина микрослоев регулируется временем формирования покрытия.

Экспериментально установлено, что наилучшие характеристики покрытия достигаются в указанных диапазонах толщин микро- и нанослоев.

Для исследования свойств нанокомпозитного покрытия, нанесенного описанным выше способом, были изготовлены образцы из стали 20X13. Первая группа (I) образцов обработке не подвергалась. На поверхность образцов второй группы (II) было нанесено нанокомпозитное покрытие, состоящее из слоев (Ti+Al)/(TiN+AlN), при этом азотирование проводилось после очистки аргоном, проводилось ионное травление после азотирования, наносилось покрытие. Обработка образцов третьей группы (III) отличалась от обработки образцов второй группы проведением ионной очистки после формирования микрослоев. Первая группа являлась контрольной, и эрозионная стойкость образцов второй и третьей групп определялась по отношению к эрозионной стойкости образцов первой группы. Исследование проводилось на стенде «ЭРОЗИЯ-М» НИУ МЭИ, его результаты приведены в таблице.

Группа образцов Относительная эрозионная стойкость
I 1,0
II 3,5
III 4,3

Таким образом, именно включение в способ нанесения нанокомпозитного покрытия этапа ионной очистки после формирования микрослоев позволяет увеличить эрозионную стойкость изделий, а значит и срок их службы.

Однако предлагаемый способ нанесения нанокомпозитных покрытий не ограничивается описанными выше комбинациями материалов для нанесения слоев. В частном случае реализации способ может включать применение мишени, представляющей собой набор пластин. В отдельных случаях обработка поверхности согласно предлагаемому способу может проводиться с использованием в качестве напыляемого материала различных элементов, например Ti, Ni, Со, Cr, Al, Y, Zr, Hf, V, Та, Mo, W, В, Si, С или любого сплава на основе указанных элементов. В качестве реакционного газа возможно применение азота, кислорода, углеводородов, паров кремнеорганических и боросодержащих жидкостей, а также любой смеси указанных газов.

При реализации способа возможно расположение магнетронов на периферии вакуумной камеры и/или в центре нее, что уменьшает время обработки изделия.

Пример конкретной реализации способа:

- полировка изделия, обезжиривание ультразвуком и протирка бензиноспиртовой смесью, сушка в шкафу при Т=60°С;

- размещение изделий на карусели в вакуумной камере, одновременный нагрев и откачка вакуумной камеры Т=150°С, Рост=10-4 Па;

- ионная очистка аргоном, Р=1,5 Па, t=10 мин, Uсмещения=1150 В;

- ионное травление, Р=0,2 Па, t=20 мин, Uсмещения=1150 В, напряжение на магнетронах - по 150 В;

- азотирование, Р=2 Па, t=60 мин, Uсмещения=1150 В;

- ионное травление, Р=0,2 Па, t=20 мин, Uсмещения=1150 В, напряжение на магнетронах - по 150 В;

- нанесение многослойного нанокомпозитного покрытия, состоящего из слоев Ti+Al, по режиму Р=0,2 Па, t=15 мин, Uсмещения=75 В, напряжение на магнетронах - по 450-500 В;

- ионная очистка аргоном, Р=1,5 Па, t=10 мин, Uсмещения=1150 В;

- нанесение многослойного нанокомпозитного покрытия, состоящего из слоев TiN+AlN, по режиму Р=0,2 Па, t=60 мин, Uсмещения=75 В, напряжение на магнетронах - по 450-500 В;

- ионная очистка аргоном, Р=1,5 Па, t=10 мин, Uсмещения=1150 В;

- нанесение многослойного нанокомпозитного покрытия, состоящего из слоев Ti+Al, по режиму Р=0,2 Па, t=10 мин, Uсмещения=75 В, напряжение на магнетронах - по 450-500 В;

- ионная очистка аргоном, Р=1,5 Па, t=10 мин, Uсмещения=1150 В;

- нанесение многослойного нанокомпозитного покрытия, состоящего из слоев TiN+AlN, по режиму Р=0,2 Па, t=60 мин, Uсмещения=75 В, напряжение на магнетронах - по 450-500 В;

- ионная очистка аргоном, Р=1,5 Па, t=10 мин, Uсмещения=1150 В.

Использование изобретения обеспечивает увеличение срока службы нанокомпозитного покрытия.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 13.
10.04.2013
№216.012.340b

Теплоизолированная труба

Изобретение относится к области теплоэнергетики, в частности к теплоизоляции трубопроводов, и может быть использовано в системах теплоснабжения и горячего водоснабжения. Теплоизолированная труба (1) содержит слой полых микросфер (2), который при помощи оболочки (3) из термоусадочного материала...
Тип: Изобретение
Номер охранного документа: 0002478866
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3426

Способ контроля сорбции поверхностно-активных веществ в системе теплоснабжения

Изобретение относится к области защиты систем теплоснабжения от коррозии и накопления отложений. В контуре системы теплоснабжения, содержащем теплообменную поверхность элемента системы теплоснабжения, размещают контрольный образец, имеющий шероховатость поверхности не более 10 мкм и выполненный...
Тип: Изобретение
Номер охранного документа: 0002478893
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3a7f

Устройство для защиты от коррозии и образования отложений на функциональных поверхностях трубопроводов и оборудования систем теплоснабжения

Изобретение относится к области защиты от коррозии и образования отложений на функциональных поверхностях трубопроводов систем теплоснабжения и водоснабжения. Устройство включает насосную станцию и блок эмульгирования поверхностно-активного вещества (ПАВ), при этом оно установлено на автомобиле...
Тип: Изобретение
Номер охранного документа: 0002480536
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4d41

Способ формирования защитного покрытия на поверхностях изделий из металлов и сплавов

Изобретение относится к трубопроводной транспортировке жидких сред. Способ заключается в формировании структурированной пленки посредством эмульсии молекул поверхностно-активных веществ (ПАВ), при этом в качестве ПАВ используют биологически и термически не разлагаемые соединения, химически...
Тип: Изобретение
Номер охранного документа: 0002485359
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4d42

Способ формирования молекулярного покрытия на поверхностях изделий из металлов и сплавов

Изобретение относится к трубопроводным системам, теплообменному оборудованию и позволяет улучшить гидродинамические и термодинамические характеристики поверхностей изделий из металлов и сплавов. Способ заключается в формировании на поверхностях структурированной пленки посредством создания...
Тип: Изобретение
Номер охранного документа: 0002485360
Дата охранного документа: 20.06.2013
27.11.2013
№216.012.85dc

Способ теплоизоляции трубопроводов и оборудования

Изобретение относится к области теплоизоляции трубопроводов и позволяет повысить механическую прочность покрытия. Способ включает подготовку подлежащей теплоизоляции поверхности очисткой ее от продуктов коррозии, нанесение теплоизоляционного слоя и полимеризацию полученного покрытия....
Тип: Изобретение
Номер охранного документа: 0002499946
Дата охранного документа: 27.11.2013
27.01.2014
№216.012.9cfe

Способ предотвращения обледенения проводов

Использование: в области электроэнергетики. Технический результат -повышение эффективности. Способ предотвращения обледенения электрического провода заключается в нанесении гидрофобного покрытия на провода, расположенные между точками его закрепления, провод подвергают механическому воздействию...
Тип: Изобретение
Номер охранного документа: 0002505896
Дата охранного документа: 27.01.2014
10.02.2015
№216.013.2650

Способ формирования нанокомпозитного покрытия на поверхности изделия

Изобретение относится к области машиностроения, к способам образования защитных покрытий на изделиях, имеющих тонкостенные и толстостенные части и выполненных из стали или титанового сплава. Проводят очистку изделий в вакуумной камере в среде инертного газа, затем осуществляют ионное травление,...
Тип: Изобретение
Номер охранного документа: 0002541261
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.3e15

Способ нанесения нанокомпозитного покрытия на поверхность изделия из жаропрочного никелевого сплава

Изобретение относится к области машиностроения, в частности к методу образования защитного нанокомпозитного покрытия на поверхности изделия из жаропрочного никелевого сплава, подверженного высоким температурам и механическим нагрузкам. Проводят очистку изделия и вакуумной камеры в среде...
Тип: Изобретение
Номер охранного документа: 0002547381
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.4785

Способ формирования жаростойкого нанокомпозитного покрытия на поверхности изделий из жаропрочных никелевых сплавов.

Изобретение относится к области машиностроения, в частности к методам образования защитных покрытий на деталях, подверженных высоким температурам и механическим нагрузкам. Способ включает очистку изделий и вакуумной камеры в тлеющем разряде в среде инертного газа, ионное травление и нанесение...
Тип: Изобретение
Номер охранного документа: 0002549813
Дата охранного документа: 27.04.2015
Показаны записи 1-10 из 22.
10.04.2013
№216.012.340b

Теплоизолированная труба

Изобретение относится к области теплоэнергетики, в частности к теплоизоляции трубопроводов, и может быть использовано в системах теплоснабжения и горячего водоснабжения. Теплоизолированная труба (1) содержит слой полых микросфер (2), который при помощи оболочки (3) из термоусадочного материала...
Тип: Изобретение
Номер охранного документа: 0002478866
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3a7f

Устройство для защиты от коррозии и образования отложений на функциональных поверхностях трубопроводов и оборудования систем теплоснабжения

Изобретение относится к области защиты от коррозии и образования отложений на функциональных поверхностях трубопроводов систем теплоснабжения и водоснабжения. Устройство включает насосную станцию и блок эмульгирования поверхностно-активного вещества (ПАВ), при этом оно установлено на автомобиле...
Тип: Изобретение
Номер охранного документа: 0002480536
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4d41

Способ формирования защитного покрытия на поверхностях изделий из металлов и сплавов

Изобретение относится к трубопроводной транспортировке жидких сред. Способ заключается в формировании структурированной пленки посредством эмульсии молекул поверхностно-активных веществ (ПАВ), при этом в качестве ПАВ используют биологически и термически не разлагаемые соединения, химически...
Тип: Изобретение
Номер охранного документа: 0002485359
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4d42

Способ формирования молекулярного покрытия на поверхностях изделий из металлов и сплавов

Изобретение относится к трубопроводным системам, теплообменному оборудованию и позволяет улучшить гидродинамические и термодинамические характеристики поверхностей изделий из металлов и сплавов. Способ заключается в формировании на поверхностях структурированной пленки посредством создания...
Тип: Изобретение
Номер охранного документа: 0002485360
Дата охранного документа: 20.06.2013
27.11.2013
№216.012.85dc

Способ теплоизоляции трубопроводов и оборудования

Изобретение относится к области теплоизоляции трубопроводов и позволяет повысить механическую прочность покрытия. Способ включает подготовку подлежащей теплоизоляции поверхности очисткой ее от продуктов коррозии, нанесение теплоизоляционного слоя и полимеризацию полученного покрытия....
Тип: Изобретение
Номер охранного документа: 0002499946
Дата охранного документа: 27.11.2013
27.01.2014
№216.012.9cfe

Способ предотвращения обледенения проводов

Использование: в области электроэнергетики. Технический результат -повышение эффективности. Способ предотвращения обледенения электрического провода заключается в нанесении гидрофобного покрытия на провода, расположенные между точками его закрепления, провод подвергают механическому воздействию...
Тип: Изобретение
Номер охранного документа: 0002505896
Дата охранного документа: 27.01.2014
10.02.2015
№216.013.2650

Способ формирования нанокомпозитного покрытия на поверхности изделия

Изобретение относится к области машиностроения, к способам образования защитных покрытий на изделиях, имеющих тонкостенные и толстостенные части и выполненных из стали или титанового сплава. Проводят очистку изделий в вакуумной камере в среде инертного газа, затем осуществляют ионное травление,...
Тип: Изобретение
Номер охранного документа: 0002541261
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.3e15

Способ нанесения нанокомпозитного покрытия на поверхность изделия из жаропрочного никелевого сплава

Изобретение относится к области машиностроения, в частности к методу образования защитного нанокомпозитного покрытия на поверхности изделия из жаропрочного никелевого сплава, подверженного высоким температурам и механическим нагрузкам. Проводят очистку изделия и вакуумной камеры в среде...
Тип: Изобретение
Номер охранного документа: 0002547381
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.4785

Способ формирования жаростойкого нанокомпозитного покрытия на поверхности изделий из жаропрочных никелевых сплавов.

Изобретение относится к области машиностроения, в частности к методам образования защитных покрытий на деталях, подверженных высоким температурам и механическим нагрузкам. Способ включает очистку изделий и вакуумной камеры в тлеющем разряде в среде инертного газа, ионное травление и нанесение...
Тип: Изобретение
Номер охранного документа: 0002549813
Дата охранного документа: 27.04.2015
27.06.2015
№216.013.5af7

Способ нанесения защитного покрытия на поверхность стального изделия

Изобретение относится к области машиностроения, в частности к защитным покрытиям стальных деталей, подверженных при работе нагрузкам при повышенных температурах и воздействию агрессивных сред. Способ включает очистку изделия и вакуумной камеры в среде инертного газа, ионное травление и...
Тип: Изобретение
Номер охранного документа: 0002554828
Дата охранного документа: 27.06.2015
+ добавить свой РИД