×
20.03.2014
216.012.ad0b

СПОСОБ ОПРЕДЕЛЕНИЯ МАЛЫХ КОНЦЕНТРАЦИЙ МОЛЕКУЛ ЛЕТУЧИХ ВЕЩЕСТВ В ГАЗОВОЙ СРЕДЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к оптике и аналитической технике и может быть использовано для определения наличия следовых количеств летучих веществ, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра. Способ основан на измерении параметров поверхностного плазмонного резонанса и определении по ним концентрации летучих веществ. После воздействия света на слой галоидного серебра и образования в его микрокристаллах центров скрытого изображения этот слой подвергается фотографическому проявлению. Изобретение позволяет повысить чувствительность сенсора до величин порядка 10-10 см.
Основные результаты: Способ определения малых концентраций молекул летучих веществ в газовой среде, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра к действию света, основанный на измерении параметров поверхностного плазмонного резонанса и определении по ним концентрации летучих веществ в тестируемой газовой среде, отличающийся тем, что после воздействия света на слой галоидного серебра и образования в его микрокристаллах центров скрытого изображения этот слой подвергается фотографическому проявлению.
Реферат Свернуть Развернуть

Изобретение относится к оптике и аналитической технике и может быть использовано для определения наличия следовых количеств летучих веществ.

Проблема определения следовых (т.е. предельно малых) количеств летучих веществ приобрела в последние годы острый характер. Это связано, прежде всего, с обнаружением взрывчатых и наркотических веществ. Могут быть и другие приложения.

Самый древний естественный способ обнаружения веществ - с помощью обоняния. Как известно, обоняние весьма специфично, и чувствительность зависит от определяемого вещества. Также давно известно, что различные существа сильно различаются по чувствительности обоняния, причем обоняние человека не самое чувствительное. Так чувствительность человека к изомеру тринитробутилтолуола составляет до ~107 молекул/см3, собаки к молекулам масляной кислоты - ~104 молекул/см3, а самца бабочки тутового шелкопряда к феромонам самки - ~100 молекул/см3 [1]. К уксусной же кислоте, одного из летучих компонентов героина, чувствительность обоняния человека составляет ~5×1013 молекул/см3, а собаки - ~5×105 молекул/см3 [2].

Для обнаружения этих веществ кроме собак применяются технические средства в виде приборов на основе физических и физико-химических средств. Чувствительность современных способов приборного определения следовых количеств летучих веществ находится на уровне ~109 молекул/см3 [2]. Поэтому делается вывод, что в обозримом будущем собаки незаменимы.

В [3] обнаружено изменение угла возбуждения поверхностного плазмона в трехслойной тонкой пленочной структуре Ag - Al2O3 - AgI при оптической сенсибилизации Арсеназо III. Там же указаны возможности применения этого эффекта для поиска в окружающей среде малого количества молекул, вызывающих сенсибилизацию галоидного серебра к действию света.

Суть эксперимента состояла в следующем. Для проведения эксперимента была приготовлена трехслойная тонкопленочная структура серебро - оксид алюминия - йодистое серебро (Ag - Al2O3 - AgI). В процессе эксперимента диэлектрическая постоянная внешней пленки (AgI) регистрируется методом нарушенного полного внутреннего отражения по схеме Кречмана. При этом в реакционной камере с атмосферным воздухом при комнатных параметрах атмосферы и температуре проходила сублимация кристаллов красителя Arsenazo III, молекулы которого адсорбировались на поверхности нанокристаллов йодистого серебра. Затем поверхность освещается излучением He-Ne лазера с длиной волны 543,5 нм. В результате на поверхности нанокристаллов AgI образовывались кластеры серебра размером порядка 50×50 нм2. Кластеры регистрировались атомно-силовым микроскопом. С появлением этих кластеров связывается вызванное ими изменение резонансного угла поверхностного плазмонного резонанса. Следует отметить, что концентрация молекул Арсеназо в воздухе в описанном эксперименте была достаточно высока. Процент образовавшегося металлического серебра был достаточно высок. Для работы же сенсоров всегда желательна чувствительность к малым концентрациям летучих веществ. Этот метод положен в основу заявляемого изобретения и поэтому может считаться его прототипом.

Задачей, на решение которой направлено заявляемое изобретение, является значительное, на несколько порядков, повышение чувствительности способа и доведение чувствительности до предельных значений.

Задача решается следующим образом.

Процессы, происходящие в нанокристаллах йодистого серебра, аналогичны процессам, происходящим в нанокристаллах фотографических эмульсий. Хотя в [3] о концентрации тестируемого компонента (ТК) никаких сведений не приводится, однако по описанию эксперимента (содержание в замкнутой камере с сублимирующим порошком в равновесных условиях) можно судить, что она была достаточно высока. Следует отметить, что соответствие давления насыщенных паров для ряда твердых веществ и концентрации молекул при комнатной температуре составляет: нафталин - 0.05 Торр, 1.61×1015 см-3, ртуть - 0.002 Торр, 6.46×1013 см-3, вольфрам для 2200°C - 1×10-7 Торр, 1.17×109 см-7. Для наблюдения эффекта необходимо выделение достаточно большого количества серебра. Поэтому представляется возможным, во-первых, сильно понизить экспозицию до уровня, обеспечивающего образование центров скрытого изображения и, во-вторых, в нанокристаллах, содержащих центры скрытого изображения, осуществить практически полностью восстановление металлического серебра с помощью фотографического проявления, что обеспечит значительный отклик поверхностного плазмонного резонанса (ППР). Это увеличит на несколько порядков чувствительность способа.

Сенсор может быть того же типа, как в описании прототипа, т.е. иметь по крайней мере, 3 слоя: зеркальный серебряный, защитный (например, оксид алюминия), из галгенида серебра (например, иодида). Измерения могут проводиться таким же образом, как в прототипе, но последовательность действий должна быть дополнена фотографическим проявлением. При измерениях определяются параметры поверхностного плазмонного резонанса, т.е. резонансный угол для какой-либо длины волны либо резонансная длина волны при каком-либо угле. Готовый сенсор с измеренным резонансным углом вводится в контакт с тестируемым газом. Сразу или через некоторое заданное время (чтобы молекулы уже адсорбировались) включается актиничное излучение (т.е. свет с длиной волны, которая возбуждает молекулы), которое воздействует на молекулы. Тестируемые молекулы должны либо прямо, либо через подобранную последовательность реакций с другими адсорбированными на поверхности нанокристаллов молекулами, передавать возбуждения нанокристаллам галогенида серебра. После проведенного в течение заранее определенного времени экспозиции сенсор проявляется в соответствующем проявителе и далее в измерительном приборе измеряется резонансный угол. По смещению резонансного угла по известным, заранее полученным характеристикам определяется концентрация молекул ТК в пробе воздуха. Оценки чувствительности приводятся ниже.

Таким образом, в заявляемом изобретении предлагается увеличить чувствительность способа на несколько порядков за счет дополнения этого процесса обычным химическим проявлением слоя йодистого серебра до образования массивных кластеров серебра при таких экспозициях, когда в значительном числе нанокристаллов на ранних стадиях облучения образуются скрытые изображения. Это утверждение основано на том, что для образования скрытого изображения достаточно образования кластеров из нескольких атомов серебра (3-6 атомов) [4-5]. Таких кластеров явно не достаточно для обнаружения их способом измерения резонансного угла поверхностного плазмонного резонанса, поскольку при таких концентрациях серебра изменения оптических характеристик слоя будут ничтожны. При проявлении в кристаллах на базе скрытого изображения будут увеличиваться кластеры серебра. В результате оптические свойства сенсора изменятся значительно и их можно будет измерить методом плазмонного резонанса. К тому же за счет проявления можно перевести в металлическое серебро все галоидное серебро, а не небольшую его часть, как в прототипе.

В основу простейшей оценки положим следующие моменты. Характерный размер площади кластера в [1] 1.5×103 нм2. При однослойном покрытии этой площади атомами серебра со средним расстоянием между атомами равным размеру ячейки серебра (0.4 нм), на этой площади разместится 9×,103атомов. Среднее число слоев нанокристаллов в пленке составляет 3, т.е. средняя толщина нанокристалла 5 нм. При средней толщине слоя кластера около 6 атомов толщина кластера составляет около половины толщины нанокристалла. Т.о., среднее число атомов в кластере составит 5.7×104. В центре скрытого изображения содержится 3 атома серебра. Тогда нетрудно видеть, что при неполном проявлении, таком, что возле центра скрытого изображения образуется кластер серебра такого же размера, как в прототипе, чувствительность повышается в 2×104 раз. Если же проявлять до полного восстановления серебра в нанокристаллах с центрами скрытого изображения, то нетрудно увидеть, что объем кластера серебра должен увеличиться более чем на порядок и увеличение чувствительности составит до 105 раз. Существенную роль в процессах образования центров скрытого изображения играют несовершенства кристаллической решетки. Для кристаллов без дефектов собственная светочувствительность вообще может отсутствовать. В области желатиновых эмульсий хорошо проработаны вопросы сенсибилизации. При этом известно, что важную роль играют агрегаты адсорбированных на поверхности кристалла молекул сенсибилизатора.

Желатина кроме пассивной роли удержания твердых зерен галоидного или металлического серебра играет и активную роль при образовании скрытого изображения в галоидном нанокристалле и переводе его в металлическое серебро [4-5]. В этом состоит отличие описываемого эксперимента от обычной серебряной фотографии. Однако в [3] показано, что металлическое серебро образуется в условиях эксперимента и без желатины.

В случае использования этого устройства в качестве сенсора малого количества примесей воздуха более логичной представляется схема измерений, моделирующая очевидный процесс анализа, например воздуха. Сенсор, не имея на поверхности адсорбированных тестируемых молекул, помещается в атмосферу, содержащую определяемый сенсибилизирующий компонент в небольших количествах. Т.о., в отличие от условий [3] в начальный момент времени адсорбированных молекул на поверхности сенсора нет. Сразу включается актиничное излучение, вызывающее восстановление серебра в нанокристаллах. Далее оцениваем, какую минимальную концентрацию и за какое время может почувствовать сенсор.

Рассмотрим 2 варианта работы схемы. Один вариант - с адсорбцией, когда сенсибилизирующие молекулы передают нанокристаллам возбуждение, полученное от излучения только в адсорбированном состоянии. Этот случай соответствует процессам, происходящим в обычным фотографических эмульсиях, и описанию эксперимента в [3]. В этом случае надо определять число адсорбированных молекул сенсибилизатора, которое может изменяться в процессе измерений. Будем рассматривать и другой предельный случай - полное отсутствие адсорбции, возбужденные молекулы сенсибилизатора, ударившись о поверхность кристалла сенсора, с некоторой вероятностью η передают кристаллу возбуждение в момент удара о его поверхность. В этом случае надо подсчитать число ударяющихся о кристаллы возбужденных молекул и возможность ее дезактивации при столкновении ее с молекулами воздуха и время пробега молекулы сенсибилизатора, свободного от столкновений.

Оценка чувствительности способа базируется на основных положениях молекулярно-кинетической теории. При этом средняя длина пробега молекул Арсеназо в воздухе между дезактивизационными столкновениями с молекулами воздуха составляет λArs=2,8 нм. В равновесном состоянии при W~50 мВт/см2 у поверхности будет возбуждено 73% молекул. Т.о., при больших плотностях мощности при оценках примем, что возбуждены практически все молекулы.

Скрытое изображение получается, если в одном кристалле образуется 3 или более возбуждений 3 [4-5]. Обеспечивают это молекулы сенсибилизатора, адсорбированные на поверхности кристалла. Рассматриваем случай полной адсорбции молекул, подходящих к поверхности. Тогда у поверхности концентрация молекул Арсеназо близка к нулю. На некотором расстоянии L от поверхности каким либо способом поддерживается концентрация n. На 1 см2 располагается nkr=1010 нанокристаллов. Таким образом, предельно малая измеримая концентрация составляет

Где VArs=20 м/с - средняя скорость молекул Арсеназо при α=0,001, L≈1 см и t≈600c n≈1010 см-3.

Можно не поддерживать постоянное значение концентрации молекул Арсеназо. Тогда минимально определимая концентрация составит

где Nm=3 - среднее число адсорбированных на одном кристалле молекул, Коэффициент диффузии молекул Арсеназо в воздухе D=7.65×103 мкм/с=7.65×10-5 см2/с, α=0.01 - доля кристаллов, имеющих скрытое изображение. Оценки показывают, что при проведении процесса в течение 1 с чувствительность составляет 5.23×1011 см-3, за 10 с - 1.65×1011 см-3, за 10 мин - 2.13×1010 см-3. Чувствительность может быть повышена в результате увеличения средней площади составляющих чувствительный слой нанокристаллов йодида серебра. Так, увеличивая площадь нанокристалла на 2 порядка, можно повысить чувствительность на 2 порядка за то же время. Т.о., чувствительность может быть увеличена до 106 см-3 за 10 мин.

При отсутствии адсорбции и передаче возбуждения в нанокристалле при ударах отдельных молекул о поверхность молекулы, находящиеся в слое толщиной порядка λArs (≈2 нм), будут быстро биться о поверхность (время между ударами λArs/ VArs≈10-10), передавая ей возбуждение. Они двигаются по броуновскому механизму. Частица сместится на величину порядка размера кристалла (100 нм) за время t≈10-5 c, покинув при этом его пределы и оставив скрытое изображение (количество ударов, при которых молекула может передать возбуждение одному кристаллу за время нахождения над ним, составляет десятки тысяч). С вероятностью 0.75 молекула за это время перейдет к кристаллу, над которым еще не была, и там также будет передавать возбуждение. Чтобы доля кристаллов со скрытым изображением превысило критическую отметку в α=0,01 из nkr=1010 см-2 за t≈600 с, достаточно несколько молекул в слое толщиной λArs~2.8 нм, что составляет концентрацию около 4·106 см-3.

Таким образом, предложенный способ измерения малых концентраций летучих веществ на основе поверхностного плазмонного резонанса с применением йодида серебра позволяет значительно (на несколько порядков) повысить чувствительность сенсора к находящимся в воздухе фотосенсибилизирующим йодид серебра веществам с помощью фотографического проявления образующегося под действием света скрытого изображения в нанокристаллах чувствительного слоя. Приведенные оценки показывают возможность достижения чувствительности до концентраций молекул тестируемого вещества порядка 106 см-3 в течение 10 мин. Приведенные оценки показывают возможность достижения чувствительности, достаточной для детекции в газовой среде следовых количеств молекул твердотельных и жидких веществ, содержащихся в почве, рудных месторождениях, и при производстве сверхчистых материалов

Литература

1. Большая Советская энциклопедия. 3-е изд., статья Обоняние.

2. Федоров Ю.А. Индикация наркотических веществ//Специальная техника. 2001. №5.

3. С. В.Виноградов, М.А.Кононов, В.В.Савранский, С.И.Валянский, М.Ф.Урбайтис. Влияние оптической сенсибилизации на поверхностный плазмонный резонанс. Квантовая электроника, 33, №8 (2003), с.711-713.

4. К.В.Чибисов, Общая фотография, М., Искусство, 1984, 446 с.

5. Дж.У.Митчелл, Успехи физических наук. Фотографическая чувствительность, т.67, (1959), вып.2, с.293-337, вып.3, с.505-541.

Способ определения малых концентраций молекул летучих веществ в газовой среде, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра к действию света, основанный на измерении параметров поверхностного плазмонного резонанса и определении по ним концентрации летучих веществ в тестируемой газовой среде, отличающийся тем, что после воздействия света на слой галоидного серебра и образования в его микрокристаллах центров скрытого изображения этот слой подвергается фотографическому проявлению.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 45.
10.10.2014
№216.012.fa13

Устройство для нанесения однородных гладких тонких пленок различных материалов на твердые подложки

Изобретение относится к области технологии сверхпроводящих тонких пленок и может найти применение в производстве сверхпроводящих лент на основе высокотемпературных сверхпроводников для сверхпроводящих кабелей передачи электрической энергии, работающих при температуре жидкого азота. Устройство...
Тип: Изобретение
Номер охранного документа: 0002529865
Дата охранного документа: 10.10.2014
27.11.2014
№216.013.0be6

Способ формирования субдифракционной квазирегулярной одно-и двумерной нанотекстуры поверхности материалов и устройство для его осуществления

Заявленная группа изобретений относится к средствам для формирования субдифракционной квазирегулярной одно- и двумерной нанотекстуры поверхности различных материалов для устройств нанофотоники, плазмоники, трибологии или для создания несмачиваемых покрытий. Данное изобретение позволяет повысить...
Тип: Изобретение
Номер охранного документа: 0002534454
Дата охранного документа: 27.11.2014
10.04.2015
№216.013.394c

Способ стабилизации эмульсий и коллоидных растворов и устройство для его осуществления

Изобретение относится к технологическим химическим процессам, в частности к нефтехимии, и может быть использовано для стабилизации различных эмульсий и коллоидных растворов, например, при производстве коллоидных и полимерных дисперсий, нефтяных масел, смазочных материалов, технических...
Тип: Изобретение
Номер охранного документа: 0002546156
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4b9a

Способ формирования микроструктурированного и высокодопированного слоя на поверхности кремния

Изобретение может быть использовано при изготовлении фоточувствительных элементов солнечной энергетики и приборов ночного видения. Сухую поверхность кремния облучают множественными фокусированными ультракороткими фемто- или короткими пикосекундными лазерными импульсами (УКИ) для её абляционного...
Тип: Изобретение
Номер охранного документа: 0002550868
Дата охранного документа: 20.05.2015
20.11.2015
№216.013.8f51

Генератор быстрых моноэнергетических нейтронов

Заявленное изобретение относится к генераторам быстрых моноэнергетических нейтронов. В заявленном устройстве предусмотрено использование алмазной кристаллической структуры, поверхность которой облучается ускоренным до нескольких десятков кэВ пучком ионов дейтерия, в качестве...
Тип: Изобретение
Номер охранного документа: 0002568305
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.91da

Способ получения пористого кремния со стабильной фотолюминесценцией

Изобретение относится к области изготовления наноструктурных материалов и может быть использовано в оптоэлектронике для производства светоизлучающих индикаторов. Способ получения пористого кремния со стабильной фотолюминесценцией согласно изобретению осуществляют путем анодного...
Тип: Изобретение
Номер охранного документа: 0002568954
Дата охранного документа: 20.11.2015
20.06.2016
№217.015.035c

Аподизатор лазерного пучка

Аподизатор лазерного пучка включает зубчатую диафрагму и пространственный фильтр, в котором зубчатая диафрагма с радиусом окружности вершин зубцов R дополнена корректирующим элементом. Корректирующий элемент выполнен в виде установленного соосно с диафрагмой непрозрачного кольца с внешним...
Тип: Изобретение
Номер охранного документа: 0002587694
Дата охранного документа: 20.06.2016
27.04.2016
№216.015.3843

Дисковый лазер (варианты)

Изобретение относится к лазерной технике. Дисковый лазер состоит из оптического резонатора с первой оптической осью, активной пластины, имеющей первую поверхность и вторую поверхность, размещенной внутри оптического резонатора и закрепленной на хладопроводящей подложке своей первой...
Тип: Изобретение
Номер охранного документа: 0002582909
Дата охранного документа: 27.04.2016
25.08.2017
№217.015.a236

Способ получения структуры высокотемпературный сверхпроводник - диэлектрик - высокотемпературный сверхпроводник

Использование: для создания структур высокотемпературный сверхпроводник – диэлектрик – высокотемпературный сверхпроводник. Сущность изобретения заключается в том, что на слой высокотемпературного сверхпроводника 123-типа направляют поток атомных частиц, в качестве высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002606940
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.bf97

Способ электрометрического измерения производной химического потенциала по температуре и устройство для его осуществления

Изобретение относится к области электрометрического анализа химического потенциала μ c помощью модуляции температуры T и может быть использовано для исследования характеристик имеющихся и для конструирования новых элементов наноэлектроники. Предложен способ измерения ∂μ/∂T, который позволяет...
Тип: Изобретение
Номер охранного документа: 0002617149
Дата охранного документа: 21.04.2017
Показаны записи 11-20 из 33.
10.10.2014
№216.012.fa13

Устройство для нанесения однородных гладких тонких пленок различных материалов на твердые подложки

Изобретение относится к области технологии сверхпроводящих тонких пленок и может найти применение в производстве сверхпроводящих лент на основе высокотемпературных сверхпроводников для сверхпроводящих кабелей передачи электрической энергии, работающих при температуре жидкого азота. Устройство...
Тип: Изобретение
Номер охранного документа: 0002529865
Дата охранного документа: 10.10.2014
27.11.2014
№216.013.0be6

Способ формирования субдифракционной квазирегулярной одно-и двумерной нанотекстуры поверхности материалов и устройство для его осуществления

Заявленная группа изобретений относится к средствам для формирования субдифракционной квазирегулярной одно- и двумерной нанотекстуры поверхности различных материалов для устройств нанофотоники, плазмоники, трибологии или для создания несмачиваемых покрытий. Данное изобретение позволяет повысить...
Тип: Изобретение
Номер охранного документа: 0002534454
Дата охранного документа: 27.11.2014
10.04.2015
№216.013.394c

Способ стабилизации эмульсий и коллоидных растворов и устройство для его осуществления

Изобретение относится к технологическим химическим процессам, в частности к нефтехимии, и может быть использовано для стабилизации различных эмульсий и коллоидных растворов, например, при производстве коллоидных и полимерных дисперсий, нефтяных масел, смазочных материалов, технических...
Тип: Изобретение
Номер охранного документа: 0002546156
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4b9a

Способ формирования микроструктурированного и высокодопированного слоя на поверхности кремния

Изобретение может быть использовано при изготовлении фоточувствительных элементов солнечной энергетики и приборов ночного видения. Сухую поверхность кремния облучают множественными фокусированными ультракороткими фемто- или короткими пикосекундными лазерными импульсами (УКИ) для её абляционного...
Тип: Изобретение
Номер охранного документа: 0002550868
Дата охранного документа: 20.05.2015
20.11.2015
№216.013.8f51

Генератор быстрых моноэнергетических нейтронов

Заявленное изобретение относится к генераторам быстрых моноэнергетических нейтронов. В заявленном устройстве предусмотрено использование алмазной кристаллической структуры, поверхность которой облучается ускоренным до нескольких десятков кэВ пучком ионов дейтерия, в качестве...
Тип: Изобретение
Номер охранного документа: 0002568305
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.91da

Способ получения пористого кремния со стабильной фотолюминесценцией

Изобретение относится к области изготовления наноструктурных материалов и может быть использовано в оптоэлектронике для производства светоизлучающих индикаторов. Способ получения пористого кремния со стабильной фотолюминесценцией согласно изобретению осуществляют путем анодного...
Тип: Изобретение
Номер охранного документа: 0002568954
Дата охранного документа: 20.11.2015
20.06.2016
№217.015.035c

Аподизатор лазерного пучка

Аподизатор лазерного пучка включает зубчатую диафрагму и пространственный фильтр, в котором зубчатая диафрагма с радиусом окружности вершин зубцов R дополнена корректирующим элементом. Корректирующий элемент выполнен в виде установленного соосно с диафрагмой непрозрачного кольца с внешним...
Тип: Изобретение
Номер охранного документа: 0002587694
Дата охранного документа: 20.06.2016
27.04.2016
№216.015.3843

Дисковый лазер (варианты)

Изобретение относится к лазерной технике. Дисковый лазер состоит из оптического резонатора с первой оптической осью, активной пластины, имеющей первую поверхность и вторую поверхность, размещенной внутри оптического резонатора и закрепленной на хладопроводящей подложке своей первой...
Тип: Изобретение
Номер охранного документа: 0002582909
Дата охранного документа: 27.04.2016
25.08.2017
№217.015.a236

Способ получения структуры высокотемпературный сверхпроводник - диэлектрик - высокотемпературный сверхпроводник

Использование: для создания структур высокотемпературный сверхпроводник – диэлектрик – высокотемпературный сверхпроводник. Сущность изобретения заключается в том, что на слой высокотемпературного сверхпроводника 123-типа направляют поток атомных частиц, в качестве высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002606940
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.bf97

Способ электрометрического измерения производной химического потенциала по температуре и устройство для его осуществления

Изобретение относится к области электрометрического анализа химического потенциала μ c помощью модуляции температуры T и может быть использовано для исследования характеристик имеющихся и для конструирования новых элементов наноэлектроники. Предложен способ измерения ∂μ/∂T, который позволяет...
Тип: Изобретение
Номер охранного документа: 0002617149
Дата охранного документа: 21.04.2017
+ добавить свой РИД