×
10.04.2014
216.012.b877

СПОСОБ ФОРМИРОВАНИЯ БИОСОВМЕСТИМОЙ ПОЛИМЕРНОЙ СТРУКТУРЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к медицине, а именно к травматологии и к биотехнологии, и может быть использовано для формирования биосовместимой полимерной структуры в костных тканях. Для этого обеспечивают пункционный доступ к заполняемой полости в костных тканях. Далее вводят в полость полимерную гелеобразную смесь, включающую 55-97.7 весовых % биосовместимого полимера полилактида с размерами частиц от 50 до 100 мкм, 0,3-45 весовых % магнитных наночастиц оксидов железа с размерами частиц от 10 до 100 нм, гелеобразующий агент мальтодекстрин в количестве от 0.5 до 50 весовых % от веса смеси полимера и магнитных наночастиц, а также дистиллированную воду в количестве от 0,5 до 100 весовых % от веса сухой смеси, полученной после смешения полимера, магнитных наночастиц и гелеобразующего агента. Затем формируют твердую трехмерную структуру. Для этого осуществляют одновременный нагрев смеси по всему объему путем воздействия на нее переменного магнитного поля с частотой до 500 кГц и амплитудой до 500 Э в течение 3-5 минут. При необходимости замедления процесса нагрева смеси, дополнительно осуществляют воздействие постоянным магнитным полем с амплитудой до 1000 Э, прикладывая его либо ко всему формируемому объему, либо локально в зависимости от решаемой задачи. Способ позволяет формировать биосовместимую твердую трехмерную структуру в заданной полости костной ткани при минимальном хирургическом вмешательстве. 1 ил.
Основные результаты: Способ формирования биосовместимой полимерной структуры, заключающийся в обеспечении пункционного доступа к заполняемой полости, введении в полость полимерной гелеобразной смеси и последующем формировании твердой трехмерной структуры внутри полостей в костных тканях, отличающийся тем, что состав гелеобразной смеси включает в себя следующие компоненты: 55-97.7 весовых % биосовместимого полимера полилактида с размерами частиц от 50 до 100 мкм, 0.3-45 весовых % магнитных наночастиц оксидов железа с размерами частиц 10-100 нм, гелеобразующий агент мальтодекстрин в количестве от 0.5 до 50 весовых % от веса смеси полимера и магнитных наночастиц и дистиллированную воду в количестве от 0.5 до 100 весовых % от веса сухой смеси, полученной после смешения полимера, магнитных наночастиц и гелеобразующего агента, при этом формирование твердой трехмерной структуры происходит при одновременном нагреве смеси по всему объему под воздействием переменного магнитного поля с частотой до 500 кГц и амплитудой до 500 Э в течение 3-5 минут в зависимости от выбранного соотношения реагирующих компонентов смеси, а при необходимости замедления процесса нагрева смеси дополнительно осуществляют воздействие постоянным магнитным полем с амплитудой до 1000 Э, прикладывая его либо ко всему формируемого объему, либо локально в зависимости от решаемой задачи.
Реферат Свернуть Развернуть

Изобретение относится к медицине, а именно к травматологии, и может найти применение в моделировании и формировании жестких биосовместимых структур внутри полостей в костных тканях.

В настоящее время в травматологии и хирургии в ряде случаев необходимо осуществить заполнение полостей в костных тканях, возникших в результате травм, болезни или возрастных процессов. Для этого используются различные жесткие трехмерные структуры, изготовленные из металлов, полимеров, цементов, керамики или композиционных материалов, введение которых предполагает серьезное хирургическое вмешательство. Данного недостатка лишены методы, в которых формирование трехмерных жестких структур осуществляется из порошкового или гелеобразного материала, введенного в организм пункционным способом.

Известен способ изготовления твердых трехмерных структур на основе гидрогеля для внутрипозвонковых дисков, описанный в [1], согласно которому обеспечивают доступ к заполняемой полости (к пульпозному ядру) в виде небольшой щели в ткани между позвонками. В полость вводят стержни из биосовместимого частично гидратированного геля с последующей гидратацией стержней для увеличения их в объеме и заполнения всего объема межпозвонкового диска для формирования внутри диска твердой трехмерной полимерной структуры. При осуществлении этого способа возникают сложности при введении стержней в межпозвонковое пространство как малого, так и большого диаметра, что приводит к низкой эффективности восстановления диска. Также способ требует большого времени для достижения необходимой механической прочности диска.

Наиболее близким по технической сущности к предлагаемому способу является способ формирования биосовместимой структуры [2] внутри полости, моделирующей объем межпозвонкового диска. В нем осуществляют пункционный доступ к полости (имитирующей пульпозное ядро), заполняют полость полимерной гелеобразной смесью из полимера и наночастиц углерода и формируют внутри заполняемой полости твердую трехмерную полимерную структуру под воздействием электромагнитного излучения. В качестве электромагнитного излучения используют лазерное излучение, подводимое с помощью световода, а в гель с частицами полимера добавляют наночастицы углерода для увеличения поглощения. Следует отметить, что лазерное воздействие связано с подводкой излучения в полость через световод и перемещением его внутри полости, что технологически и технически представляет значительные трудности. Формирование биосовместимой структуры происходит локально от точки к точке, т.е. осуществляется последовательное воздействие на введенную гелеобразную смесь, при этом возможно неоднородное или неполное формирование биосовместимой структуры, контроль которых практически невозможен.

Решаемая задача состоит в создании однородной твердой трехмерной структуры из полимерной гелеобразной смеси внутри полости, в которой формирование этой структуры происходит при одновременном нагреве по всему объему смеси за счет сплавления частиц полимера между собой.

Техническая сущность изобретения заключается в том, что для нагрева, сплавления и формирования полимерной структуры из гелеобразной смеси используется тепловыделение магнитных наночастиц (МНЧ). В биомедицине, в частности, эффект тепловыделения МНЧ используется в гипертермии [3]. Известно, что МНЧ обладают свойством преобразовывать магнитную энергию в тепловую при перемагничивании в переменных магнитных полях. Тепловыделение МНЧ за счет перемагничивания в значительной степени зависит от магнитных параметров МНЧ (величины намагниченности насыщения, типа магнитной анизотропии, константы магнитного затухания), их характерных размеров и определяется площадью динамической петли гистерезиса за полный цикл перемагничивания.

Важным является выбор МНЧ и определение условий максимального тепловыделения МНЧ в переменных магнитных полях. Тепловыделение в наночастицах определяется площадью динамической петли гистерезиса за полный цикл перемагничивания, умноженной на частоту воздействующего переменного магнитного поля, и характеризуется удельной тепловой мощностью, выделяемой в 1 грамме МНЧ, Вт/г. При этом частота f воздействующего переменного магнитного поля не должна превышать значения 500 кГц, поскольку при дальнейшем повышении частоты индукционные токи могут разогревать ткани организма. Также есть ограничение по амплитуде воздействующего магнитного поля Н, которое связано с возможным длительным нахождением в переменном поле и минимумом дискомфорта для пациента (критерий Брезовича). Согласно этому критерию величина произведения С=H*f не должна превышать значения ~6×107 Э·Гц [4].

Наиболее перспективными для применений в предлагаемом способе являются частицы магнитных оксидов железа, γ-Fe2O3, Fe3O4. Во-первых, эти частицы имеют низкую токсичность и биосовместимы с тканями организма. Во-вторых, они обладают достаточно большой намагниченностью насыщения, а, следовательно, увеличенной площадью частотной петли гистерезиса и высокими значениями удельной тепловой мощности.

Поставленная задача решается путем использования биосовместимой гелеобразной смеси с частицами МНЧ и последующего формирования трехмерной структуры в переменном магнитном поле за счет выделения тепла МНЧ при их перемагничивании.

Способ формирования полимерной структуры включает следующие стадии:

- Готовят смесь из биосовместимого полимера и МНЧ в соотношении 55-97.7 весовых % полимера с размерами частиц от 50 до 100 мкм и 0.3-45 весовых % МНЧ с размерами 10-100 нм с добавлением гелеобразующего агента в количестве от 0.5 до 50 весовых % от веса смеси (полимера и МНЧ) и с последующим добавлением дистиллированной воды в количестве от 0,5 до 100 весовых % от веса сухой смеси, полученной после смешения полимера, МНЧ и гелеобразующего агента.

- Осуществляют пункционный доступ к полости и заполняют ее приготовленной смесью.

- На полость, заполненную смесью, воздействуют переменным магнитным полем с частотой до 500 кГц и амплитудой до 500 Э в течение времени, достаточном для сплавления частиц полимера между собой и формирования трехмерной структуры при выбранном соотношении реагирующих компонентов смеси.

- При превышении температуры сплавления частиц полимера дополнительно включают воздействие постоянного магнитного поля с амплитудой до 1000 Э, которое приводит к уменьшению тепловыделения МНЧ и снижению температуры нагрева. При этом воздействие постоянным магнитным полем осуществляют либо на весь формируемый объем, либо локально в зависимости от решаемой задачи, не нарушая последовательности операций. Контроль за температурными показаниями возможно осуществлять, например, с помощью тепловизионной камеры.

Предлагаемый способ осуществляют следующим образом. Для приготовления гелеобразной смеси порошок биосовместимого полимера размалывают, например, в роторной мельнице и отбирают частицы размером до 100 мкм. Использование частиц большего размера приводит к расслоению смеси в процессе введения в полость и возможно только при существенном увеличении доли гелеобразующего агента. В полимерный порошок добавляют биосовместимые МНЧ в виде порошка (оксиды железа γ-Fe2O3, Fe3O4) со средними размерами от 10 - до 100 нм в количестве от 0,3 до 45 весовых %. Точное количество МНЧ определяют в зависимости от величины тепловыделения в процессе перемагничивания каждого конкретного ансамбля МНЧ. Полученную смесь перемешивают до однородного состояния, степень перемешивания контролируют при помощи микроскопа. Затем в полученную смесь добавляют гелеобразующий агент (например, крахмал, мальтодекстрин, желатин, лаурилсульфат натрия) в количестве от 0,5 до 50 весовых % от смеси полимера и МНЧ. Точное количество зависит от вида гелеобразующего агента и от требуемой консистенции конечного продукта. Полученную смесь перемешивают и в нее добавляют дистиллированную воду в количестве 0,5-100 весовых % от веса сухой смеси, затем перемешивают до получения однородной массы. Полученную однородную массу набирают в шприц и пункционно вводят в полость. Затем на заполненную смесью полость воздействуют переменным магнитным полем с частотой до 500 кГц и амплитудой до 500 Э в течение времени, достаточном для формирования трехмерной структуры при выбранном соотношении реагирующих компонентов смеси. Процесс формирования трехмерной структуры может быть замедлен за счет дополнительного воздействия постоянным магнитным полем, которое приводит к уменьшению тепловыделения МНЧ и соответствующему снижению температуры нагрева. При этом воздействовать постоянным магнитным полем можно либо на весь объем смеси, либо локально на отдельные части объема в случае заполнения нескольких полостей внутри модели костной ткани. Амплитуда прикладываемого постоянного магнитного поля может варьироваться в пределах до 1000 Э.

Были проведены исследования, моделирующие формирование трехмерной структуры внутри полостей в костных тканях. При этом порошок полилактида (PDL-04, Purasorb, Purac, Голландия) размололи в роторной мельнице и отобрали частицы размером от 50 до 100 мкм. В полимерный порошок добавили порошок биосовместимых МНЧ (оксид железа Fe3O4) со средним размером ~25 нм в количестве 25 весовых %. Полученную смесь перемешивали до однородного состояния, степень перемешивания контролировали при помощи микроскопа, затем в полученную смесь добавили гелеобразующий агент, мальтодекстрин в количестве 20 весовых % от смеси полимера и МНЧ. После перемешивания добавили дистиллированную воду в количестве 45 весовых % от веса сухой смеси. Полученный гель перемешивали до получения однородной массы. С помощью медицинского шприца с хирургической иглой (внешний диаметр иглы 2 мм и внутренний - 1.5 мм) гель вводили в полость костной ткани шириной 2.5 мм между модельными позвонками со средним диаметром 9 мм. Затем модельную структуру поместили в переменное магнитное поле частотой 80 кГц и амплитудой 400 Э и подвергли воздействию в течение 3 минут. На Фиг.1 представлена фотография образца полученной твердой структуры. Полученная полимерная структура являлась однородной и формировалась за короткое время.

Таким образом, предлагаемый способ позволяет формировать трехмерную твердую однородную полимерную биосовместимую структуру в заданной моделируемой полости. Предлагаемый способ позволяет при практическом использовании формировать биосовместимую структуру в заданной полости при минимальном хирургическом вмешательстве, с помощью пункционного прокола, за счет воздействия переменным магнитным полем.

ЛИТЕРАТУРА

[1] US Pat. N 5976186 Hydrogel intervertebral disc nucleus (623/17.16 Bao Qi-Bin, Higham Paul A. опубл. 02.11.1999).

[2] RU Пат. N 2438623 Способ формирования биосовместимой структуры / Антонов Е.Н., Баграташвили В.Н., Борщенко И.А., Попов В.К. A61F 2/44, приор. 28.05.2010.

[3] Pankhurst Q.A., Thanh N.K.T., Jones S.K. Dobson J.: Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 42, 224001 (2009).

[4] Hergt R., Dutz S., Röder M.: Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys.: Condens. Matter 20, 385214 (2008).

Способ формирования биосовместимой полимерной структуры, заключающийся в обеспечении пункционного доступа к заполняемой полости, введении в полость полимерной гелеобразной смеси и последующем формировании твердой трехмерной структуры внутри полостей в костных тканях, отличающийся тем, что состав гелеобразной смеси включает в себя следующие компоненты: 55-97.7 весовых % биосовместимого полимера полилактида с размерами частиц от 50 до 100 мкм, 0.3-45 весовых % магнитных наночастиц оксидов железа с размерами частиц 10-100 нм, гелеобразующий агент мальтодекстрин в количестве от 0.5 до 50 весовых % от веса смеси полимера и магнитных наночастиц и дистиллированную воду в количестве от 0.5 до 100 весовых % от веса сухой смеси, полученной после смешения полимера, магнитных наночастиц и гелеобразующего агента, при этом формирование твердой трехмерной структуры происходит при одновременном нагреве смеси по всему объему под воздействием переменного магнитного поля с частотой до 500 кГц и амплитудой до 500 Э в течение 3-5 минут в зависимости от выбранного соотношения реагирующих компонентов смеси, а при необходимости замедления процесса нагрева смеси дополнительно осуществляют воздействие постоянным магнитным полем с амплитудой до 1000 Э, прикладывая его либо ко всему формируемого объему, либо локально в зависимости от решаемой задачи.
СПОСОБ ФОРМИРОВАНИЯ БИОСОВМЕСТИМОЙ ПОЛИМЕРНОЙ СТРУКТУРЫ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 10.
10.02.2014
№216.012.9fe8

Устройство выявления несанкционированных воздействий на информационную телекоммуникационную систему

Изобретение относится к области радиотехники и предназначено для исключения утечки и разрушения информации в информационных телекоммуникационных системах. Технический результат изобретения выражается в расширении классов обнаруживаемых несанкционированных воздействий. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002506644
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a35b

Способ имитации радиолокационной цели с нелинейными электрическими свойствами

Изобретение относится к способам и технике радиоэлектронного подавления технических средств нелинейной радиолокации. Достигаемый технический результат - уменьшение вероятности обнаружения объектов с нелинейными электрическими свойствами за счет внесения неопределенности в фазовые параметры...
Тип: Изобретение
Номер охранного документа: 0002507534
Дата охранного документа: 20.02.2014
27.07.2014
№216.012.e5c8

Способ увеличения прочности цементов для медицины

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Описаны кальцийфосфатные цементные материалы, которые получают на основе порошков тетракальциевого фосфата и/или трикальцийфосфата. В качестве цементной жидкости...
Тип: Изобретение
Номер охранного документа: 0002524614
Дата охранного документа: 27.07.2014
10.06.2015
№216.013.507b

Датчик измерения механических напряжений

Изобретение относится к измерительной технике и представляет собой датчик механических напряжений. Датчик включает прямоугольную пластину из полимерного материала, на верхней поверхности которой сделано углубление, в котором помещается детектор, при этом внутри прямоугольной пластины вдоль...
Тип: Изобретение
Номер охранного документа: 0002552124
Дата охранного документа: 10.06.2015
10.09.2015
№216.013.7931

Способ имитации радиолокационных целей

Изобретение относится к области радиотехники, в частности к технике радиоэлектронного подавления космических радиолокационных станций с синтезированной апертурой антенны (РСА). Достигаемый технический результат - снижение вероятности правильного обнаружения маскируемых объектов космическими...
Тип: Изобретение
Номер охранного документа: 0002562614
Дата охранного документа: 10.09.2015
27.04.2016
№216.015.38b9

Способ моделирования ожирения в эксперименте

Изобретение относится к медицине, в частности к патологической физиологии, и касается моделирования ожирения в эксперименте. Моделирование проводят в условиях гиподинамии животного. При этом кормление производят высококалорийным кормом на фоне инъекционного введения инсулина. Кормление...
Тип: Изобретение
Номер охранного документа: 0002582826
Дата охранного документа: 27.04.2016
12.01.2017
№217.015.5d1e

Способ измерения величины и пространственного распределения локальных магнитных полей, возникающих вследствие протекания коррозионных процессов на металлической поверхности в проводящем растворе

Использование: для проведения коррозионных in-situ исследований материалов в различных проводящих средах. Сущность изобретения заключается в том, что исследуемый образец помещают в кювету с проводящим раствором, в котором требуется исследовать коррозионное поведение материала образца, после...
Тип: Изобретение
Номер охранного документа: 0002591027
Дата охранного документа: 10.07.2016
26.08.2017
№217.015.d697

Способ искажения радиолокационного изображения в космической радиолокационной станции с синтезированной апертурой антенны

Изобретение относится к области радиотехники, в частности к способам и технике радиоэлектронного подавления космических радиолокационных станций с синтезированной апертурой антенны (РСА). Достигаемый технический результат - снижение вероятности правильного обнаружения маскируемых объектов...
Тип: Изобретение
Номер охранного документа: 0002622904
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.ebb0

Композиция антибактериальная для профилактики или лечения госпитальных инфекций (варианты), штаммы бактериофагов, используемые для получения такой композиции

Группа изобретений относится к вариантам антибактериальной композиции для профилактики или лечения госпитальных инфекций, штаммам бактериофага и молекулам нуклеиновой кислоты, соответствующим геному бактериофага. Предложенная композиция включает 7 штаммов бактериофага, каждый из которых...
Тип: Изобретение
Номер охранного документа: 0002628312
Дата охранного документа: 15.08.2017
19.01.2018
№218.016.0d88

Способ измерения характеристик аморфных ферромагнитных микропроводов

Изобретение относится к аморфным ферромагнитным микропроводам (АФМ) в тонкой стеклянной оболочке и используется в устройствах измерительной техники. Сущность изобретения заключается в том, что в способе измерения характеристик аморфных ферромагнитных микропроводов (АФМ) исследуемый АФМ жестко...
Тип: Изобретение
Номер охранного документа: 0002632996
Дата охранного документа: 11.10.2017
Показаны записи 1-10 из 20.
10.02.2014
№216.012.9fe8

Устройство выявления несанкционированных воздействий на информационную телекоммуникационную систему

Изобретение относится к области радиотехники и предназначено для исключения утечки и разрушения информации в информационных телекоммуникационных системах. Технический результат изобретения выражается в расширении классов обнаруживаемых несанкционированных воздействий. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002506644
Дата охранного документа: 10.02.2014
27.07.2014
№216.012.e5c8

Способ увеличения прочности цементов для медицины

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Описаны кальцийфосфатные цементные материалы, которые получают на основе порошков тетракальциевого фосфата и/или трикальцийфосфата. В качестве цементной жидкости...
Тип: Изобретение
Номер охранного документа: 0002524614
Дата охранного документа: 27.07.2014
10.06.2015
№216.013.507b

Датчик измерения механических напряжений

Изобретение относится к измерительной технике и представляет собой датчик механических напряжений. Датчик включает прямоугольную пластину из полимерного материала, на верхней поверхности которой сделано углубление, в котором помещается детектор, при этом внутри прямоугольной пластины вдоль...
Тип: Изобретение
Номер охранного документа: 0002552124
Дата охранного документа: 10.06.2015
10.09.2015
№216.013.7931

Способ имитации радиолокационных целей

Изобретение относится к области радиотехники, в частности к технике радиоэлектронного подавления космических радиолокационных станций с синтезированной апертурой антенны (РСА). Достигаемый технический результат - снижение вероятности правильного обнаружения маскируемых объектов космическими...
Тип: Изобретение
Номер охранного документа: 0002562614
Дата охранного документа: 10.09.2015
27.04.2016
№216.015.38b9

Способ моделирования ожирения в эксперименте

Изобретение относится к медицине, в частности к патологической физиологии, и касается моделирования ожирения в эксперименте. Моделирование проводят в условиях гиподинамии животного. При этом кормление производят высококалорийным кормом на фоне инъекционного введения инсулина. Кормление...
Тип: Изобретение
Номер охранного документа: 0002582826
Дата охранного документа: 27.04.2016
12.01.2017
№217.015.5d1e

Способ измерения величины и пространственного распределения локальных магнитных полей, возникающих вследствие протекания коррозионных процессов на металлической поверхности в проводящем растворе

Использование: для проведения коррозионных in-situ исследований материалов в различных проводящих средах. Сущность изобретения заключается в том, что исследуемый образец помещают в кювету с проводящим раствором, в котором требуется исследовать коррозионное поведение материала образца, после...
Тип: Изобретение
Номер охранного документа: 0002591027
Дата охранного документа: 10.07.2016
26.08.2017
№217.015.d697

Способ искажения радиолокационного изображения в космической радиолокационной станции с синтезированной апертурой антенны

Изобретение относится к области радиотехники, в частности к способам и технике радиоэлектронного подавления космических радиолокационных станций с синтезированной апертурой антенны (РСА). Достигаемый технический результат - снижение вероятности правильного обнаружения маскируемых объектов...
Тип: Изобретение
Номер охранного документа: 0002622904
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.ebb0

Композиция антибактериальная для профилактики или лечения госпитальных инфекций (варианты), штаммы бактериофагов, используемые для получения такой композиции

Группа изобретений относится к вариантам антибактериальной композиции для профилактики или лечения госпитальных инфекций, штаммам бактериофага и молекулам нуклеиновой кислоты, соответствующим геному бактериофага. Предложенная композиция включает 7 штаммов бактериофага, каждый из которых...
Тип: Изобретение
Номер охранного документа: 0002628312
Дата охранного документа: 15.08.2017
19.01.2018
№218.016.0d88

Способ измерения характеристик аморфных ферромагнитных микропроводов

Изобретение относится к аморфным ферромагнитным микропроводам (АФМ) в тонкой стеклянной оболочке и используется в устройствах измерительной техники. Сущность изобретения заключается в том, что в способе измерения характеристик аморфных ферромагнитных микропроводов (АФМ) исследуемый АФМ жестко...
Тип: Изобретение
Номер охранного документа: 0002632996
Дата охранного документа: 11.10.2017
29.05.2018
№218.016.5754

Датчик измерения механических деформаций

Изобретение относится к измерительной технике и представляет собой датчик механических деформаций на основе аморфных ферромагнитных микропроводов. Датчик измерения механических деформаций содержит прямоугольную пластину, выполненную с поперечными разрезами, обеспечивающими возможность ее...
Тип: Изобретение
Номер охранного документа: 0002654827
Дата охранного документа: 22.05.2018
+ добавить свой РИД