×
27.03.2014
216.012.af2d

Результат интеллектуальной деятельности: ЭЛЕКТРИЧЕСКАЯ МАШИНА С НЕСКОЛЬКИМИ ОХЛАЖДАЮЩИМИ ПОТОКАМИ И СПОСОБ ОХЛАЖДЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002510560
Дата охранного документа
27.03.2014
Аннотация: Изобретение относится к электрической машине с несколькими охлаждающими потоками и способу охлаждения. Монтаж электрической машины и, в частности, генератора на постоянных магнитах должен быть упрощен без потерь качества охлаждения. Электрическая машина включает в себя статор (12), который снабжен каркасом (22) для обмотки и в котором имеется, по меньшей мере, один радиальный шлиц (23) для охлаждения, и ротор (11), в котором также имеется, по меньшей мере, один радиальный шлиц (16) для охлаждения. Каркас (22) для обмотки статора (12) снабжен на своей наружной боковой поверхности несколькими проходящими в осевом направлении ребрами (24) охлаждения, по которым может вводиться проходящий в осевом направлении первый охлаждающий поток (25). Кроме того, ротор (11) снабжен проходящими в осевом направлении первыми охлаждающими каналами (17), которые впадают в его, по меньшей мере, один радиальный шлиц (16) для охлаждения, так что второй охлаждающий поток (26) может вводиться через осевые первые охлаждающие каналы (17) ротора (11), по меньшей мере, один радиальный шлиц (16) для охлаждения ротора, воздушный зазор (27) между ротором и статором, по меньшей мере, один радиальный шлиц (23) для охлаждения и в осевом направлении по осевым ребрам (24) охлаждения статора. 2 н. и 5 з.п. ф-лы, 1 ил.

Настоящее изобретение касается электрической машины, включающей в себя статор, снабженный каркасом для обмотки, в котором имеется по меньшей мере один радиальный вентиляционный шлиц, и ротор, в котором также имеется по меньшей мере один радиальный вентиляционный шлиц. Кроме того, настоящее изобретение касается способа охлаждения такой электрической машины.

У электрических машин для отвода тепла от ротора и статора часто как ротор, так и статор снабжены проходящими радиально шлицами для охлаждения. Если эта электрическая машина представляет собой так называемый генератор на постоянных магнитах, то монтаж постоянных магнитов в соответствующие карманы ротора является сравнительно сложным, если в роторе имеются многочисленные радиальные вентиляционные шлицы. Однако чтобы иметь возможность гарантировать достаточный отвод тепла, до сих пор мирятся с повышенной сложностью монтажа. Так, до сих пор генераторы на постоянных магнитах изготавливаются с одинаковым количеством радиальных шлицов для охлаждения статора и ротора, которые обеспечивают равномерный отвод тепла. Ротор со своими шлицами для охлаждения служит при этом в качестве радиального вентилятора. Такой генератор известен, например, из EP 1050949A1.

Из DE 1488657 известны снабженные пазами листы для электрических машин с проходящими в осевом направлении охлаждающими каналами. Отдельные пазы для обмотки имеют форму поперечного сечения, адаптированную к их соответствующему положению относительно охлаждающих каналов, а также их контурам, таким образом, что все соответствующие отдельным пазам минимальные значения высоты ярма имеют по меньшей мере приблизительно одинаковую величину.

В EP 1455433 A1 описан турбогенератор с охлаждением ротора, у которого охлаждающее средство может перемещаться различными путями.

Задача настоящего изобретения заключается, таким образом, в том, чтобы уменьшить сложность монтажа электрической машины и, в частности, электрической машины с ротором, возбуждаемым от постоянных магнитов. Кроме того, должен быть указан способ, с помощью которого возможен эффективный отвод тепла от электрической машины, имеющей удобную в монтаже конструкцию.

В соответствии с изобретением эта задача решается с помощью электрической машины по п.1 формулы изобретения.

Кроме того, в соответствии с изобретением предлагается способ охлаждения электрической машины по п.5 формулы изобретения.

Предпочтительным образом в соответствии с настоящим изобретением два охлаждающих потока, которые обеспечивают особенно эффективный отвод тела от статора, соответственно взаимодействуют. В частности, статор не только получает от ротора предварительно нагретую охлаждающую среду, а дополнительно охлаждается «не бывшим в употреблении» охлаждающим средством по осевым ребрам охлаждения с помощью другого охлаждающего потока.

Ротор пронизан только одним единственным радиальным шлицом для охлаждения. В общем случае у предлагаемой изобретением электрической машины может быть предусмотрено меньше радиальных шлицов для охлаждения в роторе, чем в уровне техники, так как дополнительный осевой охлаждающий поток обеспечивает дополнительный отвод тепла. Все же особенно предпочтительным является один из вариантов осуществления, предусматривающий только один единственный радиальный шлиц для охлаждения в роторе, так как постоянные магниты могут тогда без затруднений вставляться в ротор соответственно с торцевых сторон и заливаться.

Кроме того, осевые первые охлаждающие каналы ротора находятся с одной стороны шлица для охлаждения, осевые вторые охлаждающие каналы (со своими центральными осями) относительно оси ротора в радиальном направлении ниже первых охлаждающих каналов, а осевые третьи охлаждающие каналы на радиальной высоте первых охлаждающих каналов с другой стороны шлица для охлаждения, так что третий охлаждающий поток может направляться отдельно от второго охлаждающего потока через вторые охлаждающие каналы, шлиц для охлаждения и радиальные охлаждающие каналы. При этом в качестве ограничительной точки радиальной высоты (относительно оси ротора) охлаждающего потока рассматривается центр охлаждающего потока. Предпочтительным образом путем смены плоскостей охлаждения может быть обеспечен отвод тепла также от расположенной ниже по потоку части ротора с помощью «не бывшего в употреблении» или, соотв., еще не нагретого охлаждающего средства.

Дополнительно к этому может быть предусмотрен четвертый охлаждающий поток, который вводится в ротор на радиальной высоте второго охлаждающего потока, в роторе перенаправляется на радиальную высоту ниже второго охлаждающего потока и выходит из ротора а этой более низкой радиальной высоте. Благодаря этому уже нагретый поток охлаждающего средства направляется по определенному осевому пути в направлении вала, где он вряд ли уже должен будет справляться с задачами охлаждения. Тогда в этой осевой области задачи охлаждения может выполнять третий охлаждающий поток.

В одном из вариантов осуществления ротор возбуждается постоянными магнитами. При этом, как правило, возникает наибольшая часть потерь в статоре. Тем более позитивным является действие предлагаемого изобретением высокоэффективного охлаждения статора.

Кроме того, ротор может включать в себя напорный диск, в котором имеются отверстия для вторых или третьих охлаждающих каналов, каждое из которых меньше, чем поперечное сечение второго или третьего охлаждающего канала. С помощью этих отверстий можно устанавливать надлежащим образом соотношение расхода охлаждающих каналов, не уменьшая охлаждающие каналы в роторе в поперечном сечении.

Особым образом статор может быть снабжен пакетом сердечника, а ребра охлаждения могут быть образованы за счет того, что каждый отдельный лист имеет выступающие наружу продолжения. Благодаря этому можно очень простым способом изготавливать пакет сердечника статора с наружными ребрами охлаждения, потому что ребра охлаждения уже «отштампованы» на пакете сердечника. Альтернатива могла бы заключаться в том, чтобы приваривать наружные ребра охлаждения к пакету сердечника статора. Однако приваривание представляет собой дополнительный рабочий шаг, которого можно избежать.

Теперь настоящее изобретение будет пояснено более подробно с помощью прилагаемого чертежа, на котором показано частичное поперечное сечение предлагаемого изобретением генератора с постоянными магнитами.

Изложенные ниже более подробно примеры осуществления представляют собой предпочтительные варианты осуществления настоящего изобретения.

На фигуре показан генератор 1, снабженный охладителем 2. Охладитель 2 включает в себя вентилятор 3, предназначенный для всасывания охлаждающего воздуха, который он вдувает в теплообменник 4. Воздух течет оттуда через выпускные патрубки 5 наружу. Тем самым задается наружный циркуляционный контур охлаждения.

Теплообменник 4 посредством наружного циркуляционного контура 6 охлаждения охлаждает внутренний, замкнутый циркуляционный контур 7 охлаждения. Привод внутреннего, замкнутого циркуляционного контура 7 охлаждения осуществляется с помощью установленного на валу вентилятора 8, который смонтирован на стороне B вала 9 генератора 1. Внутренний циркуляционный контур охлаждения проходит, начинаясь от вентилятора 8, через теплообменник и проникает на стороне A (приводная сторона) генератора в пространство лобовой части обмотки. Там он обтекает лобовую часть 10 обмотки, а также схему 31 обмотки, и затем протекает через ротор 11 и статор 12, как будет ниже поясняться более подробно. Наконец, охлаждающее средство (в частности, воздух) протекает сквозь пространство лобовой части обмотки на стороне B (неприводная сторона) генератора и снова достигает установленного на валу вентилятора 8 или, соответственно, соответствующего вентилятора с приводом от постороннего двигателя.

Ротор 11 включает в себя пакет 13 сердечника, на торцевых сторонах которого расположены напорные диски или напорные кольца 14 и 15. В своем осевом направлении ротор 11 разделен на две части радиальным шлицом 16 для охлаждения. Этот шлиц 16 для охлаждения здесь образуется проставкой с шайбами 29.

Ротор 11 включает в себя также проходящие в осевом направлении охлаждающие каналы, осевые центры которых лежат на двух соосных цилиндрах. Ниже радиальное расстояние от центральной оси охлаждающего канала до оси вала 9 будет называться радиальной высотой этого охлаждающего канала. В соответствии с настоящим примером ротор 11 включает в себя, таким образом, первый охлаждающий канал и в радиальном направлении ниже него, то есть на меньшей радиальной высоте, второй осевой охлаждающий канал 18. С правой стороны радиального шлица 16 для охлаждения, который делит ротор посередине, на той же радиальной высоте, что и первый охлаждающий канал 17, находится третий охлаждающий канал 19. В радиальном направлении ниже него также на той же радиальной высоте, что и второй охлаждающий канал 18, находится четвертый охлаждающий канал 20. В пакете 13 сердечника в специально предусмотренных для этого карманах расположены распределенные в окружном направлении постоянные магниты. Эти магниты вставлены с двух торцевых сторон в ротор и залиты также с двух торцевых сторон. Так как в роторе 11 имеется только один средний радиальный шлиц 16 для охлаждения, вставление магнитов и заливка осуществляются соответственно просто.

Статор 12 включает в себя в качестве каркаса для обмотки пакетом 22 сердечника, который пронизан многочисленными проходящими радиально шлицами 23 для охлаждения. На наружной боковой поверхности пакета сердечника на пакете 22 сердечника отформованы проходящие в осевом направлении ребра 24 охлаждения. Ребра 24 охлаждения отходят в форме звезды от статора 12 и могут быть приварены к пакету сердечника. Альтернативно каждый отдельный лист пакета 22 сердечника имеет выступающие наружу продолжения, так что при составлении пакета отдельные листы образуют ребра 24 охлаждения.

В соответствии с изобретением внутренний циркуляционный контур охлаждения включает в себя по меньшей мере два различных охлаждающих потока. Первый охлаждающий поток 25 проходит по боковой поверхности статора исключительно в осевом направлении. С помощью этого потока, который снабжается практически без поглощения тела почти непосредственно теплообменником 4, эффективно охлаждаются осевые ребра 24 охлаждения статора. В конце стороны B этот первый охлаждающий поток 25 используется также для того, чтобы охлаждать лобовую часть обмотки.

Второй охлаждающий поток 26 снабжается охлаждающим средством или, соотв., охлаждающим воздухом, которое/который в расположенном со стороны A пространстве лобовой части обмотки уже охладил лобовую часть 10 обмотки и схему 31 обмотки. Этот второй охлаждающий поток проникает через расположенное со стороны A напорное кольцо 14 в первый охлаждающий канал 17 ротора 11. У радиального шлица 16 для охлаждения в середине ротора второй поток 26 охлаждающего средства направляется в радиальном направлении наружу. Он распределяется в осевом направлении по всему воздушному зазору 27 между ротором 11 и статором 12. Оттуда он, так как напорные кольца 14 и 15 имеют несколько больший диаметр, чем пакет сердечника ротора вместе с постоянными магнитами 21, вытесняется в радиальном направлении наружу через шлицы 23 для охлаждения статора. На наружной поверхности статора второй охлаждающий или, соответственно, воздушный поток 26 соединяется с первым воздушным потоком 25. Второй воздушный поток 26 обеспечивает, таким образом, охлаждение изображенной на фигуре части ротора и внутренней части статора по всей его осевой длине. Второй охлаждающий поток 26 проходит, таким образом, по существу Z-образно. Он течет сначала в осевом направлении, затем в радиальном направлении и, наконец, снова в осевом направлении. Вместе с линейным первым охлаждающим потоком может, таким образом, осуществляться достаточный отвод тепла от статора 12, даже если ротор снабжен только одним радиальным шлицом 16 для охлаждения, а не множеством таких радиальных шлицов.

Опционально, как в изображенном на фигуре примере, может быть предусмотрен третий охлаждающий поток 28, который со стороны A втекает во вторые охлаждающие каналы 18 через напорный щит 14. В радиальном шлице 16 для охлаждения ротора 11 находится проставка. В настоящем примере в качестве проставки применяются три шайбы 29. Шайбы 29 выполнены разными и снабжены выемками 30 в смещенных друг относительно друга положениях. Благодаря этому третий охлаждающий поток 28 в радиальном шлице 16 для охлаждения вытесняется на фигуре вверх в третьи охлаждающие каналы, которые находятся справа от шлица 16 на большей радиальной высоте, чем вторые охлаждающие каналы 18. Наконец, третий охлаждающий поток 28 выходит из третьих охлаждающих каналов 19 через расположенный со стороны B напорный щит 15. В напорном щите 15 для этого предусмотрены отверстия, размер которых выбран так, что сопротивление третьего охлаждающего потока 28 не слишком мало, и второй охлаждающий поток 26 также имеет достаточный расход. После отверстия в напорном щите 15 третий охлаждающий поток 28 объединяется с первым и вторым охлаждающим потоком 25, 26 в расположенном с торцевой стороны пространстве генератора 1 перед установленным на валу вентилятором 8. Третий охлаждающий поток 28 направляется таким образом в первой части ротора (левая сторона на фиг.) через более холодную область (область вблизи вала) ротора. При этом он почти не поглощает тепло. С правой стороны ротора он затем направлен вверх и служит там для эффективного охлаждения правой части ротора. Левая половина этой части ротора охлаждается, как пояснено выше, первично вторым охлаждающим потоком 26.

Предлагаемый изобретением принцип охлаждения с помощью двух отделенных друг от друга охлаждающих потоков может быть сформулирован в отношении своего принципа действия следующим образом: предлагаемая изобретением электрическая машина или, соотв., предлагаемый изобретением способ охлаждения выполнен так, что можно изготовить ротор машины и, в частности, генератора на постоянных магнитах, снабдив его только одним радиальным, расположенным посередине шлицом для охлаждения. При обычной конструкции только одного единственного шлица для охлаждения ротора было бы недостаточно для отвода потерь при Z-образной вентиляции. С помощью предлагаемой изобретением конструкции именно благодаря только одному единственному расположенному посредине шлицу для охлаждения может быть без больших сложностей обеспечено точное позиционирование постоянных магнитов ротора и их длительная защита от коррозии (простая двусторонняя заливка). Чтобы гарантировать достаточное охлаждение, пакет статора для дополнительного отвода тепла снабжен осевыми ребрами. Проходящие в осевом направлении ребра подвергаются охлаждению по замкнутому циклу с помощью принудительного воздушного течения установленного на валу вентилятора. Магниты ротора, область воздушного зазора, а также часть статора подвергаются охлаждению по замкнутому циклу с помощью другого охлаждающего воздушного потока, который создается расположенным в роторе посередине радиальным шлицом для охлаждающего воздуха. При необходимости существует возможность создания третьего охлаждающего воздушного потока за счет пониженного давления установленного на валу вентилятора и отверстий в расположенном со стороны B напорном диске ротора. Путем смены плоскостей охлаждающих каналов в области радиального шлица для охлаждения в середине пакета ротора обеспечивается, чтобы вторая половина ротора также могла снабжаться «холодным» охлаждающим воздухом. Это дополнительное охлаждение служит для отвода тепла от магнитов второго пакета ротора. Из предлагаемого изобретением принципа охлаждения вытекают следующие, частично уже упомянутые преимущества: с одной стороны, может быть достигнута экономия затрат на изготовление, так как ротор должен изготавливаться только из двух частичных пакетов, а, например, не из десяти частичных пакетов. Кроме того, может быть обеспечена полная защита от коррозии применяемых постоянных магнитов путем надежной заливки соответственно заливочной массы с торцевых сторон ротора. Наконец, несмотря на собственно недостаточное радиальное охлаждающее течение, достаточное охлаждение статора может быть достигнуто за счет осевого оребрения.


ЭЛЕКТРИЧЕСКАЯ МАШИНА С НЕСКОЛЬКИМИ ОХЛАЖДАЮЩИМИ ПОТОКАМИ И СПОСОБ ОХЛАЖДЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 971-980 из 1 427.
09.06.2018
№218.016.5bb9

Многоуровневый инвертор

Изобретение относится к области электротехники и может быть использовано в многоуровневом инверторе. Техническим результатом является исключение разрушения суб-модулей при возникновении тока короткого замыкания в нагрузке. Многоуровневый инвертор (10) содержит множество последовательно...
Тип: Изобретение
Номер охранного документа: 0002655912
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5cb0

Компоновка горелки

Изобретение относится к области энергетики. Предлагается компоновка (1) горелки с камерой (2) горения, с множеством впадающих в камеру (2) горения смесительных каналов (3), в которых смешиваются поступающий при эксплуатации согласно предписанию топочный воздух (4) и поступающее топливо (5),...
Тип: Изобретение
Номер охранного документа: 0002656177
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5cd0

Лопатка турбины и способ изготовления системы лопаток турбины

Лопатка турбины содержит рабочую часть, ромбовидный или Т-образный хвостовик, расположенный в периферийном пазу, и закрывающую пластину между ними. Закрывающая пластина имеет переднюю поверхность, заднюю поверхность, первую поверхность прилегания и расположенную параллельно ей вторую...
Тип: Изобретение
Номер охранного документа: 0002656176
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d89

Катализатор сополимеризации, электроизоляционная лента, электроизоляционный кожух и уплотнитель

Изобретение относится к применению соединения структурной формулы RCORCOZn в качестве катализатора сополимеризации смеси ангидрида карбоновой кислоты и оксирана. Каждый из R и R независимо друг от друга является линейной или разветвленной алкильной группой, причем R и R независимо друг от друга...
Тип: Изобретение
Номер охранного документа: 0002656340
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.5d8f

Мобильная конструкция цеха

Изобретение относится к мобильной конструкции (1) цеха, в частности, для выполнения работ по техническому обслуживанию и/или ремонту на роторе турбины, содержащей по меньшей мере один базовый каркас (2), несколько опорных колонн (4), которые удерживаются по меньшей мере на одном базовом каркасе...
Тип: Изобретение
Номер охранного документа: 0002656257
Дата охранного документа: 04.06.2018
09.06.2018
№218.016.5e3c

Способ и устройство для сжигания сплава электроположительного металла

Изобретение относится к области энергетики. Устройство для сжигания сплава электроположительного металла, причем этот электроположительный металл выбран из щелочных, щелочноземельных металлов, алюминия и цинка, а также их смесей, и этот сплав электроположительного металла включает в себя по...
Тип: Изобретение
Номер охранного документа: 0002656217
Дата охранного документа: 01.06.2018
09.06.2018
№218.016.5e49

Способ и устройство для уменьшения колебаний напряжения в сети электроснабжения

В сети (2) электроснабжения должны эффективно и с низкой стоимостью уменьшаться колебания напряжения. Для этого предлагается способ, в котором измеряется ток в нагрузке (1), за счет чего получается соответствующий сигнал измерения тока. Уменьшаются колебания напряжения с помощью управляемого с...
Тип: Изобретение
Номер охранного документа: 0002656356
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.6056

Устройство для направления электрического постоянного тока

Изобретение относится к устройству (1) для направления электрического постоянного тока. Устройство (1) содержит по меньшей мере одну сборную шину (3) и по меньшей мере один расположенный на боковой наружной поверхности (7) сборной шины (3) и проходящий вдоль сборной шины (3) электрически...
Тип: Изобретение
Номер охранного документа: 0002656887
Дата охранного документа: 07.06.2018
11.06.2018
№218.016.6078

Путь дугового короткого замыкания для смягчения дугового короткого замыкания в корпусе источника питания

Изобретение относится к корпусам источников питания, а более конкретно к пути дугового короткого замыкания для смягчения дугового короткого замыкания в корпусе источника питания. Технический результат - осуществление корпуса источника питания, имеющего путь дугового короткого замыкания, для...
Тип: Изобретение
Номер охранного документа: 0002657006
Дата охранного документа: 08.06.2018
14.06.2018
№218.016.61a6

Сальник вала, способ эксплуатации

Изобретение относится к сальнику вала (SHS) для уплотнении зазора (G), образованного при прохождении (РТ) вала (S) через корпус С, причем эти уплотнительные поверхности расположены друг против друга в плоскости (SEP) уплотнения, причем плоскость (SEP) уплотнения проходит главным образом...
Тип: Изобретение
Номер охранного документа: 0002657403
Дата охранного документа: 13.06.2018
Показаны записи 941-943 из 943.
04.04.2018
№218.016.353f

Узел деталей работающей на текучей среде энергомашины, способ монтажа

Изобретение относится к способу монтажа и узлу (А) деталей работающей на текучей среде энергомашины (FEM), в частности турбокомпрессора (TCO), с продольной осью (X). Для особенно простого и точного монтажа предусмотрено, что узел включает в себя внутренний пучок (IB) для расположения во внешнем...
Тип: Изобретение
Номер охранного документа: 0002645835
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3602

Устройство с ходовой частью

Группа изобретений относится к системам передач для локомотивов и моторных вагонов. Экипажная часть транспортного средства (12), в частности рельсового транспортного средства содержит ходовую часть (10), тяговые двигатели и блок силового питания. Ходовая часть (10) содержит колесные пары (14.1,...
Тип: Изобретение
Номер охранного документа: 0002646203
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.3735

Инжекционное охлаждение роторных лопаток и статорных лопаток газовой турбины

Компонент турбины содержит полый элемент с аэродинамическим профилем и инжекционную трубку, расположенную внутри полого элемента. Полый элемент содержит полость, имеющую противоположные заднюю и переднюю части, образованные внутренними поверхностями соответствующих областей задней и передней...
Тип: Изобретение
Номер охранного документа: 0002646663
Дата охранного документа: 06.03.2018
+ добавить свой РИД