×
10.04.2014
216.012.b40c

ТЕРМИЧЕСКИЙ МЕТАМАТЕРИАЛ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к теплотехнике, а именно к материалу, излучающая/поглощающая способность которого близка к излучающей/поглощающей способности абсолютно черного тела. Метаматериал представляет собой периодически чередующиеся полоски проводящего материала (металла) и диэлектрика, причем ширина полосок диэлектрика больше, чем длина волны максимума излучения при данной температуре, проводящий материал имеет в сечении форму прямоугольников с плоским торцом, выходящим на излучающую поверхность, или треугольников с вершиной, направленной в сторону излучающей поверхности и выходящей на нее, в обоих случаях радиус кривизны между соседними плоскостями проводящего материала должен быть меньше длины волны максимума излучения при данной температуре, при треугольном сечении проводящего материала высота треугольников больше длины волны максимума излучения при данной температуре. Технический результат - создание материала, излучательная/поглощательная способность которого близка к абсолютно черному телу. 2 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к метаматериалам, а именно материалам, изменяющим радиационные (излучательные и поглощательные) свойства материалов в сторону их увеличения.

Метаматериалами называют материалы, оптические, тепловые и иные свойства которых не встречаются в природе. В данном изобретении предлагается конструкция материала, излучательная/поглощательная способность которого близка к излучательной/поглощательной способности абсолютно черного тела (АЧТ).

Известно, что при нагреве твердого тела его поверхность излучает электромагнитную энергию в виде волн радио-, инфракрасного (ИК) и видимого диапазонов. Излучательная способность тела r(Т, ω), находящегося при температуре Т, на частоте ω, определяется законом Кирхгофа [Физический энциклопедический словарь, М., Советская энциклопедия, 1983]:

r(Т, ω)=а(Т, ω) f(T, ω),

где а(Т, ω) - поглощающая способность тела на той же частоте и при той же температуре, f(T, ω) - функция Планка. Поскольку максимально возможной поглощательной способностью обладает АЧТ, для которого а(Т, ω)=1, оно обладает и наибольшей излучательной способностью.

С целью повышения излучательной/поглощательной способности тела в видимом диапазоне его поверхность покрывают, например, мелкодисперсным углеродом (сажей), которая весьма близка в этом диапазоне к АЧТ. Однако в ИК диапазоне поглощательная, а следовательно, и излучательная способности сажи существенно отличаются от аналогичных способностей АЧТ. Так для длин волн 8..14 мкм излучательная способность сажи не превышает 50% [C.H. Liebert, R.H. Hibbard, Spectral emittance of soot, NASA Technical Note D-5647, 1970].

Наиболее близким по физической сути к предлагаемому решению является описанная в патенте US 7,961,995 В2 Electrically tunable plasmon light tunneling junction МПК G02B 6/26(20060101); G02B 6/10(20060101); G02F 1/035 (20060101) структура металл-диэлектрик-металл (МДМ), в которой под действием внешнего электрического поля при туннелировании электрона из металла с более высоким уровнем Ферми через диэлектрик в металл с более низким уровнем Ферми избыток энергии переходит в плазмон, который на торце структуры конвертируется в фотон. Однако использование подобной МДМ-структуры для изменения термических свойств вещества неприменимо.

Задачей данного изобретения является создание термического метаматериала с характеристиками, приближающимися к характеристикам АЧТ.

Технический результат заключается в возможности реализации данной задачи.

Технический результат достигается тем, что термический метаматериал состоит из периодически чередующихся полосок диэлектрика и проводящего материала. Оптимальная ширина полосок диэлектрика равна длине волны максимума излучения λm при данной температуре Т, следующая из формулы Планка, и приближенно равная 0.354(hc/kT), где h - постоянная Планка, с - скорость света в вакууме, k - постоянная Больцмана [Л.Д. Ландау, Е.М. Лифшиц. Статистическая физика, М., Наука, 1976, §163].

Знание температуры Т, фигурирующей выше, необходимо для изготовления метаматериала. Она равна той температуре, при которой предполагается использование метаматериала. Проводящий материал имеет в сечении форму прямоугольников с плоским торцом, выходящим на излучающую поверхность, или треугольников с вершиной, направленной в сторону излучающей поверхности и выходящей на нее. В обоих случаях радиус кривизны между соседними плоскостями проводящего материала должен быть меньше λm, при треугольном сечении проводящего материала высота треугольников больше λm.

В качестве проводящего материала используют металлы.

В работах [V.B. Zon, J. Opt. Soc. Am. В 24, 1960 (2007); A.N. Latyshev et al J. Opt. Soc. Am. В 26, 397 (2009); В.Б. Зон и др. УФН 181 №3, 305 (2011)] было теоретически предсказано и экспериментально исследовано явление плазмон-фотонной конверсии, состоящее в следующем. На проводящей плоской поверхности при Т>0 существуют поверхностные плазмон-поляритоны (ППП), образующие 2-мерный газ квазичастиц, подчиняющихся распределению Бозе-Эйнштейна, вследствие чего их энергия распределена по закону Планка. Подходя к краю проводящей поверхности, ППП конвертируются в электромагнитные кванты (фотоны), имеющие такое же распределение по энергии. Значение коэффициента конверсии близко к 1, если радиус кривизны края проводящей поверхности не превышает длину волны соответствующего фотона. На основе этого явления предложена конструкция метаматериала, излучающие/поглощающие характеристики которого близки к соответствующим характеристикам АЧТ.

Если толщина диэлектрика между проводящими поверхностями становится сравнимой с длиной λm, метаматериал начинает избирательно поглощать и излучать электромагнитную энергию на определенных (резонансных) длинах волн [S. Collin et al Optics Express 15, No 7, 4311 (2007); Chih-Ming Wang et al Optics Express 15, No 22, 14673 (2007); K. Ikeda et al Appl. Phys. Lett. 92, 021117 (2008)], что приводит удалению его характеристик от характеристик АЧТ.

На фиг.1 представлен метаматериал с излучающим материалом в виде параллелепипедов: а - вид сверху на излучающую поверхность; б - вид в разрезе по А-А; на фиг.2 - метаматериал с излучающим материалом, имеющим в разрезе форму треугольников; на фиг.3 представлено распределение температуры по излучающей поверхности образца (соответствие цвета градусам Цельсия указано на шкале справа); на фиг.4 - профиль распределения температуры по поверхности метаматериала, изображенного на фиг.3, вдоль вертикальной линии А-А.

Термический метаматериал представляет собой спрессованные в единое целое периодически чередующиеся слои проводящего материала (металла) 1 и диэлектрика 2, выходящие на излучающую/поглощающую поверхность 3 метаматериала, причем радиус кривизны между соседними плоскостями проводящего материала, выходящих на излучающую/поглощающую поверхность, должен быть меньше λm. Проводящий материал в сечении может иметь форму прямоугольника (фиг.1) или треугольников (фиг.2). Противоположная излучающей/поглощающей поверхности часть метаматериала может заканчиваться сплошным слоем диэлектрика или металла, как изображено на фиг.1, 2.

Для экспериментальной проверки предложенного метаматериала был изготовлен его образец, представляющий собой меандр из алюминиевой фольги толщиной 100 мкм с расстоянием между соседними полосками 2 мм. Пространство между полосками было заполнено алебастром. Образец нагревался на электроплитке до температуры 350 град С. Распределение температуры по поверхности образца наблюдалось с помощью тепловизора ThermaCAM SC300 (FLIR Systems). Это изображение приведено на фиг.3. Как видно, радиационная температура торцов меандра ниже, чем радиационная температура областей, заполненных алебастром, непосредственно примыкающих к поверхностям меандра. Радиационная температура алебастра вдали от меандра также ниже температуры областей, непосредственно примыкающих к поверхностям меандра. Профиль температуры представлен на фиг.4. Представленные экспериментальные результаты объясняются явлением плазмон-фотонной конверсии.


ТЕРМИЧЕСКИЙ МЕТАМАТЕРИАЛ
ТЕРМИЧЕСКИЙ МЕТАМАТЕРИАЛ
ТЕРМИЧЕСКИЙ МЕТАМАТЕРИАЛ
ТЕРМИЧЕСКИЙ МЕТАМАТЕРИАЛ
Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
10.10.2014
№216.012.fad8

Способ лазерного разделения изотопов хлора

Изобретение относится к молекулярной физике, а именно к области разделения изотопов хлора, и может быть использовано для получения изотопически обогащенного хлора. Способ лазерного разделения изотопов хлора включает облучение исходного газа в качестве которого используется хлористый водород HCl...
Тип: Изобретение
Номер охранного документа: 0002530062
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.ff2a

Способ лазерного разделения изотопов водорода

Изобретение относится к молекулярной физике, а именно к области разделения изотопов водорода, и может быть использовано для выделения изотопа дейтерия D. Способ лазерного разделения изотопов водорода включает облучение исходного газа в качестве которого используется хлористый водород НСl...
Тип: Изобретение
Номер охранного документа: 0002531178
Дата охранного документа: 20.10.2014
27.05.2016
№216.015.43d9

Резонансная камера нагрева для устройств с источником излучения свч диапазона

Изобретение относится к СВЧ технике и предназначено для повышения однородности СВЧ поля при нагреве, сушке и других применениях теплового воздействия электромагнитного излучения СВЧ диапазона. Резонансная камера нагрева для устройств с источником излучения СВЧ диапазона, выполненная в форме...
Тип: Изобретение
Номер охранного документа: 0002585258
Дата охранного документа: 27.05.2016
25.08.2017
№217.015.cb41

Способ лазерного разделения изотопов фтора

Изобретение относится к способу разделения изотопов фтора. Способ включает облучение фтористого водорода резонансным инфракрасным излучением, с длиной волны 2,419 мкм, последующее воздействие лазерным излучением оптического или инфракрасного диапазона и интенсивностью, превышающей 3×10 Вт/см,...
Тип: Изобретение
Номер охранного документа: 0002620051
Дата охранного документа: 22.05.2017
20.01.2018
№218.016.116b

Способ измерения функции распределения коллоидных частиц по размерам в водном растворе

Изобретение относится к физике коллоидов и может быть использовано для определения функции распределения коллоидных частиц по размерам. Заявлен способ измерения функции распределения коллоидных частиц по размерам в водных растворах, включающий помещение исследуемого коллоидного раствора в...
Тип: Изобретение
Номер охранного документа: 0002634096
Дата охранного документа: 23.10.2017
Показаны записи 1-9 из 9.
10.10.2014
№216.012.fad8

Способ лазерного разделения изотопов хлора

Изобретение относится к молекулярной физике, а именно к области разделения изотопов хлора, и может быть использовано для получения изотопически обогащенного хлора. Способ лазерного разделения изотопов хлора включает облучение исходного газа в качестве которого используется хлористый водород HCl...
Тип: Изобретение
Номер охранного документа: 0002530062
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.ff2a

Способ лазерного разделения изотопов водорода

Изобретение относится к молекулярной физике, а именно к области разделения изотопов водорода, и может быть использовано для выделения изотопа дейтерия D. Способ лазерного разделения изотопов водорода включает облучение исходного газа в качестве которого используется хлористый водород НСl...
Тип: Изобретение
Номер охранного документа: 0002531178
Дата охранного документа: 20.10.2014
27.05.2016
№216.015.43d9

Резонансная камера нагрева для устройств с источником излучения свч диапазона

Изобретение относится к СВЧ технике и предназначено для повышения однородности СВЧ поля при нагреве, сушке и других применениях теплового воздействия электромагнитного излучения СВЧ диапазона. Резонансная камера нагрева для устройств с источником излучения СВЧ диапазона, выполненная в форме...
Тип: Изобретение
Номер охранного документа: 0002585258
Дата охранного документа: 27.05.2016
25.08.2017
№217.015.cb41

Способ лазерного разделения изотопов фтора

Изобретение относится к способу разделения изотопов фтора. Способ включает облучение фтористого водорода резонансным инфракрасным излучением, с длиной волны 2,419 мкм, последующее воздействие лазерным излучением оптического или инфракрасного диапазона и интенсивностью, превышающей 3×10 Вт/см,...
Тип: Изобретение
Номер охранного документа: 0002620051
Дата охранного документа: 22.05.2017
20.01.2018
№218.016.116b

Способ измерения функции распределения коллоидных частиц по размерам в водном растворе

Изобретение относится к физике коллоидов и может быть использовано для определения функции распределения коллоидных частиц по размерам. Заявлен способ измерения функции распределения коллоидных частиц по размерам в водных растворах, включающий помещение исследуемого коллоидного раствора в...
Тип: Изобретение
Номер охранного документа: 0002634096
Дата охранного документа: 23.10.2017
10.05.2018
№218.016.49b2

Способ лазерного разделения изотопов йода

Изобретение относится к области разделения изотопов йода и может быть использовано для получения изотопически обогащенного йода, а также при утилизации радиоактивных отходов. Способ лазерного разделения изотопов йода включает облучение паров йода (I) резонансным инфракрасным излучением с длиной...
Тип: Изобретение
Номер охранного документа: 0002651338
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.4d34

Способ лазерного разделения изотопов лития

Изобретение относится к области разделения изотопов лития и может быть использовано для получения изотопически обогащенного лития. Способ лазерного разделения изотопов лития включает облучение паров хлористого лития (LiCl) резонансным инфракрасным излучением с длиной волны 14,79 мкм, 7,451 мкм,...
Тип: Изобретение
Номер охранного документа: 0002652260
Дата охранного документа: 25.04.2018
01.03.2019
№219.016.ce34

Способ физиотерапии с применением импульсного света

Изобретение относится к медицине, а именно к физиотерапии. Способ включает воздействие на объект терапии модулированным электромагнитным излучением низкой интенсивности видимого или инфракрасного диапазона. При воздействии используют импульсы излучения длительностью от 2 до 4 мс. Длительность...
Тип: Изобретение
Номер охранного документа: 0002429889
Дата охранного документа: 27.09.2011
27.06.2020
№220.018.2ba6

Способ лазерного разделения изотопов кислорода

Изобретение относится к способу лазерного разделения изотопов кислорода и может быть использовано для получения изотопически обогащенного кислорода, а также для последующего синтеза изотопа фтора F, важного в медицинской диагностике. Способ включает облучение кислорода резонансным инфракрасным...
Тип: Изобретение
Номер охранного документа: 0002724748
Дата охранного документа: 25.06.2020
+ добавить свой РИД