×
27.03.2014
216.012.aefe

Результат интеллектуальной деятельности: РАДИОМЕТР С ТРЕХОПОРНОЙ МОДУЛЯЦИЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области приборостроения, а именно к СВЧ-радиометрическим приемникам. Радиометр с трехопорной модуляцией содержит последовательно соединенные приемную антенну, трехвходовый СВЧ-переключатель, усилитель высокой частоты, квадратичный детектор, усилитель низкой частоты, синхронный фильтр, синхронный детектор, блок вычисления множительно-делительной операции и регистратор, у которого на управляющие входы СВЧ-переключателя, синхронного фильтра и синхронного детектора подаются сигналы управления модуляцией от прибора управления модуляцией. Также устройство содержит «горячую» и «холодную» эталонные согласованные нагрузки и конструктивно связанные с ними термодатчики «горячей» и «холодной» эталонных согласованных нагрузок, выходы которых соединены с входами блока вычисления множительно-делительной операции, и нагревательный элемент. В устройство введены твердотельный источник «холодного» шума, выход которого подключен к входу СВЧ-переключателя, термодатчик твердотельного источника «холодного» шума, конструктивно связанный с твердотельным источником «холодного» шума, выход которого подключен к входу прибора управления модуляцией, СВЧ-циркулятор, первый вход которого подключен к выходу СВЧ-переключателя, ко второму входу СВЧ-циркулятора подключена «холодная» эталонная согласованная нагрузка, выход СВЧ-циркулятора подключен к входу усилителя высокой частоты. Направление циркуляции СВЧ-циркулятора выбрано от второго входа к первому входу и от первого входа к выходу. Технический результат - повышение точности измерений. 3 ил.
Основные результаты: Радиометр с трехопорной модуляцией, содержащий последовательно соединенные приемную антенну, трехвходовый СВЧ-переключатель, усилитель высокой частоты, квадратичный детектор, усилитель низкой частоты, синхронный фильтр, синхронный детектор, блок вычисления множительно-делительной операции и регистратор, у которого на управляющие входы СВЧ-переключателя, синхронного фильтра и синхронного детектора подаются сигналы управления модуляцией от прибора управления модуляцией, также включающий «горячую» эталонную согласованную нагрузку, выход которой соединен со входом СВЧ-переключателя, и «холодную» эталонную согласованную нагрузку, конструктивно связанные с ними термодатчики «горячей» и «холодной» эталонных согласованных нагрузок, выходы которых соединены с входами блока вычисления множительно-делительной операции, и нагревательный элемент, конструктивно связанный с «горячей» эталонной согласованной нагрузкой и нагревающий ее до температуры выше температуры «холодной» эталонной согласованной нагрузки, отличающийся тем, что дополнительно введены твердотельный источник «холодного» шума, выход которого подключен к входу СВЧ-переключателя, термодатчик твердотельного источника «холодного» шума, конструктивно связанный с твердотельным источником «холодного» шума, выход которого подключен к входу прибора управления модуляцией, СВЧ-циркулятор, первый вход которого подключен к выходу СВЧ-переключателя, ко второму входу СВЧ-циркулятора подключена «холодная» эталонная согласованная нагрузка, выход СВЧ-циркулятора подключен к входу усилителя высокой частоты, направление циркуляции СВЧ-циркулятора выбрано от второго входа к первому входу и от первого входа к выходу.

Изобретение относится к области приборостроения, а именно к СВЧ-радиометрическим приемникам для техники дистанционного зондирования земной поверхности и мирового океана, в частности к СВЧ-радиометрии.

Изобретение может быть использовано для измерения и регистрации радиояркостных температур собственного радиотеплового излучения подстилающей поверхности и может применяться в народном хозяйстве.

Известны схемы модуляционных радиометров, в которых применяется модуляция и непрерывная внутренняя калибровка по двум опорным источникам с различными температурами. [Е.Д.Бирюков, В.А.Плющев, И.А.Сидоров. Радиометр. АС №1734468, приоритет от 19.10.1989 г. МКИ: G01R 29/08]

Из известных устройств наиболее близким [1] можно считать радиометр с двухопорной модуляцией [Авторы: О.Б.Белоусов, В.А.Плющев, И.А.Сидоров, С.И.Галаган. Обработка информации тепловой пассивной РЛС средствами программируемой логики. Сборник трудов 57 Научно-технической конференции Государственного образовательного учреждения высшего профессионального образования. Московский государственный институт радиотехники, электроники и автоматики (Технический университет), Часть третья, Технические науки, Москва, 2008 г., стр.19-24], содержащий последовательно соединенные, приемную антенну, являющуюся входом устройства, трехвходовый СВЧ-переключатель, усилитель высокой частоты, квадратичный детектор, усилитель низкой частоты, синхронный фильтр, синхронный детектор, блок вычисления множительно-делительной операции и регистратор, на управляющие входы СВЧ-переключателя, синхронного фильтра и синхронного детектора подаются сигналы управления модуляцией от прибора управления модуляцией, а также «горячую» и «холодную» эталонные согласованные нагрузки, выходы которых соединены со входами СВЧ-переключателя, и конструктивно связанные с ними термодатчики «горячей» и «холодной» эталонных согласованных нагрузок, выходы которых соединены со входами блока вычисления множительно-делительной операции, и нагревательный элемент, конструктивно связанный с «горячей» эталонной согласованной нагрузкой и нагревающий ее до температуры выше температуры «холодной» эталонной согласованной нагрузки.

Основным признаком технического решения является то, что благодаря наличию двух эталонных согласованных нагрузок с различными температурами, процесс модуляции совмещен с процессом непрерывной внутренней калибровки так, что на выходе радиометра непрерывно регистрируются значения антенных температур, вычисленные по формуле (1):

,

где ТГ и ТХ - значения температур «горячей» и «холодной» эталонных согласованных нагрузок, измеренных термодатчиками, UA-UX и UГ-UХ - выходные сигналы синхронного детектора, пропорциональные соответственно разности антенной температуры и температуры «холодного» эталона и разности температур «горячего» и «холодного» эталонов.

Однако недостатком описанного радиометра с двухопорной модуляцией является то, что точность измерения антенной температуры зависит от величины измеряемой температуры.

Антенная температура является функцией пяти переменных:

Каждая из пяти переменных в правой части формулы изменяется с определенной абсолютной погрешностью ΔUA, ΔUГ, ΔUХ, ΔТГ, ΔТХ. В соответствии с [2] абсолютная погрешность измерения антенной температуры определяется формулой:

Учтено, что температура горячего внутреннего эталона всегда выше температуры холодного внутреннего эталона. Так как измерения температуры термодатчиками существенно точнее, чем измерения, сделанные при помощи радиометра, то двумя последними членами в формуле (3) в первом приближении можно пренебречь. Таким образом, получим:

Абсолютная погрешность измерения напряжения на выходе синхронного детектора определяется чувствительностью СВЧ-радиометра [3]:

,

где ТШ - температура шума приемника, Δf - ширина полосы СВЧ-усилителя, τ - полное время накопления сигнала.

Так как время накопления сигнала UA в два раза больше, чем UГ и UХ, то абсолютная погрешность измерения UA:

.

Используя формулу (1), выразим значения напряжений через соответствующие им радиояркостные температуры, тогда формула (4) примет вид:

,

где KU - величина, обратная крутизне вольт-градусной характеристики радиометра.

Из формулы (7) видно, что абсолютная погрешность измерений остается постоянной, когда антенная температура находится в интервале между температурами внутренних эталонов и линейно возрастает по мере удаления антенной температуры от температур эталонов за пределами этого интервала. График зависимости абсолютной погрешности измерений от значения антенной температуры, рассчитанный по формуле (7) для реальных значений температур эталонов, представлен на Фиг.1.

Таким образом, для уменьшения абсолютной погрешности измерения радиояркостных температур, например радиояркостных температур открытых водоемов, необходимо использовать «холодный» внутренний эталон с радиояркостной температурой, близкой к температуре открытых водоемов. В качестве такого эталона возможно использование реликтового излучения небесной сферы, но такой «эталон» не является «внутренним» и поэтому не рассматривается, или излучения согласованной нагрузки, охлажденной до температуры жидкого азота или жидкого гелия, но применение криогенной техники существенно ухудшает потребительские свойства радиометра.

Наиболее привлекательными источниками низкотемпературного шума являются твердотельные полупроводниковые генераторы (см. [4]), однако их применение в качестве эталонной нагрузки ограничено из-за непредсказуемости значения температуры генерируемого ими шума. Этот недостаток может быть устранен путем специальной процедуры калибровки шума твердотельного полупроводникового генератора по известным стабильным эталонам. Для реализации этого метода необходимо изменить схему радиометрического приемника.

Технический результат, который может быть получен с помощью этого изобретения, заключается в повышении точности измерения радиояркостных температур в интервале измеряемых температур от абсолютного нуля до температуры окружающей среды, путем применения нестабильного твердотельного источника низкотемпературного шума с калибровкой его по известным стабильным источникам шума.

Заявленный технический результат достигается тем, что в известный радиометр с двухопорной модуляцией, содержащий последовательно соединенные приемную антенну, являющуюся входом устройства, трехвходовый СВЧ-переключатель, усилитель высокой частоты, квадратичный детектор, усилитель низкой частоты, синхронный фильтр, синхронный детектор, блок вычисления множительно-делительной операции и регистратор, на управляющие входы СВЧ-переключателя, синхронного фильтра и синхронного детектора подаются сигналы управления модуляцией от прибора управления модуляцией. Радиометр также включает «горячую» эталонную согласованную нагрузку, выход которой соединен со входом СВЧ-переключателя, и «холодную» эталонную согласованную нагрузку и конструктивно связанные с ними термодатчики «горячей» и «холодной» эталонных согласованных нагрузок, выходы которых соединены со входами блока вычисления множительно-делительной операции, и нагревательный элемент, конструктивно связанный с «горячей» эталонной согласованной нагрузкой и нагревающий ее до температуры выше температуры «холодной» эталонной согласованной нагрузки. Дополнительно введены твердотельный источник «холодного» шума, выход которого подключен к входу СВЧ-переключателя вместо «холодной» согласованной нагрузки, термодатчик твердотельного источника «холодного» шума, конструктивно связанный с твердотельным источником «холодного» шума, выход которого подключен ко входу прибора управления модуляцией, СВЧ-циркулятор, первый вход которого подключен к выходу СВЧ-переключателя, ко второму входу СВЧ-циркулятора подключена «холодная» эталонная согласованная нагрузка, выход СВЧ-циркулятора подключен ко входу усилителя высокой частоты, направление циркуляции СВЧ-циркулятора выбрано от второго входа к первому входу и от первого входа к выходу.

Предлагаемый радиометр удовлетворяет критериям новизна и изобретательского уровня, так как присущие ему существенные признаки не содержатся в известных устройствах и в них не реализуется заявленный положительный эффект.

Изобретение будет понятно из следующего описания и приложенных к нему чертежей.

На фигуре 2 изображена схема радиометра с трехопорной модуляцией.

Предлагаемый радиометр содержит приемную антенну 1, трехвходовый СВЧ-переключатель 2, СВЧ-циркулятор 3, усилитель высокой частоты 4, квадратичный детектор 5, усилитель низкой частоты 6, синхронный фильтр 7, синхронный детектор 8, блок вычисления множительно-делительной операции 9, регистратор 10, прибор управления модуляцией 16, «горячую» эталонную согласованную нагрузку 11, «холодную» эталонную согласованную нагрузку 14, термодатчик «горячей» эталонной согласованной нагрузки 12, термодатчик «холодной» эталонной согласованной нагрузки 15, нагревательный элемент «горячей» эталонной согласованной нагрузки 13, твердотельный источник «холодного» шума 17, термодатчик твердотельный источника «холодного» шума 18.

Предлагаемый радиометр с трехопорной модуляцией работает следующим образом. Как и в радиометре с двухопорной модуляцией, прием сигнала производится периодически, с периодом модуляции, например, один килогерц. За время одного периода модуляции половина периода модуляции принимается и накапливается сигнал от антенны, для чего СВЧ-переключатель по управляющему сигналу от прибора управления модуляцией переключает сигнал с выхода антенны на первый вход СВЧ-циркулятора и далее с выхода СВЧ-циркулятора - на вход усилителя высокой частоты. Аналогично, на время, равное одной четверти периода модуляции, СВЧ-переключатель переключает на вход СВЧ-циркулятора сигнал от «горячей» эталонной согласованной нагрузки и на время, равное одной четверти периода модуляции, СВЧ-переключатель переключает на вход СВЧ-циркулятора сигнал от твердотельного источника «холодного» шума. При этом, за время накопления сигналов τ на выходе синхронного детектора формируются два сигнала: UA-U и UХШ-UГ, первый пропорционален разности антенной температуры и шумовой температуры источника «холодного» шума и второй пропорционален разности температуры «горячей» эталонной согласованной нагрузки и шумовой температуры источника «холодного» шума. Аналогично радиометру с двухопорной модуляцией в блоке множительно-делительной операции производится вычисление антенной температуры по формуле (8):

В отличие от известной схемы радиометра с двухопорной модуляцией, где значение шумовой температуры «холодной» эталонной согласованной нагрузки известно в любой момент времени, так как непрерывно измеряется при помощи соответствующего термодатчика, в радиометре с трехопорной модуляцией значение шумовой температуры твердотельного источника «холодного» шума ТХШ априорно не известно. Поэтому в радиометре с трехопорной модуляцией для измерения значения шумовой температуры твердотельного источника «холодного» шума ТХШ периодически, с периодом, существенно большим периода модуляции, применяется процедура калибровки твердотельного источника «холодного» шума, в ходе которой измеряется и запоминается значение ТХШ - шумовой температуры твердотельного источника «холодного» шума. В промежутках между калибровками твердотельного источника «холодного» шума шумовая температура ТХШ считается постоянной и ее значение используется для вычисления антенной температуры по формуле (8).

Экспериментально установлено, что наибольшее влияние на величину шумовой температуры твердотельного источника «холодного» шума оказывает его термодинамическая температура. Поэтому калибровка твердотельного источника «холодного» шума производится при первом включении радиометра и всякий раз, когда термодинамическая температура твердотельного источника «холодного» шума, измеренная соответствующим термодатчиком, изменяется на заданную величину, для чего выход термодатчика твердотельного источника «холодного» шума подключен к входу прибора управления модуляцией.

Процедура калибровки твердотельного источника «холодного» шума осуществляется следующим образом: на время одного периода модуляции половина периода модуляции принимается и накапливается сигнал от источника «холодного» шума, для чего СВЧ-переключатель по управляющему сигналу от прибора управления модуляцией переключает сигнал с выхода источника «холодного» шума на первый вход СВЧ-циркулятора и далее с выхода СВЧ-циркулятора - на вход усилителя высокой частоты. Аналогично, на время, равное одной четверти периода модуляции, СВЧ-переключатель переключает на вход СВЧ-циркулятора сигнал от «горячей» эталонной согласованной нагрузки и на время, равное одной четверти периода модуляции, СВЧ-переключатель переводится в состояние «выключено», блокируя прохождение сигналов на выход переключателя от любого из трех входов. При этом сигнал от «холодной» эталонной согласованной нагрузки, подключенной ко второму входу СВЧ-циркулятора, проходит от второго входа СВЧ-циркулятора в направлении циркуляции до первого ввода СВЧ-циркулятора, отражается от него и в направлении циркуляции проходит на выход СВЧ-циркулятора и далее - на вход усилителя высокой частоты.

За время накопления сигналов на выходе синхронного детектора формируются два сигнала: UХШ-UХ и UГ-UХ, первый пропорционален разности шумовой температуры твердотельного источника «холодного» шума и шумовой температуры источника «холодного» шума и второй пропорционален разности температуры «горячей» эталонной согласованной нагрузки и шумовой температуры «холодной» эталонной согласованной нагрузки. Точность измерения шумовой температуры согласно формуле (5) зависит от времени накопления сигналов. Чем больше время накопления, тем точнее измеряется значение шумовой температуры. При калибровке твердотельного источника «холодного» шума время накопления выбирается значительно больше времени накопления антенного сигнала τ, так чтобы точность измерения шумовой температуры была бы не хуже наперед заданной величины. Значение шумовой температуры твердотельного источника «холодного» шума вычисляется и запоминается в блоке множительно-делительной операции по формуле (9):

,

где ТГ и ТХ - значения термодинамических температур эталонных согласованных нагрузок, измеренные соответствующими термодатчиками. Вычисленное и запомненное значение шумовой температуры твердотельного источника «холодного» шума ТХШ используется для вычисления антенной температуры ТА по формуле (8).

На фигуре 3 показан график зависимости погрешности измерения антенной температуры ΔТА от значений ТА, полученный в процессе моделирования, с использованием формулы 8 для вычисления данных.

В остальном радиометр с трехопорной модуляцией работает по известной схеме.

Использование изобретения позволит повысить точность измерения радиояркостной температуры подстилающей поверхности.

Литература

1. О.Б.Белоусов, В.А.Плющев, И.А.Сидоров, С.И.Галаган. Обработка информации тепловой пассивной РЛС средствами программируемой логики. Сборник трудов 57 Научно-технической конференции Государственного образовательного учреждения высшего профессионального образования. Московский государственный институт радиотехники, электроники и автоматики (Технический университет). Часть третья. Технические науки, Москва, 2008 г., стр.19-24

2. Кошкин Н.И., Ширкевич М.Г. Справочник по элементарной физике. М.: Наука, 1972. - 256 с.

3. Есепкина Н.А., Корольков Д.В., Парийский Ю.Н. Радиотелескопы и радиометры. М.: Наука, 1973. - 416 с.

4. Prater R.M., Williams D.R. An active "cold" noise source. //IЕЕЕ transactions on microwave theory and techniques. - 1981, vol.29, is.4.

Радиометр с трехопорной модуляцией, содержащий последовательно соединенные приемную антенну, трехвходовый СВЧ-переключатель, усилитель высокой частоты, квадратичный детектор, усилитель низкой частоты, синхронный фильтр, синхронный детектор, блок вычисления множительно-делительной операции и регистратор, у которого на управляющие входы СВЧ-переключателя, синхронного фильтра и синхронного детектора подаются сигналы управления модуляцией от прибора управления модуляцией, также включающий «горячую» эталонную согласованную нагрузку, выход которой соединен со входом СВЧ-переключателя, и «холодную» эталонную согласованную нагрузку, конструктивно связанные с ними термодатчики «горячей» и «холодной» эталонных согласованных нагрузок, выходы которых соединены с входами блока вычисления множительно-делительной операции, и нагревательный элемент, конструктивно связанный с «горячей» эталонной согласованной нагрузкой и нагревающий ее до температуры выше температуры «холодной» эталонной согласованной нагрузки, отличающийся тем, что дополнительно введены твердотельный источник «холодного» шума, выход которого подключен к входу СВЧ-переключателя, термодатчик твердотельного источника «холодного» шума, конструктивно связанный с твердотельным источником «холодного» шума, выход которого подключен к входу прибора управления модуляцией, СВЧ-циркулятор, первый вход которого подключен к выходу СВЧ-переключателя, ко второму входу СВЧ-циркулятора подключена «холодная» эталонная согласованная нагрузка, выход СВЧ-циркулятора подключен к входу усилителя высокой частоты, направление циркуляции СВЧ-циркулятора выбрано от второго входа к первому входу и от первого входа к выходу.
РАДИОМЕТР С ТРЕХОПОРНОЙ МОДУЛЯЦИЕЙ
РАДИОМЕТР С ТРЕХОПОРНОЙ МОДУЛЯЦИЕЙ
РАДИОМЕТР С ТРЕХОПОРНОЙ МОДУЛЯЦИЕЙ
Источник поступления информации: Роспатент

Показаны записи 301-310 из 404.
18.07.2018
№218.016.71a1

Имитатор ракет

Изобретение относится к информационно-измерительным устройствам и может быть использовано для имитации предполетных функций ракеты, проверки электрического и информационного взаимодействия ракеты с аппаратурой носителя при помощи имитатора ракет. Имитатор ракет содержит модуль отображения...
Тип: Изобретение
Номер охранного документа: 0002661414
Дата охранного документа: 16.07.2018
02.08.2018
№218.016.77a7

Конденсатор с регулированием потока охлаждающей среды

Изобретение относится к области энергетики и может быть использовано при создании паротурбинных установок (ППУ) атомных судов. Конденсатор с регулированием потока охлаждающей среды выполнен одноходовым и состоит из корпуса, теплообменных трубок, внутри которых движется охлаждающая среда,...
Тип: Изобретение
Номер охранного документа: 0002662748
Дата охранного документа: 30.07.2018
17.08.2018
№218.016.7ca3

Рукав-компенсатор угловой

Изобретение относится к трубопроводным системам различного назначения, в частности к гибким рукавам-компенсаторам, предназначенным для использования в гидравлических системах для транспортирования по трубопроводам жидких сред в условиях избыточного давления и вакуума. Рукав-компенсатор угловой...
Тип: Изобретение
Номер охранного документа: 0002663968
Дата охранного документа: 13.08.2018
19.08.2018
№218.016.7e08

Способ наведения летательного аппарата на наземные цели по данным радиолокатора с синтезированием апертуры антенны

Изобретение относится к области навигационного приборостроения и может найти применение в системах самонаведения, в частности самонаведения летательного аппарата (ЛА) на наземные цели с помощью радиолокатора, использующего синтезированные апертуры антенны либо доплеровское обужение диаграммы...
Тип: Изобретение
Номер охранного документа: 0002664258
Дата охранного документа: 15.08.2018
23.08.2018
№218.016.7e80

Способ ремонта несущих трехслойных панелей из полимерных композиционных материалов

Изобретение относится к области пластмассового судостроения и касается вопроса ремонта несущих трехслойных панелей из полимерных композиционных материалов (ПКМ) со средним слоем из пенопласта. Предложен способ ремонта несущих трехслойных панелей из ПКМ со средним слоем из пенопласта, который...
Тип: Изобретение
Номер охранного документа: 0002664620
Дата охранного документа: 21.08.2018
30.08.2018
№218.016.8158

Способ контроля толщины покрытия в процессе его химического осаждения на деталь

Изобретение относится к технологиям нанесения покрытий на детали и может быть использовано для контроля толщины покрытия в процессе его химического осаждения на детали. Способ заключается в том, что в раствор ванны с погруженной в него деталью погружают контрольный образец, имеющий известную...
Тип: Изобретение
Номер охранного документа: 0002665356
Дата охранного документа: 29.08.2018
13.09.2018
№218.016.8765

Установка для обезвреживания судовых балластных вод

Изобретение относится к области очистки морской воды, а именно к устройствам для обезвреживания судовых балластных вод. Установка может быть использована в качестве штатного судового оборудования для обезвреживания балластной воды, а также как образец-прототип технологии при проведении...
Тип: Изобретение
Номер охранного документа: 0002666860
Дата охранного документа: 12.09.2018
22.09.2018
№218.016.88f3

Дополнительное пропульсивное устройство судна, совмещенное с подруливающим устройством

Изобретение относится к области судостроения, а именно к конструкциям дополнительного пропульсивного устройства судна. Дополнительное пропульсивное устройство судна, совмещенное с его подруливающим устройством, содержит по меньшей мере один лопастной движитель, расположенный в корпусе судна с...
Тип: Изобретение
Номер охранного документа: 0002667421
Дата охранного документа: 19.09.2018
26.09.2018
№218.016.8bf7

Аппаратно-имитационный комплекс систем управления и элементов электроэнергетических систем для отладки судовых систем управления объектов арктической морской техники

Аппаратно-имитационный комплекс систем управления и элементов электроэнергетических систем (ЭЭС) для отладки судовых систем управления объектов арктической морской техники содержит модуль выполнения расчетов, модели систем управления и элементов ЭЭС, программный имитатор локальной системы...
Тип: Изобретение
Номер охранного документа: 0002668004
Дата охранного документа: 25.09.2018
26.09.2018
№218.016.8c01

Устройство для измерения осадки плавучего средства на волнении

Изобретение относится к области судостроения и касается вопроса создания технических средств контроля осадки судна на волнении и на спокойной воде как в дрейфе, так и на ходу, включая аварийные ситуации. Предложено устройство для измерения осадки плавучего средства, содержащее два...
Тип: Изобретение
Номер охранного документа: 0002668003
Дата охранного документа: 25.09.2018
Показаны записи 301-310 из 325.
04.04.2018
№218.016.2f39

Устройство формирования и излучения мощных радиоимпульсов

Изобретение относится к радиотехнике и может быть использовано в различных устройствах, требующих получения радиоимпульсов с высокой импульсной мощностью, например в системах дальней космической связи и радиолокации. В изобретении используется прототип, включающий в себя сканирующую антенную...
Тип: Изобретение
Номер охранного документа: 0002644618
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.30d7

Мобильная лаборатория для испытаний на электромагнитные воздействия

Изобретение относится к устройствам для испытаний на стойкость к воздействию электромагнитного поля. Мобильная лаборатория для испытаний на электромагнитные воздействия выполнена в форм-факторе микроавтобуса, салон которого разделен перегородкой в виде электромагнитного экрана, отделяющего...
Тип: Изобретение
Номер охранного документа: 0002644988
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3332

Система регенерации гипоксической газовоздушной среды с повышенным содержанием аргона для обитаемых герметизированных объектов

Изобретение относится к средствам обеспечения обитаемости и пожаробезопасности подводных лодок, глубоководных обитаемых аппаратов и других средств освоения мирового океана, автономных космических объектов и других герметичных обитаемых объектов. Минимизация рисков возгораний и развития пожаров...
Тип: Изобретение
Номер охранного документа: 0002645508
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.34c9

Рыбопромысловое судно ледового плавания

Изобретение относится к области судостроения и касается вопроса эксплуатации рыбопромыслового судна в тяжелых ледовых условиях. Предложено рыбопромысловое судно ледового плавания, включающее корпус с ледовыми обводами и ледовым усилением, размещенные в отсеках балластные цистерны с балластной...
Тип: Изобретение
Номер охранного документа: 0002646042
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.34cf

Способ изготовления образца сотового заполнителя для испытаний

Изобретение относится к способам изготовления образцов для испытаний и может применяться при аттестации сотовых структур в области кораблестроения, авиастроения и космической техники. Изготавливают два одинаковых блока сотового заполнителя и приклеивают их торцевыми поверхностями к...
Тип: Изобретение
Номер охранного документа: 0002646082
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.3641

Блокинг-генератор для работы в ждущем режиме

Изобретение относится к импульсной технике и может быть использовано для формирования прямоугольных импульсов стабильной длительности блокинг-генератора, работающего в ждущем режиме. Техническим результатом изобретения является повышение стабильности длительности прямоугольных импульсов...
Тип: Изобретение
Номер охранного документа: 0002646387
Дата охранного документа: 02.03.2018
09.06.2018
№218.016.5d03

Способ изготовления трехмерного электронного модуля

Изобретение относится к радиоэлектронике. Предлагается новый способ изготовления трехмерного электронного модуля. Сущность способа изготовления трехмерного электронного модуля заключается в том, что модуль проектируют таким образом, чтобы на лицевых сторонах соединяемых частей, получаемых после...
Тип: Изобретение
Номер охранного документа: 0002656030
Дата охранного документа: 30.05.2018
08.07.2018
№218.016.6e47

Способ трассового сопровождения воздушных маневрирующих источников радиоизлучения по пеленговой информации от однопозиционной системы радиотехнической разведки воздушного базирования

Изобретение относится к области радиолокации и может быть использовано для осуществления трассового сопровождения подвижных маневрирующих источников радиоизлучений (ИРИ) с помощью однопозиционных систем радиотехнической разведки (СРТР) воздушного базирования. Достигаемый технический результат –...
Тип: Изобретение
Номер охранного документа: 0002660498
Дата охранного документа: 06.07.2018
01.03.2019
№219.016.cb4f

Гибридная зеркальная сканирующая антенна для многорежимного космического радиолокатора с синтезированной апертурой

Изобретение относится к области радиотехники, а именно для многорежимных космических поляриметрических радиолокаторов с синтезированной апертурой антенны, и может быть использовано в многорежимных космических поляриметрических радиолокаторах с синтезированной апертурой антенны (РСА)....
Тип: Изобретение
Номер охранного документа: 0002392707
Дата охранного документа: 20.06.2010
01.03.2019
№219.016.cdc9

Информационно-вычислительная система беспилотного самолета-истребителя

Изобретение относится к области приборостроения и может быть использовано для управления беспилотными самолетами-истребителями. Технический результат - расширение функциональных возможностей. Для достижения данного результата информационно-вычислительная система (ИБС) беспилотного...
Тип: Изобретение
Номер охранного документа: 0002418267
Дата охранного документа: 10.05.2011
+ добавить свой РИД