×
20.05.2014
216.012.c2e4

Результат интеллектуальной деятельности: СПОСОБ МНОГОКРАТНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА В ГОРИЗОНТАЛЬНОМ СТВОЛЕ СКВАЖИНЫ

Вид РИД

Изобретение

№ охранного документа
0002515651
Дата охранного документа
20.05.2014
Аннотация: Изобретение относится к нефтедобывающей промышленности и может быть применено для проведения многократного гидравлического разрыва пласта в зонально-неоднородных пластах. Способ включает определение направления естественной трещиноватости породы и ее максимального главного напряжения, изоляцию интервала разрыва в горизонтальном стволе скважины, проведение гидроразрыва в изолированном интервале, крепление трещины разрыва. Горизонтальную скважину с длиной горизонтальной части не менее 200 м выбирают, либо бурят в направлении, являющемся биссектрисой меньшего угла между вектором естественной трещиноватости и вектором максимального главного напряжения породы. При превышении длины L каждого интервала вдоль ствола скважины более 50 м на нем проводят N=L/100 ступеней гидроразрыва пласта, где N округляют до целого числа. Первоначально ступень гидроразрыва пласта проводят на интервале с наименьшей проницаемостью, жидкость гидроразрыва закачивают с расходом 1-3 м/мин, в качестве которой используют последовательно сшитый гель и линейный гель в соотношении 2:1 соответственно, а продавку жидкости с пропантом осуществляют технологической жидкостью с плотностью, равной плотности пластовой воды данного пласта. При этом трещины разрыва в каждом из интервалов крепят фракциями пропанта, которые выбирают из условия обеспечения равенства продолжительности выработки отдельных интервалов пласта с различной проницаемостью по теоретической зависимости. Технический результат заключается в повышении эффективности гидроразрыва зонально-неоднородных коллекторов. 2 ил.
Основные результаты: Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины, включающий определение направления естественной трещиноватости породы и ее максимального главного напряжения, в горизонтальном стволе скважины изоляцию интервала разрыва, проведение гидроразрыва в изолированном интервале, крепление трещины разрыва, отличающийся тем, что горизонтальную скважину с длиной горизонтальной части не менее 200 м выбирают, либо бурят в направлении, являющемся биссектрисой меньшего угла между вектором естественной трещиноватости и вектором максимального главного напряжения породы, при превышении длины L каждого интервала вдоль ствола скважины более 50 м на нем проводят N=L/100 ступеней гидроразрыва пласта, где N округляют до целого числа, первоначально ступень гидроразрыва пласта проводят на интервале с наименьшей проницаемостью, жидкость гидроразрыва закачивают с расходом 1-3 м/мин, в качестве которой используют последовательно сшитый гель и линейный гель в соотношении 2:1 соответственно, а продавку жидкости с пропантом осуществляют технологической жидкостью с плотностью, равной плотности пластовой воды данного пласта, при этом трещины многократного гидравлического разрыва пласта в каждом из интервалов крепят такими фракциями пропанта, которые выбирают из условия обеспечения равенства продолжительности выработки отдельных интервалов пласта с различной проницаемостью по формуле: ,где k - проницаемость пласта n-го интервала, м,r - радиус скважины, м,S - скин-фактор n-го интервала призабойной зоны пласта, доли ед.,r - радиус контура питания, м.

Изобретение относится к нефтедобывающей промышленности и может найти применение при проведении многократного гидравлического разрыва пласта (ГРП) в зонально-неоднородных карбонатных и терригенных пластах.

Известен способ многократного гидравлического разрыва горизонтального ствола скважины, включающий формирование трещин последовательно в различных интервалах продуктивного пласта, вскрытого горизонтальным стволом скважины, путем установки пакера, подачи жидкости гидроразрыва через фильтр, установленный в каждой из соответствующих каждому из этих интервалов частей горизонтального ствола с изоляцией остальных его частей. Установку пакера осуществляют в вертикальном стволе скважины, первоначально гидроразрыв осуществляют в интервале пласта с наибольшей проницаемостью подачей жидкости - носителя с пропантом с установкой «головы» пропантовой пробки, перекрывающей соответствующий участок горизонтального ствола, между фильтрами, с указанной изоляцией путем формирования полимерной корки на соответствующих фильтрах, повторяют указанную операцию на каждом из остальных интервалов последовательно по степени снижения их проницаемости с предварительным удалением корки с соответствующего этому интервалу фильтра, причем полимерную корку формируют путем подачи в скважину биополимерного состава, а ее удаление осуществляют жидкостью-растворителем с содержанием разрушителя геля 0,6-1,2 кг/м3 воды (патент РФ №2362010, кл. Е21В 43/267, опубл. 20.07.2009).

Недостатком способа является то, что при разработке залежи нефти горизонтальными скважинами с проведением многократного гидравлического разрыва пласта не учитывается зональная неоднородность, что приводит к низкой нефтеотдаче.

Наиболее близким к предложенному изобретению по технической сущности является способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины, включающий спуск пакера в скважину на колонне труб, с последующей его посадкой в скважине, формирование трещин напротив фильтров последовательно в различных интервалах продуктивного пласта, вскрытого горизонтальным стволом подачей жидкости гидроразрыва через фильтр, установленный в каждой из соответствующих каждому из этих интервалов частей горизонтального ствола с изоляцией остальных его частей. Определяют направление горизонтального ствола относительно направления минимального главного напряжения, затем изолируют интервал, подлежащий гидравлическому разрыву пласта (ГРП) от остальных участков горизонтального ствола посадкой сдвоенных пакеров, затем открывают клапан, размещенный внутри колонны труб между сдвоенными пакерами напротив фильтра, если направление горизонтального ствола параллельно направлению минимального главного напряжения, то гидравлический разрыв пласта производят закачкой разрывной жидкости с образованием поперечных трещин относительно горизонтального ствола, с последующим креплением поперечных трещин закачкой жидкости с алюмосиликатным пропантом, с постепенным увеличением его фракции от 20/40 меш. до 16/30 меш., если направление горизонтального ствола перпендикулярно направлению минимального главного напряжения, то гидравлический разрыв пласта производят закачкой разрывной жидкости с образованием горизонтальных трещин относительно горизонтального ствола, с последующим креплением горизонтальных трещин закачкой жидкости с облегченным пропантом с фракцией 20/40 меш., по окончании ГРП скважину закрывают на технологическую паузу в течение 0,5 ч, после чего на устье скважины на колонну труб устанавливают регулируемый штуцер и производят излив отработанной пропантной жидкости из пласта по колонне труб на устье скважины до закрытия клапана, при этом в процессе излива регулированием штуцера добиваются того, чтобы давление в колонне труб стало на 2-3 МПа меньше давления при открытии скважины после технологической паузы, после чего производят распакеровку пакера и перемещают колонну труб в другую часть горизонтального ствола, и вышеописанный процесс по проведению ГРП в горизонтальном стволе скважины повторяют в зависимости от количества интервалов горизонтального ствола, оснащенных фильтрами в различных его частях (патент РФ №2472926, кл. Е21В 43/267, опубл. 20.01.2013 - прототип).

Недостатком способа является невысокая эффективность гидроразрыва, проявляющаяся в невысокой нефтеотдаче залежи с зонально-неоднородным коллектором, разрабатываемой после проведения гидроразрыва.

В предложенном изобретении решается задача повышения эффективности гидроразрыва, выражающаяся в повышении нефтеотдачи залежи с зонально-неоднородным коллектором.

Задача решается тем, что в способе многократного гидравлического разрыва пласта в горизонтальном стволе скважины, включающем определение направления естественной трещиноватости породы и ее максимального главного напряжения, в горизонтальном стволе скважины изоляцию интервала разрыва, проведение гидроразрыва в изолированном интервале, крепление трещины разрыва, согласно изобретению горизонтальную скважину с длиной горизонтальной части не менее 200 м выбирают, либо бурят в направлении, являющемся биссектрисой меньшего угла между вектором естественной трещиноватости и вектором максимального главного напряжения породы, при превышении длины Ln каждого интервала вдоль ствола скважины более 50 м на нем проводят N=Ln/100 ступеней гидроразрыва пласта, где N округляют до целого числа, первоначально ступень гидроразрыва пласта проводят на интервале с наименьшей проницаемостью, жидкость гидроразрыва закачивают с расходом 1-3 м3/мин, в качестве которой используют последовательно сшитый гель и линейный гель в соотношении 2:1 соответственно, а продавку жидкости с пропантом осуществляют технологической жидкостью с плотностью, равной плотности пластовой воды данного пласта, при этом трещины многократного гидравлического разрыва пласта в каждом из интервалов крепят такими фракциями пропанта, которые выбирают из условия обеспечения равенства продолжительности выработки отдельных интервалов пласта с различной проницаемостью по формуле:

,

где kn - проницаемость пласта n-ого интервала, м2,

rc - радиус скважины, м,

Sn - скин-фактор n-ого интервала призабойной зоны пласта, доли ед.,

rk - радиус контура питания, м.

Сущность изобретения

На нефтеотдачу зонально-неоднородной нефтяной залежи существенное влияние оказывает время работы скважин до полного обводнения и равномерная выработка запасов нефти. Существующие технические решения не в полной мере позволяют выполнить данную задачу. В предложенном изобретении решается задача повышения нефтеотдачи зонально-неоднородной нефтяной залежи посредствам максимально длительной работы скважин до полного обводнения, выравнивания темпов отборов и равномерной выработки запасов нефти. Задача решается следующим образом.

На фиг.1 приведена в плане схема расположения горизонтальной скважины с проведением многократного ГРП. Принятые обозначения: HW- горизонтальная скважина, Sтр - направление естественной трещиноватости, Sгрп - направление трещин многократного ГРП, δmax - направление максимального главного напряжения пород, δmin - направление минимального главного напряжения пород.

На фиг.2 представлена схема участка пласта с горизонтальной скважиной и проведением многократного ГРП. Принятые обозначения: 1 - продуктивный пласт, 2 - горизонтальная скважина, 3-6 - интервалы пласта с различной проницаемостью, 3'-6' - трещины ГРП, 7 - не коллектор, 8 - хвостовик, 9 - фильтры, 10 - водонабухающие пакеры, 11 - насосно-компрессорная труба, 12 - сдвоенные пакеры, 13 - радиальные отверстия гидравлического клапана, 14 - гидравлический клапан, 15 - поршневой и пружинный механизм.

Способ реализуют следующим образом.

На участке пласта 1 (фиг.1) залежи, продуктивные пласты которого представлены зонально-неоднородными карбонатными или терригенными отложениями, определяют направление минимального главного напряжения породы δmin и, соответственно, перпендикулярно ему направление максимального главного напряжения породы δmax. Одним из способов определения является проведение геофизических исследований (ГИС), методом волнового акустического каротажа (например, прибором ВАК-8) на соседних скважинах. Также проводят 3Д-сейсмические исследования и определяют преимущественное направление естественных трещин Sтр.

Горизонтальную скважину (ГС) HW с длиной горизонтальной части ствола не менее 200 м для многократного ГРП выбирают, либо бурят в направлении, являющемся биссектрисой меньшего угла между вектором естественной трещиноватости Sтр и вектором максимального главного напряжения породы δmax. Из опыта проведения многократного ГРП известно, что трещины формируются перпендикулярно направлению минимального главного напряжения пород δmin, т.е. параллельно направлению максимального главного напряжения пород δmax. Расчеты многократного ГРП показали, что для различных геолого-физических характеристик пласта, при расположении горизонтального ствола таким образом, т.е. между меньшим углом направления естественных трещин и трещин, получаемых в результате многократного ГРП, повышается длительность работы скважин до полного обводнения, т.к. вода по трещинам проходит максимальный путь. Также согласно расчетам при длине горизонтального ствола менее 200 м эффективность многократного ГРП снижается, т.к. начинает присутствовать эффект интерференции трещин, что приводит к необходимости проведения обычного ГРП вместо многократного.

В продуктивном зонально-неоднородном пласте 1 (фиг.2) согласно вышеперечисленным условиям бурят горизонтальную скважину 2. Далее проводят ГИС в открытом стволе скважины, по результатам которых определяют участки коллектора и не коллектора, их проницаемость и насыщенность.

Например, в результате исследований, получили 4 интервала (3, 4, 5, 6) продуктивной части пласта 1 вдоль ГС 2. Между интервалами 3 и 4, 4 и 5 есть участки не коллектора 7. В результате интерпретации ГИС также установили, что средняя проницаемость интервалов 3, 4, 5, 6 соответственно k3, k4, k5, k6. Определение проницаемости также возможно проводить на отобранном керне, в этом случае при бурении ГС необходимо закладывать в конструкцию бурильной колонны керноотборник.

При превышении длины Ln каждого интервала вдоль ствола скважины более 50 м на нем проводят N=Ln/100 ступеней гидроразрыва пласта, где N округляют до целого числа. Так, например, если длина интервала равна 250 м, то необходимо на нем проводить N=250/100≈3 ступени многократного ГРП.

На основе этих данных конструируют и спускают в не обсаженный горизонтальный ствол хвостовик 8 с фильтрами 9, расположенными в нефтенасыщенных интервалах 3, 4, 5, 6 пласта 1. Хвостовик 8 также оборудуют водонабухающими пакерами 10 (например, компании «ТАМ»), которые располагают на интервалах ствола, вскрывшего не коллектор 7, а также в местах, где проницаемость коллектора отличается (уменьшается или увеличивается). Также при проведении на одном из интервалов нескольких ступеней ГРП, их также отделяют водонабухающими пакерами.

Далее приступают к проведению ГРП в каждом из интервалов, начиная с того, где минимальная проницаемость коллектора, т.к. необходимо подбирать для такого участка пропант с фракцией, обеспечивающей необходимую максимальную проницаемость трещины, по сравнению с интервалами с большей проницаемостью коллектора. В результате многократного ГРП получают трещины 3', 4', 5', 6'.

Рассмотрим проведение этапа многократного ГРП на одном из интервалов, например 5-м. Для остальных интервалов процесс ГРП аналогичный.

К интервалу 5 пласта спускают на колонне насосно-компрессорных труб (НКТ) 11 сдвоенные пакеры 12, которые размещают до и после радиальных отверстий 13, гидравлического клапана 14 и фильтра 9. Пакеры должны обеспечивать герметичное отсечение интервала горизонтального ствола скважины 2 с фильтром 9.

Вместе с радиальными отверстиями 13 расположен гидравлический клапан 14, который при нагнетании в НКТ жидкости с устья скважины перемещается посредствам поршневого и пружинного механизма 15 вперед и назад вдоль оси НКТ 11 при увеличении и уменьшении давления закачки. При этом радиальные отверстия 13 открываются при давлении закачки более определенного значения. При меньших давлениях закачки гидравлический клапан 14 обеспечивает герметичное перекрытие радиальных отверстий 13.

Спуск НКТ 11 прекращается тогда, когда сдвоенные пакеры 12 окажутся перед и за фильтром 9.

Рассчитывают объем жидкости гидроразрыва, в качестве которой используют сшитый гель и линейный гель в соотношении 2:1 соответственно. Например, принимают объем сшитого геля - 40 м3, линейного геля - 20 м3. Закачивают жидкость гидроразрыва (сшитый гель) с расходом 1-3 м3/мин. Такая скорость расхода, согласно расчетам, обеспечивает эффективное создание трещин, которую выбирают в зависимости от глубины залегания коллектора. Чем глубже залегает коллектор, тем больший расход требуется.

По манометру фиксируют рост давления закачки. О разрыве породы пласта и образования трещины 5' свидетельствует падение давления закачки и увеличение приемистости пласта. Так через некоторое время непрерывной закачки, давление резко падает на 20-30%, а приемистость пласта увеличивается. При этом в процессе образования трещины 5' в колонну труб 8 скважины 2 было закачано гелеобразной жидкости разрыва (сшитого геля) в объеме 30 м3.

Далее оставшийся объем сшитого геля 10 м3 закачивают с добавлением пропанта, например, фракции 12/20 меш (выбор пропанта для ГРП на первом участке производят так же как и при одиночном ГРП в вертикальных скважинах, используют известные пропанты, например, песок фирмы «Боровичевский Комбинат Огнеупоров») с расходом 1,5 м3/мин. Для лучшего крепления производят закачку различной плотности пропанта начиная от 200 кг/м3, который заполняет отдаленные зоны трещины, и заканчивая 1000 кг/м3, заполняющий ближние зоны трещины от скважины.

Не прерывая процесса ГРП, переходят на закачку линейного геля с пропантом с расходом 2 м3/мин в объеме 20 м3. Для лучшего крепления плотность пропанта также увеличивают, как при закачке сшитого геля.

После закачки последней стадии линейного геля с пропантом концентрации 1000 кг/м3 производят его продавку в пласт технологической жидкостью плотностью, равной плотности пластовой воды данного пласта, которая, согласно исследованиям, эффективнее менее или более плотных жидкостей.

Производят выдержку в течение 10 мин, т.е. до спада давления закачки до 11,0 МПа. Далее распакеровывают сдвоенные пакеры и извлекают их с колонной труб 11 из скважины.

Далее микросейсмическими исследованиями определяют параметры трещины (толщина, длина, азимут, асимметрия).

Трещины ГРП создают для каждого интервала (3, 4, 5, 6) определенной длины и проницаемости с целью обеспечить равенство притоков по каждой трещине.

В общем случае для n-го интервала зонально-неоднородного пласта по формуле Дюпюи с учетом скин-фактора имеем:

где qn - дебит жидкости (нефти) к n-му интервалу скважины, м3/с,

kn - проницаемость пласта n-го интервала, м2,

h - мощность пласта, м,

ΔР - депрессия (между давлением в пласте на контуре питания и в скважине), Па,

µ - вязкость нефти в пластовых условиях, Па·с,

rk - радиус контура питания, м,

rc - радиус скважины, м,

Sn - скин-фактор n-го интервала призабойной зоны пласта, доли ед.

Необходимо отметить допущение. Для горизонтальных скважин вместо формулы Дюпюи используют формулы Джоши, Борисова, Григулецкого и др., однако при проведении многократного ГРП, на каждом из интервалов, приток можно рассматривать как к единичной вертикальной скважине, т.к. жидкость движется в основном по трещине ГРП.

Записав уравнение (1) для каждого из интервалов и приравняв их правые части, получим соотношение, определяющее равенство притоков к каждому из интервалов:

Выражение для скин-фактора горизонтальной скважины в однородном пласте:

где l - длина ГС, м,

- коэффициент анизотропии пласта, доли ед.,

kв - проницаемость пласта по вертикали, м2,

kr - проницаемость пласта по горизонтали, м2,

ks - проницаемость призабойной зоны пласта, м2,

rs - радиус призабойной зоны пласта, м.

Так как при ГРП трещины формируют в призабойной зоне, проницаемость их намного выше проницаемости пласта и приток происходит не по всей длине фильтра, а в основном только в месте трещины, т.е. точечный сток, то формулу (3) можно переписать для скин-фактора n-го интервала, где приток к скважине в призабойной зоне происходит только по трещинам и множителем βh/ln пренебрегают:

где kn - проницаемость пласта n-го интервала, м2,

kmp n - проницаемость трещины ГРП на n-м интервале, м2,

rmp n - полудлина трещин ГРП на n-м интервале, м.

Микросейсмическими исследованиями устанавливают полудлину трещины ГРП на 5 интервале rmp 5. Для фракции пропанта 12/20 меш проницаемость при пластовом давлении составляет kmp 5 (подбирают по известным графикам зависимости проницаемости от давления для различных фракций, например, графикам компании «Шлюмберже»). Тогда по формуле (4) находят значение 85.

Из формулы (2), зная скин-фактор S5, рассчитывают скин-фактор других интервалов:

Из формулы (4) видно, что переменные значения при расчете скин-факторов Sn - это проницаемость трещин и полудлина трещин ГРП. Возможно три случая:

1) закачка в каждую трещину пропанта различной фракции при создании трещин одинаковой длины,

2) закачка пропанта одинаковой фракции, при этом трещины создаются различной длины, исходя из пропорциональности объемов и скорости закачки жидкости гидроразрыва с пропантом, полученных при проведении ГРП на 5-м участке,

3) комбинация проницаемости и длины трещин.

Расчеты показали, что в реальных условиях создать и контролировать систему по п.1 и 2 довольно сложно. Поэтому задаются одинаковой длиной и шириной трещин, что можно получить при одинаковых объемах и скорости закачки жидкости гидроразрыва с пропантом. Тогда из пропорциональности можно записать:

Действительно, для более отрицательного скин-фактора, т.е. «улучшения» призабойной зоны пласта, необходимо создавать при ГРП трещины с большей проницаемостью, что подтверждает формула (6).

Проницаемость трещин остальных интервалов рассчитывают из формулы (6):

Далее по полученным значениям проницаемости подбирают фракции пропанта и приступают к проведению ГРП на следующем интервале. Процесс создания трещин на 3, 4, 6 интервалах аналогичен процессу ГРП на 5 интервале.

При выработке запасов нефти происходит прорыв воды к горизонтальной добывающей скважине 2. При обводненности боле 98% добывающей скважины ее останавливают, проводят геофизические исследования, определяют интервалы обводнения по горизонтальному стволу. Далее отсекают обводнившиеся интервалы водонабухающими пакерами 10 и вновь пускают скважину в работу.

Разработку ведут до полной экономически рентабельной выработки участка.

Результатом внедрения данного способа является повышение степени нефтеизвлечения.

Пример конкретного выполнения способа

На участке пласта 1 (фиг.1) массивной залежи, продуктивные пласты которого представлены порово-трещинными зонально-неоднородными карбонатными отложениями (глубина пласта 1100 м, начальное пластовое давление 12 МПа, пласт чисто нефтенасыщенный, мощностью 20 м), определяют направление минимального главного напряжения пород δmin прибором ВАК-8 на соседних скважинах, а также проводят 3Д-сейсмику и определяют преимущественное направление естественных трещин Sтр. В результате исследований получили направление δmin и соответственно перпендикулярно ему δmax - северо-восточное, а направление Sтр - северо-западное. Угол между Sтр и δmax составил 60° или 120°. Выбирают меньший угол и бурят в направлении, являющемся биссектрисой данного угла, горизонтальную скважину HW длиной горизонтальной части 300 м. Проводят ГИС в открытом стволе скважины, по результатам которых определяют интервалы коллектора и не коллектора, их проницаемость и насыщенность.

Так, в результате исследований, получили 4 интервала (3, 4, 5, 6) (фиг.2) продуктивной части пласта 1 вдоль ГС 2. Между интервалами 3 и 4, а также 4 и 5 есть участки не коллектора 7.

Длины каждого из интервалов 3, 4, 5, 6 составляют не более 150 м, поэтому на каждом из них планируют по одной ступени ГРП.

В результате интерпретации ГИС также установили, что средняя проницаемость интервалов 3, 4, 5, 6 соответственно k3=55 мД, k4=34 мД, k5=27 мД, k6=48 мД.

На основе этих данных конструируют и спускают в не обсаженный горизонтальный ствол хвостовик 8 с фильтрами 9, расположенными в нефтенасыщенных интервалах 3, 4, 5, 6 пласта 1. Хвостовик 8 также оборудуют водонабухающими пакерами 10, которые располагают на интервалах ствола, вскрывшего не коллектор 7, а также в местах, где проницаемость коллектора отличается (уменьшается или увеличивается).

Далее приступают к проведению ГРП в каждом из интервалов, в результате которого получают трещины 3', 4', 5', 6'.

Процесс многократного ГРП начинают на интервале 5 с наименьшей проницаемостью. Для остальных участков процесс ГРП аналогичный.

К интервалу 5 пласта 1 спускают на колонне насосно-компрессорных труб (НКТ) 11 диаметром 89 мм сдвоенные пакеры 12, которые размещают до и после радиальных отверстий 13, гидравлического клапана 14 и фильтра 9. Пакеры должны обеспечивать герметичное отсечение интервала горизонтального ствола скважины 2 с фильтром 9.

В месте с радиальными отверстиями 13 расположен гидравлический клапан 14, который при нагнетании в НКТ жидкости с устья скважины перемещается посредствам поршневого и пружинного механизма 15 вперед и назад вдоль оси НКТ 11 при увеличении и уменьшении давления закачки. При этом радиальные отверстия 13 открываются при давлении закачки более 12 МПа. При давлении закачки менее 12 МПа гидравлический клапан 14 обеспечивает герметичное перекрытие радиальных отверстий 13.

Спуск НКТ 11 прекращается тогда, когда сдвоенные пакеры 12 окажутся перед и за фильтром 9.

Рассчитывают объем жидкости гидроразрыва, в качестве которой используют сшитый гель и линейный гель в соотношении 2:1 соответственно. Принимают объем сшитого геля - 40 м3, линейного геля - 20 м3. Закачивают жидкость гидроразрыва (сшитый гель) с расходом 1,5 м3/мин. По манометру фиксируют рост давления закачки. О разрыве породы пласта и образовании трещины 5' свидетельствует падение давления закачки и увеличение приемистости пласта. Так, через 20 мин непрерывной закачки при достижении 35 МПа давление резко падает на 25% до 26 МПа, а приемистость пласта увеличивается на 30% - до 2,6 м3/мин. При этом в процессе образования трещины 5' в колонну труб 8 скважины 2 было закачано гелеобразной жидкости разрыва (сшитого геля) в объеме 30 м3.

Далее оставшийся объем сшитого геля 10 м3 закачивают с добавлением пропанта фракции 12/20 с расходом 1,5 м3/мин. Для лучшего крепления производят закачку различной плотности пропанта, начиная от 200 кг/м3, который заполняет отдаленные зоны трещины, и заканчивая 1000 кг/м3, заполняющий ближние зоны трещины от скважины.

Не прерывая процесса ГРП, переходят на закачку линейного геля с пропантом с расходом 2 м3/мин в объеме 20 м3. Для лучшего крепления плотность пропанта также увеличивают, как при закачке сшитого геля.

После закачки последней стадии линейного геля с пропантом концентрации 1000 кг/м3 производят его продавку в пласт технологической жидкостью плотностью 1130 кг/м3, равной плотности пластовой воды данного пласта.

Производят выдержку в течение 10 мин, т.е. до спада давления закачки до 11,0 МПа. Далее распакеровывают сдвоенные пакеры и извлекают их с колонной труб 11 из скважины.

Микросейсмическими исследованиями определяют параметры трещины (толщина, длина, азимут, асимметрия). Было установлено, что полудлина трещины ГРП на интервале 5 составляет rmp 5=8 м. Для фракции пропанта 12/20 меш проницаемость при пластовом давлении составляет kmp 5=1000 Д. Тогда по формуле (4) получают с учетом того, что радиус скважины rc=0,168 м:

Далее, зная скин-фактор S5, можно рассчитать скин-фактор других интервалов по формуле (5), с учетом того, что радиус контура питания rk=150 м:

Проницаемость трещин интервалов 3, 4, 6 определяют по формуле (7):

Далее по полученным значениям проницаемости подбирают фракции пропанта, выбирают как и на 5-м интервале песок:

- для 3-го интервала проницаемости 212 Д соответствует фракция 30/40 меш,

- для 4-го интервала проницаемости 803 Д соответствует фракция 16/30 меш,

- для 6-го интервала проницаемости 409 Д соответствует фракция 20/40 меш.

Процесс создания трещин на 3, 4, 6 интервала аналогичен процессу ГРП на 5 интервале.

В процессе выработки запасов нефти происходит прорыв воды к горизонтальной добывающей скважине 2. При обводненности добывающей скважины более 98% ее останавливают, проводят геофизические исследования, определяют интервалы обводнения по горизонтальному стволу. Далее отсекают обводнившиеся интервалы водонабухающими пакерами 10 и вновь пускают скважину в работу.

Разработку ведут до полной экономически рентабельной выработки участка. В результате за время разработки, которое ограничили обводнением добывающей скважины до 98%, либо достижением минимально рентабельного дебита нефти по скважине 0,5 т/сут, было добыто с участка 104,4 тыс. м3 нефти, коэффициент извлечения нефти составил 0,320. По варианту без учета различной проницаемости в создаваемых при многократном ГРП трещинах, при прочих равных условиях, было добыто 88,7 тыс. м3 нефти, коэффициент извлечения нефти составил 0,272, основной причиной меньшего накопленного отбора стало более раннее обводнение скважины. Прирост коэффициента извлечения нефти по предлагаемому способу составил 0,048 или 17,6%.

Предлагаемый способ, за счет максимально длительной работы скважины до полного обводнения и за счет выравнивания темпов отборов и равномерной выработки запасов нефти в зонально-неоднородных пластах при разработке их горизонтальными скважинами с проведением многократного ГРП, позволяет увеличить нефтеотдачу продуктивного пласта и, как следствие, добычу нефти на 15-20%.

Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины, включающий определение направления естественной трещиноватости породы и ее максимального главного напряжения, в горизонтальном стволе скважины изоляцию интервала разрыва, проведение гидроразрыва в изолированном интервале, крепление трещины разрыва, отличающийся тем, что горизонтальную скважину с длиной горизонтальной части не менее 200 м выбирают, либо бурят в направлении, являющемся биссектрисой меньшего угла между вектором естественной трещиноватости и вектором максимального главного напряжения породы, при превышении длины L каждого интервала вдоль ствола скважины более 50 м на нем проводят N=L/100 ступеней гидроразрыва пласта, где N округляют до целого числа, первоначально ступень гидроразрыва пласта проводят на интервале с наименьшей проницаемостью, жидкость гидроразрыва закачивают с расходом 1-3 м/мин, в качестве которой используют последовательно сшитый гель и линейный гель в соотношении 2:1 соответственно, а продавку жидкости с пропантом осуществляют технологической жидкостью с плотностью, равной плотности пластовой воды данного пласта, при этом трещины многократного гидравлического разрыва пласта в каждом из интервалов крепят такими фракциями пропанта, которые выбирают из условия обеспечения равенства продолжительности выработки отдельных интервалов пласта с различной проницаемостью по формуле: ,где k - проницаемость пласта n-го интервала, м,r - радиус скважины, м,S - скин-фактор n-го интервала призабойной зоны пласта, доли ед.,r - радиус контура питания, м.
СПОСОБ МНОГОКРАТНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА В ГОРИЗОНТАЛЬНОМ СТВОЛЕ СКВАЖИНЫ
СПОСОБ МНОГОКРАТНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА В ГОРИЗОНТАЛЬНОМ СТВОЛЕ СКВАЖИНЫ
Источник поступления информации: Роспатент

Показаны записи 411-420 из 649.
01.03.2019
№219.016.cce3

Способ сооружения и эксплуатации паронагнетательной скважины

Изобретение относится к нефтяной промышленности, в частности к области добычи нефти тепловыми методами, и может быть использовано для нагнетания теплоносителя в продуктивный пласт. Способ включает строительство скважины, обсаженной колонной обсадных труб, спуск в нее колонны...
Тип: Изобретение
Номер охранного документа: 0002339809
Дата охранного документа: 27.11.2008
01.03.2019
№219.016.cd13

Способ подготовки сероводородсодержащей нефти

Изобретение относится к нефтедобывающей промышленности, в частности к способам подготовки сероводородсодержащей нефти для транспортирования и разделения. Способ включает многоступенчатую сепарацию исходной нефти, последующее обезвоживание и обессоливание, отдувку углеводородным газом в...
Тип: Изобретение
Номер охранного документа: 0002305123
Дата охранного документа: 27.08.2007
01.03.2019
№219.016.cd64

Глубинно-насосная установка для подъема продукции по эксплуатационной колонне скважины

Изобретение относится к нефтедобывающей промышленности и может быть использовано для эксплуатации добывающих скважин, в том числе с высоковязкой продукцией, а также в скважинах малого диаметра. Глубинно-насосная установка включает штанговый насос, содержащий цилиндр, приемный клапан, плунжер с...
Тип: Изобретение
Номер охранного документа: 0002361115
Дата охранного документа: 10.07.2009
01.03.2019
№219.016.ce3c

Способ строительства скважин многопластового нефтяного месторождения

Изобретение относится к нефтяной промышленности, в частности к строительству нефтяных и газовых скважин. Способ строительства скважины многопластового нефтяного месторождения включает бурение скважины до проектной глубины со вскрытием неоднородных пластов пашийского горизонта, геофизические...
Тип: Изобретение
Номер охранного документа: 0002427703
Дата охранного документа: 27.08.2011
01.03.2019
№219.016.cf00

Способ гидроразрыва пласта

Изобретение относится к нефтяной промышленности и может найти применение при гидравлическом разрыве пласта. Обеспечивает повышение успешности проведения гидроразрыва. Сущность изобретения: способ включает предварительную закачку материала в пласт и проведение гидроразрыва пласта. Согласно...
Тип: Изобретение
Номер охранного документа: 0002459947
Дата охранного документа: 27.08.2012
01.03.2019
№219.016.cf5c

Способ исследования горизонтальной скважины

Изобретение относится к нефтяной промышленности и может быть использовано при исследованиях горизонтальных скважин. Техническим результатом изобретения является повышение оперативности исследований. Для этого размещают в скважине колонны труб с заглушенным с торца перфорированным участком в...
Тип: Изобретение
Номер охранного документа: 0002406822
Дата охранного документа: 20.12.2010
01.03.2019
№219.016.cfa7

Способ строительства скважины

Изобретение относится к нефтяной промышленности и может найти применение при проходке бурением интервалов пластов с неустойчивыми горными породами. При строительстве скважины проводят бурение и крепление направления, кондуктора и промежуточной или эксплуатационной колонны. При бурении...
Тип: Изобретение
Номер охранного документа: 0002439274
Дата охранного документа: 10.01.2012
01.03.2019
№219.016.cfab

Способ строительства куста скважин

Изобретение относится к нефтяной промышленности и может найти применение при строительстве куста скважин. При строительстве куста скважин проводят заложение устьев добывающих и нагнетательных скважин в виде куста или батареи, бурение в массиве горных пород и крепление стволов вертикальных,...
Тип: Изобретение
Номер охранного документа: 0002439273
Дата охранного документа: 10.01.2012
01.03.2019
№219.016.cfff

Способ очистки сточной воды методом сепарации

Изобретение относится к нефтяной промышленности и может найти применение при очистке высокосернистых нефтегазосодержащих сточных вод от эмульгированной нефти, нефтепродуктов и твердых взвешенных частиц. Сточную воду из первого отстойника 1 подают во второй дополнительный отстойник 2,...
Тип: Изобретение
Номер охранного документа: 0002446109
Дата охранного документа: 27.03.2012
01.03.2019
№219.016.d003

Способ транспортирования высокообводненной продукции скважин нефтяного месторождения

Изобретение относится к нефтяной и газовой промышленности и применяется при транспортировке высокообводненной продукции скважин нефтяных месторождений с помощью дожимных насосных станций (ДНС) на объекты подготовки нефти. Проводят заполнение резервуаров и периодическую откачку жидкости из...
Тип: Изобретение
Номер охранного документа: 0002446317
Дата охранного документа: 27.03.2012
Показаны записи 411-420 из 475.
29.03.2019
№219.016.f200

Способ разработки нефтяной залежи

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи. Обеспечивает повышение межремонтного периода нагнетательных скважин за счет снижения кольматации призабойной зоны твердыми взвешенными частицами. Сущность изобретения: ведут закачку рабочего...
Тип: Изобретение
Номер охранного документа: 0002381353
Дата охранного документа: 10.02.2010
29.03.2019
№219.016.f365

Способ разработки нефтяной залежи

Предложение относится к нефтегазодобывающей промышленности, а именно к разработке нефтяных месторождений, сложенных мощной толщей трещинных и трещинно-кавернозных водонасыщенных карбонатных пластов, осложненных низкими коллекторскими свойствами пласта, высокой вязкостью нефти, а также может...
Тип: Изобретение
Номер охранного документа: 0002309248
Дата охранного документа: 27.10.2007
29.03.2019
№219.016.f45b

Способ строительства скважины

Изобретение относится к нефтяной промышленности и может найти применение при строительстве скважины. При строительстве скважины выполняют бурение направления, кондуктора и основного ствола скважины, спуск и крепление обсадных и эксплуатационных колонн. Направление бурят долотом диаметром 490 мм...
Тип: Изобретение
Номер охранного документа: 0002410514
Дата охранного документа: 27.01.2011
29.03.2019
№219.016.f45c

Способ свабирования скважины

Изобретение относится к нефтяной промышленности и может найти применение при свабировании скважин. Обеспечивает исключение водопроявления при свабировании за счет недопущения критического перепада давления на цементное кольцо в затрубном пространстве скважины и ограничения величины максимальной...
Тип: Изобретение
Номер охранного документа: 0002410532
Дата охранного документа: 27.01.2011
29.03.2019
№219.016.f490

Способ восстановления герметичности эксплуатационной колонны скважины

Изобретение относится к нефтяной и газовой промышленности и может найти применение при ликвидации негерметичности обсадной колонны в скважине, изоляции водопритоков и межпластовых перетоков в скважине. В способе восстановления герметичности эксплуатационной колонны скважины ведут...
Тип: Изобретение
Номер охранного документа: 0002412333
Дата охранного документа: 20.02.2011
29.03.2019
№219.016.f499

Способ строительства скважины

Изобретение относится к нефтяной промышленности и может найти применение при проходке бурением интервалов пластов с неустойчивыми горными породами. Способ строительства скважины включает бурение скважины в ламинарном режиме прокачки промывочной жидкости по кольцевому пространству ствола...
Тип: Изобретение
Номер охранного документа: 0002411336
Дата охранного документа: 10.02.2011
29.03.2019
№219.016.f608

Способ кислотной обработки призабойной зоны пласта

Изобретение относится к нефтяной промышленности. Технический результат - повышение эффективности обработки призабойной зоны скважины и увеличение продуктивности скважины за счет увеличение охвата кислотной обработкой вскрытого пласта. Способ кислотной обработки призабойной зоны пласта включает...
Тип: Изобретение
Номер охранного документа: 0002451176
Дата охранного документа: 20.05.2012
29.03.2019
№219.016.f726

Способ разработки неоднородного нефтяного пласта

Изобретение относится к разработке нефтяных месторождений и может использоваться при разработке нефтяной залежи с неоднородными по проницаемости заводненными пластами для регулирования профиля приемистости нагнетательной скважины и ограничения водопритоков в добывающей скважине. Способ...
Тип: Изобретение
Номер охранного документа: 0002431741
Дата охранного документа: 20.10.2011
30.03.2019
№219.016.f9ac

Способ повышения эффективности разработки слабопроницаемых нефтяных коллекторов

Изобретение относится к нефтедобывающей промышленности и может быть применено для разработки слабопроницаемых неоднородных нефтяных коллекторов горизонтальными скважинами с многостадийным гидроразрывом пласта. Способ включает бурение горизонтальных скважин с отбором керна в продуктивном пласте,...
Тип: Изобретение
Номер охранного документа: 0002683453
Дата охранного документа: 28.03.2019
30.03.2019
№219.016.f9d9

Способ подбора оптимального режима работы нефтяной скважины

Изобретение относится к нефтедобывающей промышленности и может найти применение при эксплуатации нефтяных скважин в неоднородных коллекторах. Обеспечивает повышение темпов отбора нефти из продуктивного пласта. Способ включает остановку скважины, спуск в скважину глубинных дебитомеров и...
Тип: Изобретение
Номер охранного документа: 0002683435
Дата охранного документа: 28.03.2019
+ добавить свой РИД