×
10.04.2014
216.012.b409

Результат интеллектуальной деятельности: СПОСОБ ПОВЫШЕНИЯ ТЕПЛООТДАЧИ С ПОМОЩЬЮ МИКРОТУРБУЛИЗИРУЮЩИХ ЧАСТИЦ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области теплотехники и гальванотехники и может использоваться в системах повышения теплоотдачи для улучшения характеристик теплоотдачи на различных поверхностях устройства теплопередачи. Это достигается использованием в качестве микротурбулизирующих частиц углеродных нанотрубок (УНТ) «Таунит», а в качестве связывающей среды - оксидных гальванических покрытий. Прикрепление множества микротурбулизирующих частиц на теплоотдающую поверхность осуществляют с помощью нанесения оксидных покрытий, наномодифицирование которых осуществляют введением в электролит оксидирования УНТ «Таунит» с помощью ультразвукового диспергатора. Данный способ обеспечивает интенсификацию теплообменных процессов на теплоотдающих алюминиевых поверхностях, а также простоту реализации. 2 табл., 1 з.п. ф-лы.

Изобретение относится, в общем, к области теплотехники и гальванотехники и, конкретнее, к системе повышения теплоотдачи на различных поверхностях устройства теплопередачи.

Традиционная технология улучшения тепловой эффективности касается увеличения площади поверхностей теплоотдачи. Увеличение площади поверхности может быть достигнуто посредством обеспечения множества ребер, выступов или углублений, например, на поверхностях теплоотдачи, приводящих к увеличению суммарного потока тепла на единицу площади (базовой площади поверхности) устройства теплопередачи, получая в результате уменьшение размера и стоимости устройства теплопередачи или увеличение суммарной мощности устройства.

Другими традиционными технологиями улучшения термической эффективности являются способы, предусматривающие турбулизаторы течения или перегородки на поверхностях теплопередачи. Однако обеспечение турбулизаторов течения или перегородок приводит к увеличенным потерям давления в устройстве теплопередачи.

Таким образом, существует потребность в способе увеличения термической эффективности в устройстве теплопередачи, в то же время поддерживая компактный размер и приемлемые потери давления.

Известен способ изменения теплоотдающих свойств поверхностей, в котором используются механическая обработка изделий для получения микроструктурированных покрытий [1] (Патент США №6894409, F28F 13/18; F28F 3/00; F28F 13/00; F28F 13/02; F28F 1/10; F28F 3/04; F28F 013/12, 2005 г.). Согласно патенту обработка изделий из листового алюминия со структурированной поверхностью служит для улучшения свойств теплопередачи. Множество структурированных частей с размерами 1-50 микрометров располагаются на одной или обеих сторонах листа. Такой алюминиевый лист может быть использован как ребра или трубки теплообменника.

Недостатком этого способа является техническая сложность реализации способа на практике.

Другим способом является периодическое расположение на поверхности турбулизаторов с высотой, примерно равной толщине приграничного слоя теплоносителя [2] (Патент РФ №2178132, МКИ F28F 1/42, 1999 г.). Согласно патенту интенсификация теплоотдачи достигается периодическим расположением в каналах плавно очерченных турбулизаторов с высотой, примерно равной толщине пограничного слоя теплоносителя, и шагом, примерно равным эквиваленту канала. При этом критерием энергетической эффективности служит примерное равенство роста отношения коэффициентов сопротивления и роста коэффициента теплоотдачи соответственно каналов с турбулизаторами и гладких каналов.

Недостатком этого способа также является техническая сложность реализации способа на практике.

Известен также способ повышения теплоотдачи с использованием устройства для модуляции колебаний потока жидкости. Сущность изобретения: на теплообменную поверхность подают жидкость в виде пленки с одновременной модуляцией в ней колебаний, а модуляцию колебаний осуществляют путем периодического прерывания расхода жидкости с частотой f/f0=(0,6-1,7), где f - частота модулируемых возмущений, f0 - собственная частота колебаний пленки жидкости [3] (Патент РФ №2053480, МПК F28F 13/10, 1996 г.).

Такой способ требует сложного аппаратурного оснащения и неприменим для растворов с изменяющимися характеристиками, что делает сложной техническую реализацию его на практике.

Недостатки перечисленных выше способов частично устранены в способе нанесения металлического покрытия, основанном на сочетании слоев толщиной 0,003-0,017 дюймов, ввиду чего увеличивается шероховатость поверхности [4]. (Патент США №6644388, МКИ С23С 4/12; С23С 30/00; С23С 4/08; F28F 13/18; F28F 13/00; F23M 5/00; В32В 018/16; B22F 007/04; С23С 004/12, 2003 г.). Образец включает основу и внешний металлический слой, такой как покрытие, оснащенное увеличенной теплоотдачей от основы за счет сочетания слоев толщиной около 0,003" до 0,017", шероховатости поверхностного слоя с индексом как минимум порядка 500 микродюймов, прочности на разрыв эластичного покрытия, по крайней мере, около 5 тысяч фунтов на квадратный дюйм. Увеличение теплоотдачи в результате как минимум в 1,1 раз. Способ получения такого образца включает процесс термического распыления объединенных вольтовых дуг, в котором давление распыляемого газа поддерживается в пределах 20-80 Пси.

Основным недостатком данного способа, помимо технической сложности реализации на практике, является сравнительно небольшое улучшение коэффициента теплоотдачи (в 1,1 раза).

Ввиду перечисленных недостатков эти способы не нашли достаточного применения в производстве.

Наиболее близким по технической сущности и достигаемому эффекту является техническое решение [5] (Патент РФ №2447386, F24H 4/00, F28F 13/02, 2007 г.). Способ предусматривает повышение теплопередачи путем прикрепления на одну или более стенку теплопередачи множества микротурбулизирующих частиц, используя связывающую среду. Согласно патенту множество микротурбулизирующих частиц содержит никель, кобальт, алюминий, кремний, или железо, или медь, или их сплавы, или комбинацию, включающую любое из вышеприведенного, а связывающая среда содержит эпоксидную смолу, или металлическую фольгу, или мягкий припой, или твердый припой, или свариваемый материал, или их комбинацию. Технический результат - повышение теплопередачи.

Недостаток такого способа заключается в недостаточной эффективности, обусловленной применением связывающей среды, которая в месте перехода от микротурблулизирующей частицы к стенке теплопередачи создает высокое термическое сопротивление, сводящее на нет эффект от микротурбулизации. Другим недостатком является сложность реализации такого способа.

Задачей изобретения является повышение эффективности теплоотдачи.

Техническим результатом изобретения является упрощение технологии нанесения на теплопередающие алюминиевые поверхности микротурбулизаторов.

Поставленная задача решается способом повышения теплоотдачи с помощью микротурбулизирующих частиц путем прикрепления множества микротурбулизирующих частиц на теплоотдающую поверхность, используя связывающую среду, причем в качестве микротурбулизирующих частиц используют углеродные нанотрубки (УНТ) «Таунит», а качестве связывающей среды - оксидные гальванические покрытия.

Прикрепление множества микротурбулизирующих частиц на теплоотдающую поверхность осуществляют с помощью нанесения оксидных покрытий, наномодифицирование которых осуществляют введением в электролит оксидирования УНТ «Таунит» с помощью ультразвукового диспергатора.

Использование в качестве микротурбулизирующих частиц углеродных нанотрубок (УНТ) «Таунит», а в качестве связывающей среды - оксидированных гальванических покрытий обеспечивает:

- Эффективную турбулизацию потока на теплоотдающей поверхности за счет уменьшения термического сопротивления на линии раздела теплоотдающей поверхности и микотурбулизатора;

- Упрощение технологии прикрепления микротурбулизаторов к теплоотдающей поверхности;

- Возможность обработки этим способом поверхностей алюминия;

- Возможность использования серийного оборудования.

В качестве нанодисперсного материала используют фуллереноподобные углеродные нанотрубки (УНТ) - наноуглеродный материал, зарегистрированный под торговой маркой «Таунит», который производится в ООО «НаноТехЦентр». УНТ «Таунит» представляет собой длинные полые волокна, состоящие их графеновых слоев фулерреноподобной конструкции.

Таблица 1
Общая характеристика серии УНМ «Таунит»
Углеродный наноматериал «Таунит»
Параметры Значения
Наружный диаметр, нм 20÷70
Внутренний диаметр, нм 5÷10
Длина, мкм 2 и более
Общий объем примесей, % (после очистки) до 5 (до 1)
Насыпная плотность, г/см3 0,4÷0,6
Удельная геометрическая поверхность, м2 120÷130 и более
Термостабильность, °С До 600

Весь процесс нанесение оксидного покрытия состоит из следующих этапов:

1. Подготовка растворов для обезжиривания, травления, осветления, анодного оксидирования и уплотнения:

а. Водной раствор для обезжиривания состоит из 35-45 г/л тринатрийфосфата, 35-45 г/л кальцинированной соды, 10-14 г/л композиции «ЭКОМЕТ-012у».

б. Водной раствор для травления состоит из 65-75 г/л гидроксида натрия, 3-5 г/л композиции «ЭКОМЕТ-А180».

в. Водной раствор для осветления состоит из 145-155 г/л серной кислоты, 3-5 г/л композиции «ЭКОМЕТ-А180».

г. Водной раствор для анодного оксидирования состоит из 190-210 г/л серной кислоты, 26-28 г/л композиции «ЭКОМЕТ-А200», 100-1600 мг/л порошка УНТ «Таунит» (эксперименты проводились при разных концентрациях в данном диапазоне с шагом 300 мг/л). Перемешивание порошка производится в ультразвуковом диспергаторе в течение 4-6 минут.

д. Водной раствор для уплотнения состоит из 90-110 мг/л композиции «ЭКОМЕТ-А210».

2. Подогрев раствора для обезжиривания до температуры 60-70°С и обезжиривание образца в нем в течение 10-12 минут.

3. Промывка образца в теплой воде (40-60°С) в течение 1-2 минут.

4. Подогрев раствора для травления до температуры 50-70°С и травление образца в нем в течение 4-5 минут.

5. Промывка образца в теплой воде (40-60°С) в течение 1-2 минут.

6. Промывка образца в холодной воде (20-25°С) в течение 1-2 минут.

7. Осветление образца при температуре 20-25°С в течение 4-5 минут.

8. Промывка образца в холодной воде (20-25°С) в течение 1-2 минут.

9. Анодное оксидирование образца при температуре 18-22°С в течение 20-22 минут при силе тока 0,106 А. (при этом анодирование выполняется с одной стороны образца).

10. Выдержка образца без тока в электролите (растворе для анодного оксидирования) 30-60 секунд.

11. Промывка образца в холодной воде (20-25°С) в течение 1-2 минут.

12. Уплотнение образца при температуре 20-25°С в течение 15-17 минут.

13. Сушка образца феном при температуре 60-65°С.

Для пояснения изобретения описаны примеры осуществления данного метода.

Пример.

Электрохимическое оксидирование проводилось на предварительно подготовленную поверхность основы из материала алюминий АМг3 в электролите:

- Серная кислота - 200 г/л.

- Композиция «ЭКОМЕТ-А200» - 27 г/л.

- Порошок УНТ «Таунит» - 100 мг/л.

После введения в раствор электролита наноуглеродного материала «Таунит» электролит обрабатывают в ультразвуковом диспергаторе с частотой 22 кГц. Интенсивность ультразвуковой обработки:

- амплитуда 80 мкм;

- интенсивность звука 786 Вт/см2.

При анодировании использовались круглые образцы из алюминия АМг3 диаметром 28 мм, толщиной 1,6 мм и массой 2,6·10-3-2,65·10-3 кг.

Процесс проводится при плотности тока 1,5 А/дм при температуре 18-22°С в течение 20 минут. Получаемое покрытие беспористое и равномерно распределено по поверхности образца. Толщина покрытия составила 11,4-12,2 мкм.

Шероховатость полученного покрытия, измеренная портативным измерителем шероховатости «TR210» по четырем параметрам (Ra - среднее арифметическое отклонение профиля, Rz - высота неровностей профиля по десяти точкам, Rq - среднеквадратическое отклонение профиля, Rt - общая высота между наибольшим пиком и впадиной профиля), значительно превзошла по значениям шероховатость чистого неоксидированного алюминиевого покрытия. У чистого неоксидированного покрытия: Ra=0,49; Rz=2,8894; Rq=0,7302; Rt=3,363. Значения брались путем вычисления среднего арифметического значения с нескольких точек поверхности. У полученного наномодифицированного оксидированного покрытия: Ra=0,924 (увеличение на 88,54%); Rz=5,9658 (увеличение на 106,47%); Rq=1,2186 (увеличение на 66,886%); Rt=8,799 (увеличение на 161,6%).

Значение коэффициента теплоотдачи к воздуху у полученного покрытия выше, чем у чистого неоксидированного покрытия алюминия на 16% при скорости потока воздушной среды 1 м/с и температуре 40-100°С; на 19% при скорости потока воздушной среды 3 м/с и температуре 40-100°С и на 22% при скорости потока воздушной среды 5 м/с и температуре 40-100°С. Эти показатели превосходят те, что заявлены в прототипе.

Это позволяет использовать предложенный метод в теплотехнике взамен уже известных методов изменения теплоотдающих поверхностей.

Таблица 2
Значения коэффициента теплоотдачи чистых неоксидированных и наномодифицированных оксидированных алюминиевых поверхностей при скоростях обдува 1, 3, 5 м/с и температуре 40-100°С.
Концентрация УНТ «Таунит», мг/л Скорость обдува
1 м/с 3 м/с 5 м/с
0 40-44 Вт/(м2·К) 65-86 Вт/(м2·К) 91-113 Вт/(м2·К)
700 46-515 Вт/(м2·К) 76-101 Вт/(м2·К) 110-135 Вт/(м2·К)

Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
20.02.2013
№216.012.26c5

Способ получения объемного наноструктурированного материала

Изобретение относится к нанотехнологии. Сущность изобретения: в способе получения объемного наноструктурированного материала на подложке электроосаждением металла из электролита на подложку из электропроводного материала, индифферентного по отношению к осаждаемому металлу, на катоде образуют...
Тип: Изобретение
Номер охранного документа: 0002475445
Дата охранного документа: 20.02.2013
10.03.2013
№216.012.2e22

Способ приготовления электролита для получения композиционных покрытий на основе металлов

Изобретение относится к области гальванотехники и может быть использовано для нанесения композиционных покрытий. Способ в основе включает введение в электролит дисперсной фазы в виде твердых субмикрочастиц, при этом введение осуществляют в виде шипучих растворимых таблеток состава:...
Тип: Изобретение
Номер охранного документа: 0002477341
Дата охранного документа: 10.03.2013
20.05.2013
№216.012.4111

Способ корректировки наномодифицированного электролита

Изобретение относится к области гальванотехники и может быть использовано в электрохимической и химической обработке металлов с применением химических методов. Способ корректировки концентрации углеродных нанотрубок (УНТ) в электролите электрохимического осаждения металлов включает измерение...
Тип: Изобретение
Номер охранного документа: 0002482227
Дата охранного документа: 20.05.2013
25.08.2017
№217.015.a2e7

Модифицированный наноуглеродом электролит анодирования детали из алюминия или его сплава

Изобретение относится к области гальванотехники и нанотехнологии. Электролит содержит серную кислоту, композицию «ЭКОМЕТ-А200» и порошок углеродного наноматериала «Таунит», введенный с помощью ультразвукового диспергатора, при этом он содержит компоненты при следующем соотношении, г/л: серная...
Тип: Изобретение
Номер охранного документа: 0002607075
Дата охранного документа: 10.01.2017
Показаны записи 31-40 из 67.
10.02.2015
№216.013.254e

Декоративная плита на основе фанеры

Изобретение используется в строительстве в качестве финишной облицовки фасадов зданий и сооружений. Техническая задача - разработать альтернативный вид финишной облицовки фасадов. Причем данный вид не должен по основным эксплуатационным свойствам и внешнему виду уступать существующим видам...
Тип: Изобретение
Номер охранного документа: 0002541003
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2a20

Способ непрерывного приготовления многокомпонентных смесей сыпучих материалов

Изобретение относится к области переработки сыпучих материалов и может быть использовано для непрерывного приготовления многокомпонентных смесей в химической и других родственных с ней отраслях промышленности. Способ включает в себя непрерывное дозирование компонентов, их загрузку в смеситель...
Тип: Изобретение
Номер охранного документа: 0002542241
Дата охранного документа: 20.02.2015
20.03.2015
№216.013.33a5

Способ удаления водорастворимых примесей из суспензий органических продуктов

Изобретение относится к очистке тонкодисперсных органических веществ от водорастворимых примесей и может быть использовано в химической, нефтехимической, фармацевтической, пищевой отраслях промышленности. Описывается способ удаления водорастворимых примесей из суспензий органических продуктов...
Тип: Изобретение
Номер охранного документа: 0002544696
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.360e

Устройство для измерения температуры

Изобретение относится к измерительной технике и может быть использовано для проведения температурных измерений. Устройство для измерения температуры содержит мост, собранный на резисторах R1, R2, R3, R4, питаемый от источника стабилизированного напряжения U (точки b, c). К измерительной...
Тип: Изобретение
Номер охранного документа: 0002545322
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3f7d

Способ отмывки тонкодисперсных осадков на фильтрующей перегородке

Изобретение относится к отмывке тонкодисперсных осадков органических пигментов от водорастворимых примесей на фильтрующей перегородке и может быть использовано в других отраслях химической промышленности. Удаление водорастворимых примесей ведут с цикличной подачей промывной воды. При этом...
Тип: Изобретение
Номер охранного документа: 0002547741
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.415c

Энергосберегающая двухступенчатая сушильная установка для растительных материалов

Изобретение относится к области сушки растительных материалов, в частности к вакуумным сушилкам периодического действия, и может быть использовано для сушки пищевых продуктов, а именно овощей, грибов, фруктов, зелени и др. Энергосберегающая двухступенчатая сушильная установка для растительных...
Тип: Изобретение
Номер охранного документа: 0002548230
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4201

Способ определения вида и концентрации наночастиц в неорганических аморфных средах и композитах на основе полимеров

Способ определения вида и концентрации наночастиц в неорганических аморфных средах и композитах на основе полимеров может найти применение в электронике, радиотехнике, природоохранной, химической и нефтяной отраслях для контроля качества проведения технологических процессов и качества готовой...
Тип: Изобретение
Номер охранного документа: 0002548395
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4382

Способ определения функционального состояния системы гемостаза

Изобретение относится к медицине, а именно к гемокоагулогии, и может быть использовано для выявления лиц группы риска развития гемокоагуляционных осложнений. Сущность способа: проводят измерение амплитуды записи процесса свертывания крови в его начале, определяют показатели начала и конца...
Тип: Изобретение
Номер охранного документа: 0002548780
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.46bd

Способ определения коэффициента диффузии растворителей в массивных изделиях из ортотропных капиллярно-пористых материалов

Использование: для исследования процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из ортотропных капиллярно-пористых материалов в строительной, химической и других отраслях промышленности. Сущность изобретения заключается в том, что способ определения...
Тип: Изобретение
Номер охранного документа: 0002549613
Дата охранного документа: 27.04.2015
27.05.2015
№216.013.4e53

Косилка-измельчитель сидеральных культур

Изобретение относится к сельскохозяйственному машиностроению. Предложенная косилка-измельчитель сидеральных культур содержит корпус 1 корытообразоного сечения, открытый в передней и задней своих частях, опорные колеса 2, опорные подшипниковые узлы 3 для крепления ряда параллельных валов 4 с...
Тип: Изобретение
Номер охранного документа: 0002551569
Дата охранного документа: 27.05.2015
+ добавить свой РИД