×
10.04.2014
216.012.b41f

Результат интеллектуальной деятельности: ГИБРИДНЫЙ ТУРБОРЕАКТИВНЫЙ АВИАЦИОННЫЙ ДВИГАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Гибридный турбореактивный авиационный двигатель содержит камеру сгорания и расположенный вне камеры электрохимический генератор на топливных элементах, связанные входом с источником углеводородного топлива и потоком сжатого в двигателе воздуха, и контроллер. Выход камеры сгорания связан через турбину высокого давления с турбиной низкого давления. Выход электрохимического генератора связан с электродвигателем, установленным на валу турбины низкого давления. Контроллер связан с регулирующими органами, расположенными в тракте топлива и потока воздуха, и выполнен с возможностью регулирования соотношения потоков воздуха и потоков топлива, поступающих в электрохимический генератор и камеру сгорания, и совмещения для привода вала разнородных энергий электрогенератора и турбины низкого давления в виде электроэнергии и тепловой энергии продуктов сгорания. Изобретение направлено на уменьшение выбросов токсичных веществ за период полетного цикла, снижение шума, в том числе в зоне аэропортов, повышение экономичности. 6 з.п. ф-лы, 1 ил. .

Изобретение относится к авиационному машиностроению, а более точно касается гибридного турбореактивного авиационного двигателя.

Под «гибридностью» понимается схема, позволяющая совмещать в двигателе тягу двигателей разного типа.

Так, известен гибридный автомобиль, который использует для привода ведущих колес разнородную энергию (Автомобильные новости. Гибридные автомобили, 15 марта 2011: http://carnews.topinfomaster.com/post_1300194213.html). Для этого современными автопроизводителями используется схема, позволяющая совмещать тягу двигателя внутреннего сгорания (ДВС) и электродвигателя. Это позволяет избежать работы ДВС в режиме малых нагрузок, а также реализовывать рекуперацию кинетической энергии, что повышает топливную эффективность силовой установки. Этот тип двигателя в автомобильной индустрии (Toyota Prius, Lexus, BMW 5, 6 и 7 серий), а также в судоходстве (Mochi Craft Long Range 23M) сегодня является наиболее подходящим решением. Он основывается на сочетании традиционного дизеля и электромотора. Они не соединяются напрямую. Если они завязаны на единый передаточный вал, то могут работать отдельно друг от друга. Это значит, что в некоторых случаях можно идти только на электричестве. Преимущества - отсутствие загрязнения и шума. Недостатки - уменьшенные скорость и автономность.

Известен гибридный ракетный двигатель (ГРД) - химический ракетный двигатель, использующий компоненты ракетного топлива в разных агрегатных состояниях - жидком и твердом. В твердом состоянии может находиться как окислитель, так и горючее.

Известен гибридный ТРД/ПВРД фирмы Pratt&Whitney на самолете SR-71 blackbind (Сайт FreePapers.ru - 7 декабря 2010, http://freepapers.ru/85/istoriya-razvitiya-reaktivnogo-dvigatelya/3888.35649.list4.html), который работал как ТРД с форсажем до скорости M=2,4, а на более высоких скоростях воздух поступал в форсажную камеру, минуя компрессор, камеру сгорания и турбину, подача топлива в форсажную камеру увеличивалась и он работал как ПВРД. Такая схема позволяет расширить скоростной диапазон эффективности работ до M=3,2, но уступает ТРД и ПВРД по весовым характеристикам.

Известно использование топливных элементов во вспомогательных силовых установках самолета (Сайт - aviaport.ru. 29 марта 2007: http://www.aviaport.ru/digest/2007/03/29/118391.html).

Известен авиалайнер A320 ATRA (Advanced Technology Research Aircraft), оснащенный двумя электродвигателями на переднем колесе, который продемонстрировал, что мощности электротяги достаточно, чтобы проехать от начальной позиции до взлетно-посадочной полосы, не включая реактивные двигатели. Электродвигатели получали питание от бортовых топливных элементов самолета (Сайт - ozemle. net. 18 августа 2011 г. http://www.ozemle.net/category/dostijeniya/page/12).

Известно, что Airbus и DLR экспериментально доказали, что топливные элементы могут быть использованы в качестве наземной вспомогательной силовой установки, которая, подключенная к самолету, обеспечивает подачу электричества на освещение, кондиционирование салона и для других нужд в то время, когда авиационные двигатели отключены (сайт - aero-news.ru, 18 июля 2011 г.: http://www.aero-news.ru/airbus-i-dlr-eksperimentiruyut-s-toplivnymi-elementami/).

Известен электрический самолет на топливных элементах (заявка США №2003/0075643), летающий на небольшой высоте со схемой силовой установки, которая включает электромотор, батарею твердополимерных топливных элементов, отдельный воздухозаборник из атмосферы для батареи твердополимерных топливных элементов, топливный бак с запасенным водородом либо с химическим реагентом, который в результате реакции выделяет водород, электрический преобразователь, контроллер, самолетное оборудование, солнечные батареи, аккумуляторные батареи.

Выработанная электрическая мощность поступает в преобразователь, далее в систему энергоснабжения и оборудования самолета и к двум электромоторам, которые приводят во вращение воздушные винты легкого самолета.

Кроме получения электроэнергии от батареи топливных элементов предусмотрено дополнительное получение электроэнергии от солнечных батарей и запас ее в аккумуляторных батареях.

Данное техническое решение касается электродвигателя для легких местных самолетов без камеры сгорания.

Известен двухконтурный двигатель с комбинированной камерой сгорания (заявка США №2008/001038). В камере сгорания дополнительно для улучшения характеристик ТРДД размещены топливные элементы, работающие одновременно с основной камерой сгорания. Двигатель снабжен системой управления - контроллером, одной из задач которого является управление расходами топлива через камеру сгорания и топливными элементами. Полученная в топливном элементе электроэнергия используется потребителями бортовой сети самолета, например системой кондиционирования или другими системами. Хотя двигатель имеет конструктивно комбинированную камеру сгорания, его нельзя отнести к гибридным турбореактивным двигателем, так как он обеспечивает электроэнергией вспомогательные нужды, а для привода вентилятора используется традиционная тепловая энергия камеры сгорания.

Гибридных авиационных турбореактивных двигателей, совмещающих для привода вентилятора разнородную энергию, продуктов сгорания и электрическую, в основной силовой установке в патентной литературе не выявлено.

В основу изобретения положена задача создания гибридного авиационного турбореактивного двигателя, позволяющего уменьшить выброс токсичных веществ, снизить шум, особенно в зоне аэропортов, повысить топливную экономичность.

Технический результат - уменьшение выбросов токсичных веществ за период полетного цикла, снижение шума, в том числе в зоне аэропортов, повышение топливной экономичности.

Поставленная задача решается тем, что гибридный турбореактивный авиационный двигатель (ГТРД) содержит камеру сгорания и расположенный вне камеры электрохимический генератор на топливных элементах, связанные входом с источником углеводородного топлива и потоком сжатого в двигателе воздуха, при этом выход камеры сгорания связан через турбину высокого давления с турбиной низкого давления, а выход электрохимического генератора - с электродвигателем, установленным на валу турбины низкого давления, и контроллер, связанный с регулирующими органами, расположенными в тракте топлива и потока воздуха, и выполненный с возможностью регулирования соотношения потоков воздуха и потоков топлива, поступающих в электрохимический генератор и камеру сгорания, и совмещения для привода вала разнородных энергий электрогенератора и турбины низкого давления в виде электроэнергии и энергии продуктов сгорания.

Целесообразно, чтобы контроллер был связан с регулирующими органами, один из которых расположен в тракте топлива от его источника к камере и электрохимического генератора и регулирует распределение углеводородного топлива между электрохимическим генератором и камерой сгорания, а другой расположен в тракте потока воздуха на отводящем канале воздушного потока за компрессором и регулирует распределение воздуха между электрохимическим генератором и камерой сгорания. Целесообразно также, чтобы электрохимический генератор содержал риформер и камеру дожигания, вход которой соединен с выходом батареи, а выход - с камерой смешения на выходе камеры сгорания.

В дальнейшем изобретение поясняется описанием и чертежом, где показана принципиальная схема гибридного турбореактивного авиационного двигателя, согласно изобретению.

Гибридный турбореактивный авиационный двигатель (ГТРД) содержит камеру сгорания 4, электрохимический генератор (ЭХГ) 8, расположенный вне камеры сгорания 4, связанные входами с источником углеводородного топлива и потоком сжатого в двигателе воздуха.

ГТРД содержит также вентилятор 1, редуктор 2, компрессор 3, турбину 5 высокого давления, турбину 6 низкого давления, электродвигатель 7, связанный входом с электрохимическим генератором 8. Выход камеры сгорания 4 связан через турбину 5 высокого давления с турбиной 6 низкого давления, установленной на одном валу 16 с электродвигателем 7. На том же валу 16 установлен вентилятор 1, который через редуктор 2 приводится во вращение от турбины 6 и электродвигателя 7. На чертеже представлен двухвальный ГТРД, где компрессор 3 и турбина 5 установлены на другом валу 15. Однако возможен ГТРД одновального исполнения.

Кроме того, ГТРД содержит контроллер 20, выполненный с возможностью регулирования соотношения потоков воздуха и потоков топлива, поступающих в электрохимический генератор 8 и камеру сгорания 4.

Контроллер 20 связан с регулирующим органом 11, расположенным в тракте топлива от его источника к камере сгорания 4 и к ЭХГ 8 и регулирующим распределение углеводородного топлива между ЭХГ и камерой сгорания, и с регулирующим органом 9, расположенным в тракте потока воздуха на отводящем канале воздушного потока за компрессором 3 и регулирующим распределение сжатого воздуха между ЭХГ 8 и камерой сгорания 4.

Конструктивно регулирующие органы могут быть выполнены в виде заслонки и предварительно тарированы.

Контроллер 20 меняет положение заслонок в зависимости от режима полета и управляющих воздействий пилота, обеспечивая тем самым потребный расход топлива и воздуха между каналами ЭХГ и камеры сгорания.

Электрохимический генератор (ЭХГ) 8 содержит батарею 12 элементов, например, твердотопливных. Однако возможно применение и других топливных элементов.

ЭХГ 8 может включать риформер 13, преобразующий поступающее углеводородное топливо в синтез-газ. Риформер 13 снабжен входами для подачи воздуха и углеводородного топлива, а выход соединен с входом батареи 12 топливных элементов. ЭХГ 8 может включать также камеру дожигания 14 синтез-газа, выходящего из батареи топливных элементов, вход которой соединен с выходом батареи 12, а выход - с камерой смешения 10 на выходе камеры сгорания 4. Выработанный риформером 13 синтез-газ поступает в батарею 12 твердооксидных топливных элементов (ТОТЭ), работающих на выработанном синтез-газе, заслонка 17 связана с контроллером и разделяет воздушный поток на используемый для выработки синтез-газа в риформере 13 и на поступающий в качестве окислителя непосредственно в батареи 12 топливных элементов.

Электрохимический генератор 8 дополнительно может быть связан с внешними (бортовыми) потребителями электроэнергии.

Анализ вопросов согласования работы газодинамической и электрохимических составляющих ГТРД с ЭХГ на основе батареи топливных элементов на крейсерском и взлетном режиме показал целесообразность совмещения для привода вала 16 разнородных энергий - электроэнергии и тепловой энергии продуктов сгорания.

В канал ЭХГ 8 на крейсерском режиме идет основная часть воздуха, покидающего компрессор 3, а именно от 70% до 90% в зависимости от параметров конкретного двигателя. Под полученный на этом расчетном режиме физический расход воздуха проектируется ЭХГ.

Для обеспечения надежной и эффективной работы ЭХГ на других режимах расход воздуха через ЭХГ изменяется в ограниченных пределах. Для этих целей используется заслонка 9, регулирующая долю воздуха, идущего в каждый из каналов через традиционную камеру сгорания или ЭХГ.

Перед турбиной высокого давления расположена камера смешения 10, в которую поступает газ из двух каналов (канал 18 от ЭХГ и канал 19 от камеры сгорания). Из камеры смешения 10 весь газ поступает на турбину 5 компрессора.

В двухвальном ГТРД выработанная в ЭХГ электрическая мощность подводится к электродвигателю 7 на валу 16 с вентилятором 1 и редуктором 2, как дополнительная к мощности турбины 6 вентилятора.

Гибридный авиационный турбореактивный двигатель работает следующим образом.

При включении двигателя на аэродроме контроллер 20 устанавливает в соответствующее запуску положение заслонки 9 подачи воздуха и 11 подачи топлива.

В камеру сгорания 4 поступает сжатый воздух после компрессора 3 за вычетом расхода воздуха, подаваемого ЭХГ. При запуске примерно 10% воздуха поступает в ЭХГ, 90% - в камеру сгорания.

При переходе на другие режимы контроллер переключает заслонки в положение, соответствующее текущему режиму полета. Например, на крейсерском режиме контроллер переключает положение заслонок в положение, когда 70-90% воздуха поступает в ЭХГ, а 30-10% - в камеру сгорания.

От работы батареи 12 топливных элементов и камеры сгорания 4 включаются электродвигатель 7 и турбина 6, которые приводят во вращение валы 15 и 16. Работа привода валов от электродвигателя и турбины снижает нагрузку на камеру сгорания, что уменьшает токсичные выбросы и шум.

Особенностью предложенной схемы гибридного ТРД является то, что ЭХГ работает на протяжении всего полета с расходом воздуха через него, близким к расчетному, а согласование режимов дросселирования и регулирования происходят по топливовоздушным каналам, связанным с традиционной камерой сгорания.

Таким образом, предложенный ГТРД совмещает в силовой установке для привода вала разнородную энергию - электроэнергию и тепловую энергию продуктов сгорания.

Это сочетание повышает экономичность за счет более высокого КПД использования топлива в топливных элементах, уменьшает выбросы загрязняющих веществ, повышает надежность, упрощает задачи регулирования ГТРД на режимах полетного цикла магистрального самолета по сравнению с аналогами.


ГИБРИДНЫЙ ТУРБОРЕАКТИВНЫЙ АВИАЦИОННЫЙ ДВИГАТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 205.
27.09.2013
№216.012.702a

Нагрузочное устройство для исследования торцевого демпфирования колебаний лопаток вентилятора газотурбинного двигателя на вибростенде

Нагрузочное устройство для исследования торцевого демпфирования колебаний лопаток вентиляторов газотурбинного двигателя на вибростенде содержит узел фиксации, предназначенный для удержания и фиксации демпфирующего устройства, узел ориентации, размещенный на станине вибростенда, выполненный с...
Тип: Изобретение
Номер охранного документа: 0002494365
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.739e

Лопатка осевой лопаточной машины

Изобретение относится к области лопаточных машин, в частности к конструкции композиционных лопаток осевых вентиляторов и компрессоров авиадвигателей. Лопатка лопаточной машины содержит профилированное перо, комлевую часть, а также хвостовик типа «ласточкин хвост» и выполнена из ориентированных...
Тип: Изобретение
Номер охранного документа: 0002495255
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.73ad

Способ определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя

Способ определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя заключается в том, что двигатель жестко соединяют с горизонтальной мерительной платформой, платформу устанавливают на поперечные упругие опоры и соединяют с датчиком...
Тип: Изобретение
Номер охранного документа: 0002495270
Дата охранного документа: 10.10.2013
10.01.2014
№216.012.93c1

Способ изготовления накладки передней кромки композиционной лопатки вентилятора

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении накладки передней кромки композиционной лопатки вентилятора газотурбинного двигателя. Заготовку из титанового сплава профилируют в вертикальной и горизонтальной плоскостях. После профилирования...
Тип: Изобретение
Номер охранного документа: 0002503519
Дата охранного документа: 10.01.2014
10.02.2014
№216.012.9f18

Устройство оптимизации радиальных зазоров многоступенчатого осевого компрессора авиационного газотурбинного двигателя

Устройство для оптимизации радиальных зазоров многоступенчатого осевого компрессора газотурбинного авиационного двигателя сжатым воздухом, отводимым из компрессора, содержит корпус с проточной частью. Сжатый воздух последовательно проходит внутренние полости ступеней компрессора. Ротор каждой...
Тип: Изобретение
Номер охранного документа: 0002506436
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b45e

Способ сжигания углеводородного топлива в газотурбинных двигателе или установке

Способ сжигания углеводородного топлива в газотурбинных двигателе или установке, содержащих камеру сгорания, заключается в поступлении на ее вход потока углеводородного топлива и потока воздуха, сжатого в компрессоре до высокого давления. Топливовоздушную смесь воспламеняют, а полученные при...
Тип: Изобретение
Номер охранного документа: 0002511893
Дата охранного документа: 10.04.2014
20.06.2014
№216.012.d234

Система сбора данных, контроля и диагностики технического состояния агрегатов привода винтов вертолета и электронный блок

Изобретение относится к области авиации, в частности к системам диагностики технического состояния летательных аппаратов. Система сбора данных, контроля и диагностики технического состояния агрегатов привода винтов вертолета включает пьезоэлектрические датчики вибрации, которые установлены на...
Тип: Изобретение
Номер охранного документа: 0002519583
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d4ab

Газотурбинная установка

Изобретение относится к энергетике. Газотурбинная установка содержит воздушный компрессор, газовую турбину и электрогенератор, установленные на одном валу, теплообменник с нагревающим и нагреваемым контурами, камеру сгорания, источник топлива и трубопроводные вентили. Дополнительно установка...
Тип: Изобретение
Номер охранного документа: 0002520214
Дата охранного документа: 20.06.2014
27.07.2014
№216.012.e4e9

Способ получения водорода

Изобретение относится к области химии, а более точно к способу получения водорода. Способ получения водорода путем взаимодействия алюминия и воды представляет собой псевдоожижижение алюминия в виде нанопорошока потоком сжатого инертного газа и приведение в контакт полученного реагента с водяным...
Тип: Изобретение
Номер охранного документа: 0002524391
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e771

Энергетическая установка

Изобретение относится к энергетике. Установка содержит источник водорода высокого давления, две герметичные капсулы, газодинамически связанные между собой, с входным и выходными патрубками, два турбодетандера, два потребителя мощности, основной потребитель водорода и краны, потребитель...
Тип: Изобретение
Номер охранного документа: 0002525042
Дата охранного документа: 10.08.2014
Показаны записи 11-20 из 85.
27.09.2013
№216.012.702a

Нагрузочное устройство для исследования торцевого демпфирования колебаний лопаток вентилятора газотурбинного двигателя на вибростенде

Нагрузочное устройство для исследования торцевого демпфирования колебаний лопаток вентиляторов газотурбинного двигателя на вибростенде содержит узел фиксации, предназначенный для удержания и фиксации демпфирующего устройства, узел ориентации, размещенный на станине вибростенда, выполненный с...
Тип: Изобретение
Номер охранного документа: 0002494365
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.739e

Лопатка осевой лопаточной машины

Изобретение относится к области лопаточных машин, в частности к конструкции композиционных лопаток осевых вентиляторов и компрессоров авиадвигателей. Лопатка лопаточной машины содержит профилированное перо, комлевую часть, а также хвостовик типа «ласточкин хвост» и выполнена из ориентированных...
Тип: Изобретение
Номер охранного документа: 0002495255
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.73ad

Способ определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя

Способ определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя заключается в том, что двигатель жестко соединяют с горизонтальной мерительной платформой, платформу устанавливают на поперечные упругие опоры и соединяют с датчиком...
Тип: Изобретение
Номер охранного документа: 0002495270
Дата охранного документа: 10.10.2013
10.01.2014
№216.012.93c1

Способ изготовления накладки передней кромки композиционной лопатки вентилятора

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении накладки передней кромки композиционной лопатки вентилятора газотурбинного двигателя. Заготовку из титанового сплава профилируют в вертикальной и горизонтальной плоскостях. После профилирования...
Тип: Изобретение
Номер охранного документа: 0002503519
Дата охранного документа: 10.01.2014
10.02.2014
№216.012.9f18

Устройство оптимизации радиальных зазоров многоступенчатого осевого компрессора авиационного газотурбинного двигателя

Устройство для оптимизации радиальных зазоров многоступенчатого осевого компрессора газотурбинного авиационного двигателя сжатым воздухом, отводимым из компрессора, содержит корпус с проточной частью. Сжатый воздух последовательно проходит внутренние полости ступеней компрессора. Ротор каждой...
Тип: Изобретение
Номер охранного документа: 0002506436
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b45e

Способ сжигания углеводородного топлива в газотурбинных двигателе или установке

Способ сжигания углеводородного топлива в газотурбинных двигателе или установке, содержащих камеру сгорания, заключается в поступлении на ее вход потока углеводородного топлива и потока воздуха, сжатого в компрессоре до высокого давления. Топливовоздушную смесь воспламеняют, а полученные при...
Тип: Изобретение
Номер охранного документа: 0002511893
Дата охранного документа: 10.04.2014
20.06.2014
№216.012.d234

Система сбора данных, контроля и диагностики технического состояния агрегатов привода винтов вертолета и электронный блок

Изобретение относится к области авиации, в частности к системам диагностики технического состояния летательных аппаратов. Система сбора данных, контроля и диагностики технического состояния агрегатов привода винтов вертолета включает пьезоэлектрические датчики вибрации, которые установлены на...
Тип: Изобретение
Номер охранного документа: 0002519583
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d4ab

Газотурбинная установка

Изобретение относится к энергетике. Газотурбинная установка содержит воздушный компрессор, газовую турбину и электрогенератор, установленные на одном валу, теплообменник с нагревающим и нагреваемым контурами, камеру сгорания, источник топлива и трубопроводные вентили. Дополнительно установка...
Тип: Изобретение
Номер охранного документа: 0002520214
Дата охранного документа: 20.06.2014
27.07.2014
№216.012.e4e9

Способ получения водорода

Изобретение относится к области химии, а более точно к способу получения водорода. Способ получения водорода путем взаимодействия алюминия и воды представляет собой псевдоожижижение алюминия в виде нанопорошока потоком сжатого инертного газа и приведение в контакт полученного реагента с водяным...
Тип: Изобретение
Номер охранного документа: 0002524391
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e771

Энергетическая установка

Изобретение относится к энергетике. Установка содержит источник водорода высокого давления, две герметичные капсулы, газодинамически связанные между собой, с входным и выходными патрубками, два турбодетандера, два потребителя мощности, основной потребитель водорода и краны, потребитель...
Тип: Изобретение
Номер охранного документа: 0002525042
Дата охранного документа: 10.08.2014
+ добавить свой РИД