×
27.03.2014
216.012.ae68

Результат интеллектуальной деятельности: ТЕПЛОНОСИТЕЛЬ НА ОСНОВЕ СОЕДИНЕНИЙ КРЕМНИЯ

Вид РИД

Изобретение

№ охранного документа
0002510363
Дата охранного документа
27.03.2014
Аннотация: Изобретение относится к области химии и может быть использовано для создания теплоносителей. Предложен теплоноситель на основе кремнийорганических соединений. Теплоноситель содержит соединения на основе органодисилазанов или органоциклосилазанов. Заявленные соединения обладают стабильностью в потоке нейтронов при температуре выше 350°C, которую оценивают по отсутствию изменения молекулярной массы соединения после его облучения нейтронами. Заявленные в качестве теплоносителя соединения имеют температуру кипения ниже 126°C. Техническим результатом является повышенная эффективность заявленного теплоносителя при его использовании в ядерном реакторе и других подобных системах теплорегулирования. 4 з.п. ф-лы, 4 табл.

Изобретение относится к теплоносителям, в том числе неэлектропроводным жидкостям, для различных систем терморегулирования, в частности для атомных реакторов, электрических машин, а также может использоваться в качестве заменителей антифриза и тосола.

Известны теплоносители, в состав которых в качестве основного компонента входят различные гликоли (например, RU 2370512, 2009).

Недостатком теплоносителей на основе гликолей является многокомпонентный сложный состав, включающий 4 антикоррозионные присадки, что усложняет технологию их получения. Кроме того, присутствие воды в составе не обеспечивает диэлектрические свойства теплоносителя.

Известны ингибирующие коррозию теплоносители, содержащие соединения азота из класса триазолов, коллоидную двуокись кремния, поверхностно-активное вещество и, возможно, добавки различных спиртов (US 7662304, 2010; US 20090266519, 2009).

К недостаткам этих теплоносителей можно отнести наличие в составе воды, гидролизующей компоненты ингибирующего теплоносителя, приводя к изменению его вязкости и повышению его проводимости.

В области низкотемпературных теплоносителей широко представлены кремнийорганические соединения из класса силоксанов (RU 2221826, 2004).

Однако при повышенных температурах вязкость теплоносителя будет возрастать за счет увеличения его молекулярной массы, при этом теплоноситель будет осаждаться на теплопередающей поверхности, что приводит к снижению эффективности теплопередачи.

Из уровня техники известен способ получения и использования высокотемпературного теплоносителя (RU 1832696, 1989).

Стабильность полученного теплоносителя зависит от содержания в нем кислорода. При остаточной концентрации кислорода менее 0,5 об. термостабилизация не достигается, а более 5 об. теряется однородность продукта при хранении.

Наиболее близким по технической сущности является использование в качестве теплоносителя полибутилсилазана: (C4H9Si)15(NH)18 (см. GB 921049, 1963).

Однако из-за наличия объемных радикалов, связанных с атомом кремния, не обеспечивается стабильность известного теплоносителя в условиях высоких температур в течение длительного времени, в том числе в потоке нейтронов. Высокая молекулярная масса соединения обусловливает высокую вязкость теплоносителя, что приводит к ухудшению процесса теплообмена.

Задачей изобретения является разработка нового неэлектропроводного теплоносителя, обладающего высокими эксплуатационными характеристиками, в том числе в потоке нейтронов и при эксплуатации в герметичном объеме в течение длительного времени.

Поставленная задача решается описываемым теплоносителем на основе неэлектропроводных соединений кремния, в качестве которых используют органодисилазаны или органоциклосилазаны, обладающие стабильностью в потоке нейтронов при температуре выше 350°C, характеризующиеся отсутствием изменения молекулярной массы соответствующего соединения после его облучения потоком нейтронов, при этом органодисилазаны выбирают из группы: гекаметилдисилазан, гексаметил(N-метил)дисилазан,1 бис(1,1-диметил-1-фенил)силазан, 1,1-диметил-1-фенил-3,3,3-триметилдисилазан, 1,1,1-трифенил-3,3,3-триметилдисилазан, 1,1,1-триэтил-3,3,3-триметилдисилазан, 1-метил, 1-дифенил-3,3,3-триметилдисилазан, а органоциклосилазаны выбирают из группы: гексаметилциклотрисилазан, октаметилциклотрисилазан, гексафенилциклотрисилазан, 1,3,5-метилфенилциклотрисилазан(транс), 1,3,5-метилфенилциклотрисилазан(цис), гексаэтилциклотрисилазан, (N-метил)гексаметилциклотрисилазан, (N-метил)октаметилциклотрисилазан.

Предпочтительно выбирают соединение, обладающее стабильностью в потоке нейтронов 1014 n/cm2 при рабочей температуре выше 400°C и давлении 250-300 ат.

Предпочтительно выбирают соединение, обеспечивающее давление насыщенных паров при 350-450°C не выше 12 атм.

В качестве теплоносителя выбирают соединения, характеризующиеся температурой кипения при атмосферном давлении не менее 126°C.

Предпочтительно, выбранное соединение содержит изотопы 29Si или 30Si и изотопы 15N.

В общем случае заявленные соединения могут быть получены известным способом, а именно: аммонолизом органохлорсиланов. Методики получения описаны в следующих источниках информации: К.А.Андрианов. Л.М.Хананашвили. Технология элементоорганических мономеров и полимеров. - «Химия», 1973, с.177-180; К.А.Андрианов, Л.М.Хананашвили. Технология элементоорганических мономеров и полимеров - «Химия», 1983, с.208-211).

Соединения, содержащие изотопы 29Si или 30Si и изотопы 15N, получают путем взаимодействия соответствующих органохлорсиланов, содержащих изотопы 29Si или 30Si, с аммиаком или амином, содержащим изотоп 15N.

Заявленные в качестве теплоносителя органодисилазаны можно представить общей химической формулой: (1R 2R 4R Si)2- N 3R, где 1R, 2R, 3R, 4R означают одинаковые или разные радикалы, при этом независимо друг от друга представляют собой: 1R=Ph, Me, 2Et; 2R=Me, Et, Ph; 3R=H D, метил D, этил D, пропил D, 4R=Ph; Et; пропил D.

Заявленные в качестве теплоносителя органоциклосилазаны могут быть представлены общей химической формулой , причем n=3, 4; 1R, 2R, 3R, 4R означают одинаковые или разные радикалы, которые независимо друг от друга представляют собой: 1R=Ph, Me, Et; 2R=Me, Et, Ph; 3R=H D, алкил D (метил D, этил D, пропил D), 4R=Ph; Et; пропил D.

В объеме заявленной совокупности признаков достигается новый технический результат, заключающийся в эффективности использования заявленных соединений в качестве теплоносителей, особенно в качестве теплоносителей ядерных реакторов.

Ниже приведены примеры осуществления изобретения, оформленные в виде таблиц, содержащих конкретные физические, теплофизические и иные характеристики, определяющие эффективность работы заявленных соединений под действием облучения, и характеристики прототипа.

Таблица 1
Характеристики прототипа

п.п.
Структурная формула Т кип, °C / Р, мм рт.ст. Молекулярная масса*
До облучения После облучения
прототип (C4H9Si)15(NH)18 1425 1500

Таблица 2
Характеристики гексаорганодисилазанов
Структурная формула T кип, Давление Молекулярная масса
п.п. °C/ P, мм рт.ст. насыщенных паров при T≥350°C До облучения После облучения
1 [(CH3)3Si]2NH 126/760 ≤12 атм 161.4 Изменений нет
2 [(CH3)3Si]2NCH3 148/760 ≤12 атм 175.4 Изменений нет
3 [(CH3)2PhSi]2NH 96.9/0.1 ≤12 атм 285.5 Изменений нет
4 (CH3)2PhSiNHSi (CH3)3 75.9/1 ≤12 атм 223.0 Изменений нет
5 Ph3SiNHSi (CH3)3 186/2 ≤12 атм 347 Изменений нет
6 (C2H5)3SiNHSi(CH3)3 194.3/738 ≤12 атм 203 Изменений нет
7 (CH3)Ph2SiNHSi (CH3)3 173.5/3.5 ≤12 атм 285 Изменений нет

Таблица 3
Характеристики гексаорганоциклотрисилазанов
№ п.п. Структурная формула T кип, °С / Р, мм рт.ст. Давление насыщенных паров при T≥350°C Молекулярная масса
До облучения После облучения
1 [(CH3)2SiNH]3 51-52/4 ≤12 атм 219.51 Изменений нет
2 [(CH3)2SiNH]4 56-57/1 ≤12 атм 292.7 Изменений нет
3 *[Ph2SiNH]3 213.5 ≤12 атм 597 Изменений нет
4 **[CH3PhSiNH]3 транс 246/2-5 ≤12 атм 408 Изменений нет
5 ***[CH3PhSiNH]3 цис 280/7-8 ≤12 атм 408 Изменений нет
6 [(C2H5)2SiNH]3 128-129/1 ≤12 атм 309 Изменений нет

*-T пл, **Т пл. - 61.6-62.6, ***Тпл - 116.5.

Молекулярная масса соединений, указанных в таблицах, определена криоскопическим методом (по температуре замерзания) до и после облучения в течение 1 часа в потоке нейтронов 1014 n/cm2 при рабочей температуре выше 350°C.

Следует заметить, что все соединения, представленные в таблицах 2 и 3, при атмосферном давлении имеют температуру кипения не менее 126°C. Для части соединений, представленных в таблице, температура кипения указана при давлении ниже атмосферного (реальные условия использования), поэтому в соответствующей графе таблицы значение температуры кипения меньше чем 126°С. Однако при 760 мм рт.ст. температуры кипения этих соединений превышают 190°C, что соответствует характеристике, заявленной в п.4 формулы изобретения.

Ниже представлены подробные теплофизические характеристики двух соединений, одно из которых выбрано из группы органодисилазанов, а другое - из группы органоциклосилазанов.

Таблица 4
Теплофизические характеристики гексаметилдисилазана и гексаметилциклотрисилазана
Характеристики Соединения
п.п. [(CH3)3Si]2NH [(CH3)2SiNH]3
1 Диэлектрическая проницаемость, 1000 Hzz 2.27 2.57
2 Показатель преломления, 1.4080 1.4070
3 Плотность ,г/см3 0.7742 1.095
4 Теплота испарения, АН исп, ккал/моль 9.2 (при 70°C) -
5 Теплота образования, ккал/моль, (298 K) -91.8 132
6 Вязкость, сСт, при 20°C 0.9 1.7
7 Теплоемкость Ср, 82.5(298.1 K) 2.64 кДж/кг·K
кал/моль·град кал/моль·K
8 Поверхностное натяжение, 5, дн/см, при 25°C 18.16() 19.02
9 Коэффициент теплопроводности, λ, ккал/м·час·град 0.0985(при 25°C), 0094*(при 60°C) 0.6 Вт/м·K
10 Удельная 5.4·10-14 1.10-13
электропроводность, см-1·Ом-1 при 20±2°C, при 100±2°C 5.1·10-13

Испытаны теплофизические параметры всех заявленных соединений. Результаты испытаний оказались аналогичны результатам, приведенным в таблице 4.

Как следует из описания, все заявленные соединения характеризуются высокими температурами кипения, что обеспечивает низкую плотность паров. Например, температура разложения гексаметилтрисилазана составляет при давлении 2 кбар в атмосфере азота более 1300°C. После облучения мощностью 400 кВ при температурах более 350°C давление насыщенных паров не превышает 12 атм. Не выявлено изменение молекулярной массы заявленных теплоносителей под действием потока нейтронов в реальных условиях работы, что свидетельствует об их стабильности, т.е. возможности их эксплуатации в герметичном объеме в течение длительного времени. Кроме того, заявленные в качестве теплоносителя соединения достаточно инертны и не подвержены взаимодействию с конструкционными металлическими материалами. Таким образом, из результатов испытаний, представленных в описании, можно сделать вывод, что предложенные соединения являются эффективными теплоносителями, в том числе в условиях работы ядерного реактора. Заявленные соединения эффективны также в качестве заменителей антифриза и тосола.

Источник поступления информации: Роспатент

Показаны записи 71-79 из 79.
26.08.2017
№217.015.eacd

Способ изготовления изделия из композиционного материала

Изобретение относится к способам изготовления изделий из композиционного материала и может применяться в области авиастроения и космической техники, а также судостроения, автомобилестроения и др. Согласно способу выкладывают пакет слоев из волокнистого материала и закрепляют его накладкой,...
Тип: Изобретение
Номер охранного документа: 0002627882
Дата охранного документа: 14.08.2017
19.01.2018
№218.016.086e

Способ изготовления трехслойной сотовой панели из композиционного материала

Изобретение относится к способам изготовления изделий из композиционного материала и может применяться в различных областях (авиационной, космической, судостроительной, автомобильной и других). Сущность изобретения заключается в установке на торцы ячеек сотового заполнителя слоев волокнистого...
Тип: Изобретение
Номер охранного документа: 0002631877
Дата охранного документа: 28.09.2017
20.01.2018
№218.016.0fe1

Способ получения 3,3'-дихлор-4,4'-диаминодифенилметана

Изобретение относится к улучшенному способу получения 3,3'-дихлор-4,4'-диаминодифенилметана. Получаемое соединение может быть использовано для вулканизации и отверждения высокотемпературных эпоксидных композиций при изготовлении высокопрочных термостойких конструкционных изделий из полимерных...
Тип: Изобретение
Номер охранного документа: 0002633525
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.1128

Устройство для нанесения покрытия на внутреннюю цилиндрическую поверхность отверстия

Изобретение относится к устройствам для нанесения покрытия на внутренние цилиндрические поверхности отверстий и может найти применение в аэрокосмической промышленности, в частности для изготовления элементов конструкции десантных модулей космических аппаратов, головных обтекателей...
Тип: Изобретение
Номер охранного документа: 0002633923
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.1183

Образец для испытаний сотового заполнителя

Изобретение относится к исследованию прочностных свойств материалов и может применяться при аттестации сотовых структур при изготовлении трехслойных конструкций кораблестроения, авиастроения и космической техники. Образец включает два одинаковых блока сотового заполнителя с приклеенными к их...
Тип: Изобретение
Номер охранного документа: 0002634020
Дата охранного документа: 23.10.2017
17.02.2018
№218.016.2b6a

Способ получения метил(фенил) силоксановых олигомеров с концевыми трифенилсилильными группами

Изобретение относится к технологии получения линейных бис(трифенилсилил)олигометилфенилсилоксанов. Предложен способ получения метил(фенил)силоксановых олигомеров с концевыми трифенилсилильными группами общей формулы PhSiO[Si(Me)(Ph)O]SiPh, где N≥4, заключающийся во взаимодействии...
Тип: Изобретение
Номер охранного документа: 0002643367
Дата охранного документа: 01.02.2018
17.02.2018
№218.016.2c39

Способ получения солей бис(дикарболлид) кобальта

Изобретение относится к способу получения солей бис(дикарболлид) кобальта и триалкиламмонийных или тетраалкиламмонийных солей бис(дикарболлид) кобальта. Способ включает взаимодействие нидо-7,8(7,9)-дикарбаундекаборатов щелочных металлов или нидо-7,8(7,9)-дикарбаундекаборатов триалкиламмония или...
Тип: Изобретение
Номер охранного документа: 0002643368
Дата охранного документа: 01.02.2018
04.04.2018
№218.016.30b7

Способ получения органомагнийоксаниттрийоксаналюмоксанов, связующие и пропиточные материалы на их основе

Изобретение относится к способу получения органомагнийоксаниттрийоксаналюмоксанов общей формулы где k, р=0,1-6, m=3-12; k/m+l+x+2y+z=3; s+t+2r=3; R - CH, n=2-4; R* - C(CH)=CHC(O)OCH; R** - C(CH)=CHC(O)CH. Способ включает взаимодействие полиалкоксиалюмоксанов с гидратом ацетилацетоната иттрия...
Тип: Изобретение
Номер охранного документа: 0002644950
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.34cf

Способ изготовления образца сотового заполнителя для испытаний

Изобретение относится к способам изготовления образцов для испытаний и может применяться при аттестации сотовых структур в области кораблестроения, авиастроения и космической техники. Изготавливают два одинаковых блока сотового заполнителя и приклеивают их торцевыми поверхностями к...
Тип: Изобретение
Номер охранного документа: 0002646082
Дата охранного документа: 01.03.2018
Показаны записи 121-130 из 163.
29.06.2019
№219.017.9eaf

Облучательное устройство ядерного канального реактора для наработки изотопов кобальта

Изобретение относится к области ядерной энергетики, касается, в частности, конструкции звена облучательного устройства для ядерных канальных реакторов и может использоваться для производства гамма-источников из радиоактивного кобальта. Облучательное устройство включает подвеску с несущим...
Тип: Изобретение
Номер охранного документа: 0002321906
Дата охранного документа: 10.04.2008
29.06.2019
№219.017.a01c

Способ длительного хранения отработавшего ядерного топлива

Изобретение относится к области ядерной энергетики, в частности к хранилищам отработавшего ядерного топлива, и может быть использовано на АЭС и заводах по регенерации отработавшего ядерного топлива. Для длительного хранения отработавшего ядерного топлива в пеналах, заполненных водой,...
Тип: Изобретение
Номер охранного документа: 0002407083
Дата охранного документа: 20.12.2010
29.06.2019
№219.017.a054

Способ хранения отработавшего ядерного топлива

Изобретение относится к области ядерной энергетики, касается, в частности, технологии хранения отработавшего ядерного топлива и может быть использовано в хранилищах отработавшего ядерного топлива. Предложен способ хранения отработавшего ядерного топлива путем размещения в бассейне с...
Тип: Изобретение
Номер охранного документа: 0002403633
Дата охранного документа: 10.11.2010
10.07.2019
№219.017.ad3b

Способ получения пирогенного диоксида кремния и горелка для его осуществления

Изобретение может быть использовано в химической промышленности. Диоксид кремния получают гидролизом в пламени многоканальной трубчатой горелки, содержащей от 3 до 5 концентрических труб. На выходе из горелки образуется многослойная структура потока из чередующихся концентричных струй, имеющих...
Тип: Изобретение
Номер охранного документа: 0002350559
Дата охранного документа: 27.03.2009
10.07.2019
№219.017.afed

Окантовочный элемент трехслойной панели

Изобретение относится к авиационной и аэрокосмической технике, а именно к окантовочным элементам звукопоглощающих панелей авиационных двигателей, и касается окантовочного элемента трехслойной панели. Панель включает сотовый заполнитель, расположенный между верхней и нижней обшивками....
Тип: Изобретение
Номер охранного документа: 0002451603
Дата охранного документа: 27.05.2012
10.07.2019
№219.017.b026

Способ получения метилхлорида

Изобретение относится к способу получения метилхлорида, включающему взаимодействие метанола с хлористым водородом в реакторе синтеза с получением парогазовой смеси, включающей метилхлорид, и выделение метилхлорида из парогазовой смеси путем ее парциальной конденсации, последующей промывки ее...
Тип: Изобретение
Номер охранного документа: 0002404952
Дата охранного документа: 27.11.2010
19.07.2019
№219.017.b602

Способ и аппарат для очистки кремнийорганических соединений от летучих компонентов

Изобретение относится к способам очистки кремнийорганических соединений и устройствам для их реализации. Предложен способ очистки кремнийорганических соединений от летучих компонентов, при котором нагретый поток очищаемого кремнийорганического соединения подается в виде пучка множественных...
Тип: Изобретение
Номер охранного документа: 0002694845
Дата охранного документа: 17.07.2019
01.08.2019
№219.017.bb42

Устройство локализации кориума ядерного реактора водо-водяного типа

Изобретение относится к системе безопасности атомных электростанций (АЭС) с ядерными реакторами водо-водяного типа (ВВЭР), а именно к устройствам для локализации и охлаждения расплавленного кориума при аварийном выходе его за пределы корпуса реактора при тяжелых авариях с нарушением охлаждения...
Тип: Изобретение
Номер охранного документа: 0002696012
Дата охранного документа: 30.07.2019
10.08.2019
№219.017.bda4

Способ определения местоположения рабочей поверхности изделия относительно лазерного проектора

Изобретение относится к области авиастроения. Способ включает в себя размещение поверхности изделия в рабочей области проектора, установку на ней светоотражающих маркеров ориентировочно в точках, координаты которых обозначены в электронной 3D модели рабочей поверхности изделия лазерного...
Тип: Изобретение
Номер охранного документа: 0002696932
Дата охранного документа: 07.08.2019
02.10.2019
№219.017.cb11

Способ ускорения заживления роговицы при ее механических травмах

Изобретение относится к области медицины, а именно к офтальмологии, и предназначено для ускорения заживления роговицы после ее механических травм. Для ускорения заживления роговицы после ее механических травм проводят субконъюнктивальные инъекции и наружные аппликации в виде капель на рану...
Тип: Изобретение
Номер охранного документа: 0002701178
Дата охранного документа: 25.09.2019
+ добавить свой РИД