×
10.04.2014
216.012.afa3

Результат интеллектуальной деятельности: СПОСОБ ГЕНЕРАЦИИ НЕИНДУКЦИОННОГО ТОРОИДАЛЬНОГО ЗАТРАВОЧНОГО ТОКА ПРИ СТАЦИОНАРНОЙ РАБОТЕ ТЕРМОЯДЕРНОГО РЕАКТОРА

Вид РИД

Изобретение

№ охранного документа
0002510678
Дата охранного документа
10.04.2014
Аннотация: Изобретение относится к физике высокотемпературной плазмы и может найти применение в управляемом термоядерном синтезе, в радиационном материаловедении, для исследований в физике космической плазмы. В заявленном изобретении используется механизм неиндукционной генерации тороидального затравочного тока за счет нагрева ионов малой добавки, движущихся по потато орбитам, при помощи широкополосного генератора излучения на ионно-циклотронной частоте в конечной области близи магнитной оси установки. Техническим результатом является создание затравочного тока, необходимо для создания стационарного токамака-реактора. 1 з.п. ф-лы.

Изобретение относится к физике высокотемпературной плазмы и может найти применение в управляемом термоядерном синтезе.

Известен способ создания неиндукционного тока в замкнутых магнитных ловушках типа «Токамак», работающих в импульсном режиме, при помощи бутстреп-тока, см., например, М.Kikuchi, M.Azumi, S.Tsuji, H.Kubo, Nuclear Fusion, 1990, V.30, P.343.

Недостатком известного способа является то, что плотность бутстреп-тока мала вблизи магнитной оси установки и растет к периферии, что создает немонотонное распределение плотности тока и существенно усложняет стационарную работу реактора. В связи с этим для стационарной работ термоядерного реактора типа «Токамак» вблизи оси установки необходимо генерировать каким-либо образом дополнительный, так называемый «затравочный» ток (смотри R.J.Bickerton, J.W.Connor and J.B.Taylor, Natural physical science 229, 110 (1971), B.B.Kadomtsev, V.D.Shzfranov, in Proceedings of the 4th International Conference on Plasma Physics and Controlled nuclear Fusion Research (Vienna: IAEA, 1971) Vol.2, P.479.)

Известен способ, в котором при помощи излучения узкополосного генератора ионно-циклотронной частоты (f=f0(1±2%)) греют все частицы, проходящие в области, в которой частота f является резонансной (M.Laxaback, T.Hellsten, Modelling of minority ion cyclotron current drive during the activated phase of ITER, Nucl. Fusion, v.45, p.1510, 2005).

Недостатком известного способа является то, что полоса частот генераторов, используемых в настоящее время для нагрева плазмы, не превышает ±2% относительно основной частоты, что приводит к тому, что создаваемый таким способом ток составляет 0.2-0.5% от омического, что недостаточно для обеспечения стационарной работы реактора.

Также известно техническое решение по патенту РФ №2019874, опубл. 15.09.1994, «СПОСОБ ПОДДЕРЖАНИЯ СТАЦИОНАРНОГО ТОКА В ПЛАЗМЕ ТОРОИДАЛЬНЫХ ТЕРМОЯДЕРНЫХ УСТАНОВОК ТИПА ТОКАМАК».

Изобретение относится к физике высокотемпературной плазмы и может быть использовано при разработке установок управляемого термоядерного синтеза. Сущность изобретения: для упрощения создания и поддержания стационарного тока в токамаке и других тороидальных системах электронам плазмы передают дополнительный импульс от электронов пучка, проникающего в центр плазмы. Это достигается при взаимодействии двух или более встречных многократно обходящих тор электронных пучков. Источники плазмы расположены около стенки камеры, а электроны инжектируются вдоль магнитного поля. Расположение источников плазмы и ее параметры выбирают из условия I1>I2>Ip/n, где Ip - ток в плазме; n - число прохождений пучков вокруг тора; I1, I2 - токи пучков. Кроме этого, необходимо, чтобы энергия частиц пучков была больше тепловой энергии плазмы.

Недостатком известного решения является то, что использование взаимодействия двух или более встречных многократно обходящих тор электронных пучков усложняет реализацию и увеличивает стоимость стационарного термоядерного реактора.

В предлагаемом изобретении используется тот факт, что потато орбиты пересекают экваториальную плоскость в любой точке экваториальной плоскости токамака, причем существует область, в которой нет частиц, с параметрами, соответствующими потато орбитам, но движущихся в обратном направлении. Сечение этой области для установки ИТЭР соответствует окружности с радиусом, равным r=0.11a, где 2a - полный размер плазменного шнура в экваториальной плоскости. Нагрев ионов на всех потато орбитах внутри упомянутой области создает продольный затравочный ток.

Так как эффективный нагрев плазмы в магнитном поле при помощи излучения на ионно-циклотронной частоте происходит только при помощи нагрева ионов, по массе отличающихся от ионов основной плазмы, а содержание таких ионов в установке не превышает 1-10%, то такие ионы называются ионами малой добавки. Наиболее близким техническим решением - прототипом (имеет признаки: Способ генерации неиндукционного тороидального затравочного тока при стационарной работе термоядерного реактора, включающий введение в плазму излучения на ионно-циклотронной частоте и высокочастотный нагрев ионов, движущихся по потато орбитам, проходящим вблизи магнитной оси токамака) является способ генерации неиндукционного тока при стационарной работе самоподдерживающегося термоядерного реактора, предложенного в работе L-G.Eriksson and F.Porcelly, Dynamics of energetic ion orbits in magnetically confined plasmas, Plasma physics and controlled fusion, v.43, p.R145, 2001. Для реализации этого предложения рассматривается нагрев ионов на потато орбите, проходящей через магнитную ось, у которой продольная скорость обращается в нуль на оси (под термином: «потато орбита» следует понимать траекторию движения частицы, на которой направление продольной скорости частицы совпадает с направлением омического тока в токамаке «…potato bootstrap current…»),- См. например:K.C.Shaing et al., Steady State Tokamak Equilibria Without External Current Drive, Phys. Rev. Letters, 79, 3652, 1997.

В этом способе для создания стационарного термоядерного реактора на основе системы «Токамак» предлагалось использовать высокочастотный нагрев только ионов, движущихся по потато орбитам, проходящих через магнитную ось токамака. При этом создают ловушку со стационарным тороидальным магнитным полем, заполняют ее плазмой с плотностью и температурой, необходимыми для осуществления самоподдерживающихся термоядерных реакций, и генерируют диамагнитный ток ионов, проходящих только через магнитную ось, при этом используется излучение узкополосного генератора ионной циклотронной частоты. Недостатком известного способа является то, что диамагнитный ток рассчитывался только на магнитной оси установки, где плотность бутстреп тока близка к нулю, а при удалении от оси установки плотность бутстреп-тока нарастает. Такое сильно немонотонное распределение плотности тока делает невозможным устойчивое удержание плазмы.

Техническим результатом предложенного изобретения является использование механизма генерации затравочного тока в рассматриваемой области при увеличении поперечной энергии частиц малой добавки (например 3He), движущихся по этим орбитам при помощи излучения широкополосного генератора ионной циклотронной частоты, что позволяет существенно увеличивать неиндукционный продольный ток по сравнению с током, получаемым известными методами, в частности, по сравнению с прототипом.

Для достижения указанного технического результата предложен способ генерации неиндукционного тороидального затравочного тока при стационарной работе термоядерного реактора, включающий введение в формируемую в вакуумной камере реактора плазму излучения на ионно-циклотронной частоте и высокочастотный нагрев ионов, движущихся по потато орбитам, проходящим вблизи магнитной оси токамака,причем, дополнительно в плазму вводят ионы 3He, высокочастотный нагрев которых производят посредством широкополосного (Δf=±0.04f0) излучения генератора ионной циклотронной частоты, причем нагрев осуществляют в области с радиусом до вблизи магнитной оси установки, где: A=R/a - аспектное отношение, ρi - ларморовский радиус иона, q - коэффициент запаса устойчивости, R и а - большой и малый радиусы токамака,

при этом

- при формировании плазмы вакуумную камеру реактора заполняют смесью дейтерия, трития, а ионы 3He добавляют в количестве от 1 до 5% относительно количества ионов основной плазмы.

Для достижения технического результата в способе генерации неиндукционного тороидального затравочного тока при стационарной работе термоядерного реактора создают ловушку со стационарным тороидальным магнитным полем, заполняют ее плазмой с плотностью и температурой, необходимыми для осуществления самоподдерживающихся термоядерных реакций, добавляют в нее ионы малой добавки (в дейтериево-тритиевой плазме это могут быть ионы 3Не), увеличивают поперечную энергию ионов малой добавки при помощи излучения широкополосного генератора ионно-циклотронной частоты.

В способе генерации тороидального затравочного тока при стационарной работе самоподдерживающегося термоядерного реактора осуществляют следующую последовательность операций.

Вакуумную камеру термоядерного реактора типа «Токамак» заполняют смесью дейтерия и трития с небольшим (порядка 1-5%) количеством 3He. Внутри камеры создают тороидальное магнитное поле и возбуждают вихревое электрическое поле, осуществляют пробой газа, возбуждают омический (индукционный) ток, в результате чего камера установки заполняется плазмой. Регулируют величину вихревого электрического поля, величину поступающей в камеру из дополнительного устройства дейтерий-тритиевой смеси и, используя систему дополнительного нагрева ионов и электронов, достигают рабочих параметров плазмы. Одновременно при помощи излучения широкополосного генератора ионно-циклотронной частоты увеличивают поперечную энергию ионов добавки, что приводит к генерации тороидального затравочного тока в конечной области вблизи магнитной оси установки. Величина этого тока определяется величиной запаса устойчивости вблизи оси установки, величиной области, в которой производится нагрев, сортом и количеством ионов малой добавки.

В предложенном способе генерации тороидального затравочного тока вблизи магнитной оси термоядерного реактора при стационарной работе термоядерного реактора используется увеличение поперечной энергии потато частиц за счет использования излучения широкополосного генератора ионно-циклотронной частоты, пересекающих экваториальную плоскость установки в области, в которой нет частиц, движущихся в противоположном направлении (термин: «потато частиц» подразумевает частицы (ионы), движущиеся по «потато орбите»).

Практически реализация предложенного решения поясняется приведенными ниже параметрами работы и соотношениями используемых регулируемых величин.

А именно: в предложенном способе генерации неиндукционного тороидального затравочного тока и полоидального магнитного поля в токамаке для обеспечения стационарной работы термоядерного реактора дополнительно генерируют неиндукционный тороидальный затравочный ток с использованием частиц, движущихся по потато орбитам в конечной области вблизи магнитной оси. Параметры этой области определены ниже.

Для оценки используем следующие параметры установки ИТЭР:

Большой радиус установки R=6.2 м
Малый радиус установки a=2 м
Напряженность магнитного поля на оси
установки B0=5.3 Тл
Коэффициент запаса устойчивости на оси q=1
Плотность ионов 3Не nHe=1019 м-3
Поперечная энергия ускоренных ионов 3He 1 МэВ
Величина омического тока 15 МА

Радиус области, в которой необходимо производить нагрев ионов

где А=R/а - аспектное отношение, ρi - ларморовский радиус иона.

Для ИТЕР r/a=0.114. Ширина полосы ионно-циклотронных частот генерации

где .

Расчеты показывают, что предлагаемый метод позволяет создать вблизи оси установки ИТЕР неиндукционный тороидальный затравочный ток величиной 1 МА, т.е. ток, максимальная величина которого составляет 6.7% от величины омического тока, что более чем в 10 раз превышает величину неиндукционного тока, создаваемого известным способом.


СПОСОБ ГЕНЕРАЦИИ НЕИНДУКЦИОННОГО ТОРОИДАЛЬНОГО ЗАТРАВОЧНОГО ТОКА ПРИ СТАЦИОНАРНОЙ РАБОТЕ ТЕРМОЯДЕРНОГО РЕАКТОРА
Источник поступления информации: Роспатент

Показаны записи 151-160 из 259.
29.05.2018
№218.016.5623

Система управления электронной плотностью плазмы на установках типа токамак

Изобретение относится к средствам проведения исследований в области управляемого термоядерного синтеза на установках типа токамак. Система управления электронной плотностью плазмы состоит из СВЧ интерферометра, с опорным каналом и основным каналом, проходящим через камеру токамака, на одном...
Тип: Изобретение
Номер охранного документа: 0002654518
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.58ad

Способ создания лазерного излучения и лазер, реализующий этот способ

Изобретение относится к лазерной технике. Для создания лазерного излучения используют газоразрядную камеру, установленную на ее выходе ионно-оптическую систему для формирования ускоренного пучка ионов, лазерный резонатор, в котором устанавливают узел перезарядки, представляющий проводящее...
Тип: Изобретение
Номер охранного документа: 0002653567
Дата охранного документа: 11.05.2018
29.05.2018
№218.016.58dd

Устройство и способ для формирования мощных коротких импульсов co

Изобретение относится к лазерной технике. Устройство для формирования мощных коротких импульсов СO лазером состоит из последовательно расположенных задающего генератора на линии Р(20) 10-мкм полосы, трехсекционной резонансно-поглощающей ячейки со смесью SF и N, оптической схемы геометрического...
Тип: Изобретение
Номер охранного документа: 0002653568
Дата охранного документа: 11.05.2018
11.06.2018
№218.016.6116

Устройство для передачи вращательного движения в герметичный объём (варианты)

Изобретение относится к электротехнике и может быть использовано для поворота деталей через герметичную оболочку, например заслонки светового или молекулярного пучка в устройствах для напыления тонких пленок, для смены подложек при напылении путем поворота кассеты и пр., также может...
Тип: Изобретение
Номер охранного документа: 0002657013
Дата охранного документа: 08.06.2018
16.06.2018
№218.016.6238

Бисфенольные производные флуорена, обладающие антимикоплазменной активностью, и способ их получения

Изобретение относится к бисфенольным производным флуорена указанной ниже общей формулы 1, обладающим антимикоплазменной активностью, в которой L=OC(O), R1-R4 могут быть одинаковыми или различными и каждый независимо представляет Н, СООН, C(O)NHR5, R5 - фенил, замещенный метилом (за исключением...
Тип: Изобретение
Номер охранного документа: 0002657731
Дата охранного документа: 15.06.2018
05.07.2018
№218.016.6be2

Лекарственное средство пролонгированного действия на основе анастрозола

Изобретение относится к фармацевтике и медицине и представляет собой лекарственное средство пролонгированного действия на основе анастрозола в виде лиофилизата для приготовления суспензии для внутримышечного введения, содержащее анастрозол (10,0÷15,0 мас%), сополимер молочной и гликолевой...
Тип: Изобретение
Номер охранного документа: 0002659689
Дата охранного документа: 03.07.2018
12.07.2018
№218.016.6fff

Электролизная установка высокого давления

Изобретение относится к устройствам для получения водорода и кислорода электролизом воды и может быть использовано для получения водорода и кислорода высокого давления. Техническим результатом заявленного изобретения является улучшение эксплуатационных характеристик электролизной установки...
Тип: Изобретение
Номер охранного документа: 0002660902
Дата охранного документа: 11.07.2018
09.08.2018
№218.016.7901

Способ идентификации пользователя компьютера "человек или интернет-робот"

Изобретение относится к безопасности компьютерных сетей, а именно к формированию изображений при прохождении пользователем полностью автоматизированного теста Тьюринга. Технический результат - повышение вероятности отличить человека от интернет-робота при доступе к интернет-ресурсам. Способ...
Тип: Изобретение
Номер охранного документа: 0002663475
Дата охранного документа: 06.08.2018
09.08.2018
№218.016.79e3

Способ получения эпитаксиальной пленки многослойного силицена, интеркалированного европием

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно EuSi кристаллической модификации hP3 (пространственная группа N164, ) со структурой интеркалированных европием слоев силицена, которые могут быть использованы для проведения экспериментов по...
Тип: Изобретение
Номер охранного документа: 0002663041
Дата охранного документа: 01.08.2018
10.08.2018
№218.016.7b05

Способ регистрации нейтронов и устройство для его осуществления

Группа изобретений относится к области регистрации нейтронов сцинтилляционным методом с использованием неорганического сцинтилляционного материала. Сущность изобретений заключается в том, что способ регистрации нейтронов содержит этапы, на которых регистрируют фотоны сцинтилляций, образующиеся...
Тип: Изобретение
Номер охранного документа: 0002663683
Дата охранного документа: 08.08.2018
Показаны записи 141-150 из 150.
19.01.2018
№218.015.ff8f

Электролизер и каскад электролизеров

Изобретение относится к электролизеру, содержащему корпус с электролитом с размещенными в нем электролизной ячейкой с анодом, катодом и мембраной, разделяющей объем электролизной ячейки на анодное и катодное пространства, анодный контур циркуляции электролита, включающий емкость с электролитом...
Тип: Изобретение
Номер охранного документа: 0002629561
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.028f

Способ переработки углеродсодержащего сырья в реакторе с расплавом металла

Изобретение относится к технологии комплексной переработки различных видов углеводородсодержащего сырья в расплаве металлов с получением в качестве промежуточного продукта смеси водорода и монооксида углерода (синтез-газа). Способ заключается в процессе газификации, где получают поток...
Тип: Изобретение
Номер охранного документа: 0002630118
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.0e65

Бланкет термоядерного реактора

Изобретение конструкции бланкета термоядерного реактора. Заявленный бланкет состоит из по крайней мере из одного вертикального металлического модуля, нижняя часть которого заполнена кипящим раствором сырьевого материала и соединена патрубком с устройством для извлечения из раствора целевых...
Тип: Изобретение
Номер охранного документа: 0002633373
Дата охранного документа: 12.10.2017
19.01.2018
№218.016.0ebe

Устройство крепления

Изобретение относится к области механики и может быть использовано для крепления объектов. Техническим результатом заявленного изобретения является повышение надежности удержания объектов на штатных местах при приложении к ним сил без использования крепежных устройств в виде резьбовых...
Тип: Изобретение
Номер охранного документа: 0002633229
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0ee2

Структура полупроводник-на-изоляторе и способ ее изготовления

Изобретение относится к твердотельной электронике. Структура полупроводник-на-изоляторе содержит изолятор, расположенный на нем поверхностный слой полупроводника и сформированный в изоляторе имплантацией ионов легкого газа и последующего высокотемпературного отжига дефектный термостабильный...
Тип: Изобретение
Номер охранного документа: 0002633437
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f90

Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке

Изобретение относится к устройству для измерения спектральных характеристик плазмы реактора-токамака. Устройство содержит измерительный объем с расположенными в нем катодами и анодом тлеющего разряда, размещенный в стенке вакуумной камеры реактора-токамака, соединенный диагностическим каналом с...
Тип: Изобретение
Номер охранного документа: 0002633517
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.0ffd

Бланкет термоядерного реактора с естественной циркуляцией

Изобретение относится к конструкции бланкета термоядерного реактора. В заявленном устройстве предусмотрено наличие по крайней мере одного вертикального металлического модуля с раствором сырьевого материала, соединенного патрубками, расположенными в верхней и нижней части, с контуром...
Тип: Изобретение
Номер охранного документа: 0002633419
Дата охранного документа: 16.10.2017
13.02.2018
№218.016.264e

Тепловой узел установки для выращивания галоидных кристаллов методом горизонтальной направленной кристаллизации

Изобретение относится к области техники, связанной с выращиванием кристаллов из расплавов методом горизонтально направленной кристаллизации (ГНК), которые широко используются в качестве сцинтилляторов для детекторов ионизирующего излучения, лазерных кристаллов и элементов оптических приборов,...
Тип: Изобретение
Номер охранного документа: 0002643980
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3482

Способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей для проведения реакции переэтерификации

Изобретение относится к области биохимии. Предложен способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей. Способ включает наращивание биомассы дрожжей Yarrowia lipolytica ВКПМ Y-3600, отделение биомассы, лиофильную сушку биомассы, приготовление суспензии...
Тип: Изобретение
Номер охранного документа: 0002646104
Дата охранного документа: 01.03.2018
+ добавить свой РИД